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Classification and regression trees (Breiman et al., 1984)
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> A very popular supervised learning algorithm that uses tree
structured input/output models

» The learning procedure:

» Recursively split the learning sample with tests based on the inputs
trying to reduce as much as possible the impurity of the output
(entropy, variance...)

» Stop when the output is constant in the leaf or some stopping
criterion is met (e.g., depth of the node is above some threshold D)
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Impurity reduction
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» The best split is the one that maximises impurity reduction:

Aifs,t) = i(t) — Nﬁ:i(n) — i),

where N; is the number of samples reaching node t.
» Standard impurity measures:

fregr(t) = — Z Z yi)? (variance)

ties(t) N ies(t)

icas(t) = — Z Ne.c Nt < (Shannon entropy)

where N; ¢ is the number of samples of class ¢ in node t.
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Ensemble of randomized trees

y=0.25

» Improve trees by reducing their variance

» Many examples: Bagging (Breiman, 1996), Random Forests (Breiman,
2001), Extremely randomized trees (Geurts et al., 2006)

» Breiman (2001)'s Random Forests:

» Each tree is built from a bootstrap sample
» The best split at each node is chosen among K inputs selected
(locally) at random
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Ensemble of randomized trees: strengths and weaknesses

v

Universal approximation

Robustness to outliers

v

v

Robustness to irrelevant variables (to some extent)

v

Invariance to scaling of inputs

v

Good computational efficiency and scalability

v

Very good accuracy

v

Loss of interpretability w.r.t. standard trees
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Variable importance scores

» Some interpretability can be retrieved through variable importance
scores

30

=03 =05

» Two main importance measures:
» The mean decrease of impurity (MDI): summing total impurity
reductions at all tree nodes where the variable appears (Breiman et
al., 1984)
» The mean decrease of accuracy (MDA): measuring accuracy
reduction on out-of-bag samples when the values of the variable
are randomly permuted (Breiman, 2001)

» We focus here on the MDI measure

> It is faster to compute (no permutations needed)

» It does not require to use bootstrap sampling

» Empirically, it correlates well with the MDA measure (except in
specific conditions)
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Mean decrease of impurity (MDI): definition

Importance of variable X, for an ensemble of N trees is given by:
Imp(X Z > p(n)Ai(t)
T teT:v(t)=Xm
where p(t) = N;/N and Ai(t) is the impurity reduction at node t:

Aie) = i(e) - -

i) - yi(te)
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One successful application: Gene network inference

GENIE3 (Huynh-Thu et al, Plos ONE, 2010)
G G G Gn Gout
0106 | 0878 | 0054 0870 |[ 0899 |
0014 | 0.860 | 0031 0890 || 0.919
0062 | 0.443 | 0.158 0877 || 0957 15=0.
0011 | 0.89 | 0002 0882 || 0945
0076 | 0.783 | 0.000 0883 || 0932
0079 | 0892 | 0005 0862 || 0912

Gou=0.8 Gou=0.4 Gou=0.4 Gou=0.7

o2
£ e —
# 10 =

o
G15.G4 G0 GB G9 G0G11 G1 G13 G2 G12G14 G3 GI6G17 G6 GIGI® G7 G5

DREAMS5 competition (Marbach et al., Nature Methods, 2012)
60
40

GENIESmp,

Overall
score

20 H
0 O= rl-—u—- IIl.l

12345678 12345 123 123456 12345678 12345
Regression Ml  Corr. Bayes Other Meta

8/35



Motivation

Despite many successful applications in various domains, random
forests variable importances are still poorly understood.

Our general objectives:

» Better understand the MDI importance measure, so as to provide
advices on how to best interpret it and exploit it in practice

» Design more efficient feature selection procedures based on
random forests.
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Outline

@ Tree-based variable importance scores
@® Towards a better understanding of the MDI measure

© Towards large-scale feature selection
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Outline

@® Towards a better understanding of the MDI measure
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Background: Feature relevance (Kohavi and John, 1997)

Relevant
features

%

Irrelevant

features

Given an output Y and a set of input variables V, X € V is
» relevant iff 3B C V such that Y 1 X|B.
» irrelevant iff VB C V: Y 1L X|B
» strongly relevant iff Y L X|V \ {X}.
» weakly relevant iff X is relevant and not strongly relevant.

The degree, deg(X), of a relevant variable X is the smallest size of a
subset B C V such that Y )L X|B.

A Markov boundary is a minimal size subset M C V such that
Y 1L V\MM.
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Background: Feature selection (Nilsson et al., 2007)

Relevant
features

v

Irrelevant

features

Two different feature selection problems:
» Minimal-optimal: find a Markov boundary for the output Y.

> All-relevant: find all relevant features.

Notes:
» In general, both problems requires exhaustive subset search.
» When the input distribution is strictly positive (f(x) > 0), the
markov boundary is unique and it contains all and only the

strongly relevant features.
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Assumptions

1
Imp(X —T ;

Our working assumptions:

> p(h)Ai(t)
T:v(t)=Xm

te

» All variables are discrete

» Multi-way splits a la C4.5, i.e. one branch per value of the variable

» Shannon entropy is used as the impurity measure:

ZNtc Ntc

» Asymptotic conditions: infinite sample size and number of trees

Two method parameters (with p the number of features):
» Number of features drawn at each node K € [1, p]
» Maximum tree depth D € [1, p]
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Totally random unpruned trees (K=1,D = p)

Thm. Variable importances provide a three-level decomposition of
the information jointly provided by all the input variables about
the output, accounting for all interaction terms in a fair and
exhaustive way.

p
(X, X Y) = > Imp(Xm)
D m=1

Information jointly provided
by all input variables

i) Decomposition in terms of
about the output ) P

the MDI importance of
each input variable

p—1 1

Imp(Xm) = o [(Xm:; Y|B
= L, 2 e YIe)

iii) Decomposition along all

interaction terms B
of a given degree k

E.g: p=3,Imp(X1) = 2/(X1; Y) + L (/(X1; Y|X2) + 1(X1; Y|X3)) + 3/(X1; Y[ X2, X3)
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Impact of rrelevant variables (K=1,D = p)

Variable importances depend only on the relevant variables

Prop. A variable X, is irrelevant if and only if Imp(X,,) = 0.

Prop. The importance of a relevant variable is insensitive to the
addition or the removal of irrelevant variables in V.

= Asymptotically, unpruned totally randomized trees thus solve the
all-relevant feature selection problem.
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Non-totally randomized trees (K>1, D=p)

Most properties are lost as soon as K > 1

= There can be relevant variables with zero importances (due to
masking effect).

Example:
I(X1;Y)=H(Y), I(X1;Y) = I[(X2; Y), I(X1; Y|X2) =€ and I(Xz; Y|X1) =0

> K =1— Impk=1(X1) = 31(X1; Y) + € and Impx—1(X1) = 31(X2; Y)
> K =2— Impk=2(X1) = I(X1; Y) and Impg=2(X2) = 0.

= The importance of relevant variables can be influenced by the
number of irrelevant variables

> K =2 and we add a new irrelevant variable X3 — Impx=2(X2) > 0
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[llustration: 7-segment display (Breiman et al., 1984)
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[llustration: 7-segment display (Breiman et al., 1984)

p—1 1
Imp(X) = —— I1(Xm; Y|B
ITIP( ) kXZ(:) ('Z)(P _ k) BEPkX(‘:/_m) ( I )
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[llustration: 7-segment display (Breiman et al., 1984)
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Strongly relevant features can not be masked  (k>1,0=p)

R
Relevant Fp i ™. vV

featurew

Thm. VK : X strongly relevant

= ImpK(X) > 0. Irrelevant
features

In the case of strictly positive distributions, non random trees always
find a superset of the minimal-optimal solution.

Note that X; strongly relevant and X; weakly relevant does not imply
that Imp(X;) > Imp(X;), even for strictly positive distribution.
E.g.:
Y=XioX:

—-@ = Imp(X1)(= Imp(X2)) < Imp(Xs) when o < 1

@9/ ¥iX)=1-a
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Impact of pruning (K=1,D < p)
Pruning all trees up to depth D = d < p limits importances to the
first d terms of the decomposition.

d—

mpP(Xm) =3 3" I(Xm: Y1B)

= =k BEP (V)

[y

In general, we have ImpP<P(Xy,) # ImpP=P(X,,) and ImpP<P(X,,)
now depends on the number of irrelevant variables.

Pruned totally random trees still solves the all-relevant problem, i.e.,
X irrelevant iff ImpP<P(X,,) =0

when either:
» For all relevant variables X € V, deg(X) < D

» The number r of relevant variables is < D
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Non asymptotic setting: finite number of trees

In general, a single tree can not identify all relevant features, even the
strongly relevant ones.

Eg: I(Y; X)) =1(Y; X2) =0and I(Y; X1, X2) >0

Note: All strongly relevant features will however be detected with a single tree
with K = p if the following property holds for all X1, X2 € V,B C V, b:

YU X |B=band Y L Xo|B=b=Y I X1,X:|B=b

When Nt < oo, Impp,(X) > 0 implies that X is relevant but the
opposite is not true.
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Non asymptotic setting: finite number of samples

There is a positive bias in the estimation of mutual informations that
depends on the cardinality of X and Y:
(Y] =1)(X]-1)

2N; log 2

I(Y;X)=0= E{I(Y;X)} =

To avoid false positives, one should use:
» Pruned trees (D < p), not to estimate mutual informations from
too few samples

» Non totally random trees (K > 1), to avoid splits on irrelevant
features at the top nodes

From previous analyses, decreasing D or increasing K will however
increase the number of false negatives (and also affect the final
ranking).
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Conclusions

Asymptotically, MDI is a sound statistic to detect weakly and strongly
relevant features

As a quantitative score to rank relevant features, it should however be
interpreted cautiously:
» Asymptotically, it is affected by the value of K, tree depth D,
redundant and irrelevant variables (when K > 1).
» In finite settings, it is affected by biases in the estimation of
impurity

To make the most of these scores, method parameters should be set
appropriately and independently of predictive performance.

Future works:
» Finite sample analysis
» Numerical features
» Design alternative statistics with better or complementary

properties.
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Outline

© Towards large-scale feature selection

» We want to address large-scale feature selection problems where
one can not assume that all variables can be stored into memory

» Based on the previous analyses, we study and improve ensembles
of trees grown from random subsets of features

(Work in progress)
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Random subspace for feature selection

Simplistic memory constrained setting: We can not grow trees with
more than g features

Straightforward ensemble solution: Random Subspace (RS)
Train each ensemble tree from a random subset of g features

1. Repeat T times:

1.1 Let Q be a subset of g features randomly selected in V
1.2 Grow a tree only using features in @ (with randomization K)

2. Compute importance Impq,7(X) for all X

Proposed e.g. by (Ho, 1998) for accuracy improvement, by (Louppe and
Geurts, 2012) for handling large datasets and by (Draminski et al., 2010,
Konukoglu and Ganz, 2014) for feature selection

Let us study the population version of this algorithm.
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RS for feature selection: correctness when T = o0

When K = 1, unpruned trees grown from g random features are strictly

equivalent to trees pruned to depth g grown using all features:

—1
> Impgee(X) = 32 o m >_gepy(v-m) | (Xm: Y|B)

> If deg(X) < g for all relevant features X (e.g., when there are g
or less relevant features):

Impg o0(X) > 0 iff X is relevant.

When K > 1 and there are q or less relevant features:

X strongly relevant = Impg o(x) > 0.
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RS for feature selection: convergence

When g < p, finding all relevant features may require very large T,
depending on variable degrees.

The probability to sample one feature X of degree k < g together with its
(p—k—l

. Lo (T
minimal conditioning is o
a

p—k—1
E.g.. p=10000,g =50,k =1= (q_(f,)_l) =2.5-107>. In average, at least
T = 40812 trees are required to find )q(

When the number of relevant features r < p, many trees will be grown
only from irrelevant features

E.g.: p=10000,qg = 50, r = 10 = 95% of the trees will not see any relevant
features
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How to improve convergence at fixed memory size?

Thm. Let B be a minimal subset of V such that Y JL X|B for a
relevant X:
» All X; € B are relevant and deg(X;) < |B|.
» For a PC distribution!, there exists an ordering {Xi, ..., Xi} of
the variables in B such that

VI<i<k:3B C{Xy,...,Xi_1}:Y L Xi|B

= Suggests that RS convergence can be improved by enforcing the
selection of previously found relevant features.

LA strictly positive distribution is PC iff it satisfies the composition property, i.e.,
for any disjoint subsets R, T, R of V, we have:

YU TIRand Y L U[R= Y I TUUR.
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Sequential Random Subspace (SRS)

Proposed algorithm:

1. Let F=0
2. Repeat T times:
2.1 Let @ = RU C, where:

> R is a subset of min{agq, |F|} features randomly taken from F
> Cis a subset of g — |R| features randomly selected in V \ R

2.2 Grow a tree only using features in @
2.3 Add to F all features that get non-zero importance

3. Return F

F V\F

Q

R C
Note: v < 1 ensures some permanent exploration of new features
(e =0=RS).
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SRS correctness when T = oo

If there are less than g relevant features, SRS provides the same
guarantee as RS, whatever a.

» With K =1, F will contain all relevant features

> With K > 1, F will be a superset of the strongly relevant features

If there are more than g relevant features, o > 0 introduces some
masking effect. But we still have the following result:

When K =1, F will contain all relevant features X such that
deg(X) < (1 - a)q

One should thus choose g according to the expected number of relevant
features and « according to the expected maximum feature degree.
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SRS convergence in specific scenarlos exact computatlons)

BT ./'\. OO ® ©
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Average number N of iterations to find all k variables (with k < q):
» Chaining: Ngs ~ (s)k and Nggs ~ ks
> Clique: Ngs ~ k(Ink +1)(2)* and Nsgs =~ (2)"

Assumptions: K = q, all relevant variables are strongly relevant and the same

variable used at all nodes of a given level
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Practical implementation

1. Let F=10
2. Repeat T times:

2.1 Let Q = RU C, where ...
2.2 Grow a tree only using features in @
2.3 Add to F all features that get non-zero importance

3. Return F

In practice, even irrelevant features can get non-zero importance

Practical implementation:

» A random probe is added to the g features at each iteration
» F contains all features that

» were sampled more than L times in Q sets

» were more important than the random probe in at least 8 percent

of the trees
(In the experiments: L =5, 3 = 95%)
» Output: ranking of the features according to importance
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Experiments: protocol
Madelon data (Guyon et al., 2007)
> 1500 samples (|LS|=1000, | TS|=500)

» 20 relevant features: 5 features that define Y, 5
random linear combinations of the first 5, and 10
noisy copies of the first 10

> Increasing number of irrelevant features: 480, 1480,
2980, 5480

Parameters: g = 50, K = g, no bootstrap, threshold randomization
(Geurts et al., 2006)

Evaluation:
» Average over 50 random LS/TS splits
» Evolution of TS accuracy with number of iterations

» Evolution of the area under the precision-recall curve (auprc) with
number of iterations, when features are ranked according to
importances
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Experiments: results

auprc madelon
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Important improvement
of both auprc and
accuracy with SRS
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Conclusions

Future works on SRS:
» More experiments on real data

» How to dynamically adapt K and « to improve correctness and
convergence?’

» Parallelization of each step or of the global procedure

General conclusion:

Interpreting random forests as a way to explore variable
conditionings might shed new light on this algorithm and could
suggest further improvements
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Importances of strongly versus weakly features

The importance of strongly relevant features is not higher than the
importance of weakly relevant features, even in the case of strictly

positive distribution.
Example: Y = X1 & Xz, X3 L X1, X3 1L Xa, and Y JL X3 (X1 and Xz are strongly relevant
and X3 is weakly relevant):

X1 X2 X3 Y
9 o o o 1
€ 0 0o 1 1
¢ 0 1 0 0
az9d o 1 1 o0
S 1 0 0 0
@< 1 0o 1 o0
a9 1 1 0 1
¢ 1 1 1 1

With € = 0.05, we have: I(Y; X1) =1(Y;X2) =0, I(Y;X1,X2) =1,

I(Y; X3) =1—(1—¢€)log(l —¢€) — clog(e) = 0.714, I(Y; X3|X1) = 0.714,

1(Y; X1| X2, X3) = I(Y; X2| X1, X3) = 0.286., I(Y; X1]|X3) = I(Y; X2|X3) = 0 And thus:
Imp(X1) = Imp(X2) = g(1+ 0) + 30.286 = 0,262

Imp(X3) = %0.714 + %(0.714+ 0.714) = 0,476 X3 is thus more important than X; and X

despite being weakly relevant. 17



lllustration: decomposition (K =1 and K =7)

Imp | K=1 K=7
X1 0.412  0.306
X 0.581  0.799
X3 0.531  0.475
Xa 0.542 0.412
Xs 0.656  0.835
Xo 0.225 0.120
X7 0.372  0.372

X1
X2
X3
X4
X5
X6
X7
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Learning with a memory constraint

Simplistic constrained setting;:

Memory size Mpax of computing node(s) is small with respect to

dataset size N x p.

Straightforward ensemble-based solutions:

Build a forest where each tree is
trained from a subset of:

> Ns < Mpax/p samples
(Pasting, Breiman, 1999, Chawla et
al., 2004)

> N < Mpax/N features
(Random Subspace, Ho, 1998)

» Ns samples and Nr inputs such that
NSNF S Mmax
(Random Patches, Louppe et al.,
2012)

Accuracy

0.95]

4
o
3

0.85]

0.0 . ¥ 0.3

Mpnex/ NXP
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Learning with a memory constraint

Simplistic constrained setting;:

Memory size Mpax of computing node(s) is small with respect to

dataset size N x p.

Straightforward ensemble-based solutions:

Build a forest where each tree is
trained from a subset of:

> Ns < Mpax/p samples
(Pasting, Breiman, 1999, Chawla et
al., 2004)

> N < Mpax/N features
(Random Subspace, Ho, 1998)

» Ns samples and Nr inputs such that
NSNF S Mmax
(Random Patches, Louppe et al.,
2012)

Accuracy

Mpnaxd NXp
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SRS convergence: numerical simulations in mixed setting

Random cond (r=20, p=500, dmax=5, K=q) Random cond (r=20, p=500, dmax=5, q=25
20
12} 1%
-R N I N R P o
25|/ | | T 2
<] ]
& &
Y Gt
S L 5]
— —
o 10 5]
’E ______ - -g = SRSK=1
2 SRS q = 25 3 - SRSK=0.25q
o 5 SRS q = 50 o 5 $—4 SRSK=0.5q
> >
< $-§ RSq=25 < $—4 SRS K =0.75q
+~ RSqg=50 4 SRSK=gq
00 5000 10000 15000 20000 25000 00 20000 40000 60000 80000 100000
Number of iterations Number of iterations

» Degrees and minimal conditionings of relevant features are
selected at random, with maximum degree 5.

» p =500 features, r = 20 relevant ones, g = 25, 50,
K € {1,0.25q,0.5¢,0.75q, q}
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Experiments: results

DT versus ET

From theory, DT should
find all strongly relevant
features

accuracy

auprc madelon

IT:
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2000
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000
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8000 0
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Redundant variables (K=1,D=p)

Adding copies of an existing variable decreases the relevance of both
copies and increases the relevance of variables in interactions with these
variables

Adding copies of X5 Adding copies of X1

0.7 1.0
e X1
[ o ]
0.6 X2
© e . ) . 0.8
< —e¢—¢ —fF— 8§ 8—f—+—1 t
0.5
0.6
e
0.4 ¢ TS v s & s &,
\'77—7.,,
T
03 e—a X1 e s,
. 0.4
e-e X2
o2ble ¢ x3 .
c c x4 ¢ e € ¢ . e © e N
¢ ¢ X5 ¢ g 0.2
016 ¢ x6 © ¢
e e X7
0 0.
0 2 4 6 8 100 2 4 6 8 10
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