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Classification and regression trees (Breiman et al., 1984)

I A very popular supervised learning algorithm that uses tree
structured input/output models

I The learning procedure:
I Recursively split the learning sample with tests based on the inputs

trying to reduce as much as possible the impurity of the output
(entropy, variance...)

I Stop when the output is constant in the leaf or some stopping
criterion is met (e.g., depth of the node is above some threshold D)
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Impurity reduction

X1 < 0.3

t
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I The best split is the one that maximises impurity reduction:

∆i(s, t) = i(t)− NtL

Nt
i(tL)− Ntr

Nt
i(tR),

where Nt is the number of samples reaching node t.
I Standard impurity measures:

iregr (t) =
1
Nt

∑
i∈S(t)

(yi −
1
Nt

∑
i∈S(t)

yi )
2 (variance)

iclas(t) = −
∑
c

Nt,c

Nt
log

Nt,c

Nt
(Shannon entropy)

where Nt,c is the number of samples of class c in node t.
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Ensemble of randomized trees

I Improve trees by reducing their variance
I Many examples: Bagging (Breiman, 1996), Random Forests (Breiman,

2001), Extremely randomized trees (Geurts et al., 2006)

I Breiman (2001)’s Random Forests:
I Each tree is built from a bootstrap sample
I The best split at each node is chosen among K inputs selected

(locally) at random
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Ensemble of randomized trees: strengths and weaknesses

I Universal approximation
I Robustness to outliers
I Robustness to irrelevant variables (to some extent)
I Invariance to scaling of inputs
I Good computational efficiency and scalability
I Very good accuracy

I Loss of interpretability w.r.t. standard trees
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Variable importance scores
I Some interpretability can be retrieved through variable importance

scores

Variable ranking by tree-based methods
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e.g. Sum of entropy reduction at each node where the variable
appears.
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Ensemble of randomized trees

I Improve standard classification and regression trees by reducing
their variance

I Many examples: Bagging (Breiman, 1996), Random Forests (Breiman,

2001), Extremely randomized trees (Geurts et al., 2006)

I Standard Random Forests: bootstrap sampling + random
selection of K features at each node
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I Two main importance measures:
I The mean decrease of impurity (MDI): summing total impurity

reductions at all tree nodes where the variable appears (Breiman et
al., 1984)

I The mean decrease of accuracy (MDA): measuring accuracy
reduction on out-of-bag samples when the values of the variable
are randomly permuted (Breiman, 2001)

I We focus here on the MDI measure
I It is faster to compute (no permutations needed)
I It does not require to use bootstrap sampling
I Empirically, it correlates well with the MDA measure (except in

specific conditions)
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Mean decrease of impurity (MDI): definition

𝜑1 𝜑𝑀 𝜑2 

… 

Importance of variable Xm for an ensemble of NT trees is given by:

Imp(Xm) =
1
NT

∑
T

∑
t∈T :v(t)=Xm

p(t)∆i(t)

where p(t) = Nt/N and ∆i(t) is the impurity reduction at node t:

∆i(t) = i(t)− NtL

Nt
i(tL)− Ntr

Nt
i(tR)
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One successful application: Gene network inference
GENIE3 (Huynh-Thu et al, Plos ONE, 2010)
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DREAM5 competition (Marbach et al., Nature Methods, 2012)
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methods explicitly used this informa-
tion. Consequently, these methods recov-
ered target genes of deleted transcription  
factors more reliably than the inference 
methods that did not leverage this infor-
mation (Fig. 2c). Explicit use of such 
knockouts also helped methods to draw 
the direction of edges between tran-
scription factors more reliably. These 
observations suggest that measurements 
of transcription-factor knockouts can 
be informative for network reconstruc-
tion. In particular, this is the case for the  
E. coli data set, which contained the larg-
est number of such experiments (Online 
Methods). To further explore the informa-
tion content of different experiments, we employed a machine 
learning framework22 to systematically analyze the information 
gain from microarrays grouped according to the type of experi-
mental perturbation (knockouts, drug perturbations, environ-
mental perturbations and time series; Supplementary Note 5). 
We found that experimental conditions independent of transcrip-
tion factor knockout and overexpression also provide informa-
tion, though at a reduced level.

Community networks outperform individual inference methods
Network inference methods have complementary advantages and 
limitations under different contexts, which suggests that combining  
the results of multiple inference methods could be a good strategy 
for improving predictions. We therefore integrated the predic-
tions of all participating teams to construct community networks 
by rescoring interactions according to their average rank across 
all methods (Supplementary Note 6). The integrated community 
network ranks first for in silico, third for E. coli and sixth for  
S. cerevisiae out of the 35 applied inference methods, which shows 
that the community network is consistently as good or better than 
the top individual methods (Fig. 2a). Thus it has by far the best 
performance reflected in the overall score. We stress that, even 
though top-performing methods for a given network are com-
petitive with the integrated community method, the performance  
of individual methods does not generalize across networks.  

Given the biological variation among organisms and the experi-
mental variation among gene-expression data sets, it is difficult 
to determine beforehand which methods will perform optimally 
for reconstructing an unknown regulatory network. In con-
trast, the community approach performs robustly across diverse  
data sets.

We next analyzed how the number of integrated methods 
affects the performance of community predictions by examin-
ing randomly sampled combinations of individual methods. 
On average, community methods perform better than indi-
vidual inference methods even when integrating small sets of 
individual predictions: for example, just five teams (Fig. 3a).  
Performance increases further with the number of integrated 
methods. For instance, given 20 inference methods, their inte-
gration ranks first or second in 98% of the cases (Fig. 3b). We 
also found that the performance of the community network can 
be improved by increasing the diversity of the underlying infer-
ence methods. Consensus predictions from teams using similar 
methodologies were outperformed by consensus predictions from 
diverse methodologies (Fig. 3c).

A key feature in taking a community network approach is robust-
ness to the inclusion of a limited subset (up to ~20%) of poorly per-
forming inference methods (Fig. 3d). Poor predictors essentially 
contributed noise, but this did not affect the performance of the 
community approach as a whole. This finding is crucial because 
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Figure 2 | Evaluation of network inference 
methods. Inference methods are indexed 
according to Table 1. (a) The plots depict the 
performance for the individual networks (area 
under precision-recall curve, AUPR) and the 
overall score summarizing the performance across 
networks (Online Methods). R, random predictions; 
C, integrated community predictions. (b) Methods 
are grouped according to the similarity of their 
predictions via principal-component analysis. 
The second versus third principal components 
are shown; the first principal component 
accounts mainly for the overall performance 
(Supplementary Note 4). (c) The heat map 
depicts method-specific biases in predicting 
network motifs. Rows represent individual 
methods and columns represent different types of 
regulatory motifs. Red and blue show interactions 
that are easier and harder to detect, respectively.

GENIE3
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Motivation

Despite many successful applications in various domains, random
forests variable importances are still poorly understood.

Our general objectives:
I Better understand the MDI importance measure, so as to provide

advices on how to best interpret it and exploit it in practice
I Design more efficient feature selection procedures based on

random forests.
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Outline

1 Tree-based variable importance scores

2 Towards a better understanding of the MDI measure

3 Towards large-scale feature selection
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Outline

1 Tree-based variable importance scores

2 Towards a better understanding of the MDI measure

3 Towards large-scale feature selection
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Background: Feature relevance (Kohavi and John, 1997)

V

Irrelevant
features

Weakly

Strongly

Relevant
features

M

Given an output Y and a set of input variables V , X ∈ V is
I relevant iff ∃B ⊆ V such that Y ⊥6⊥ X |B .
I irrelevant iff ∀B ⊆ V : Y ⊥⊥ X |B
I strongly relevant iff Y ⊥6⊥ X |V \ {X}.
I weakly relevant iff X is relevant and not strongly relevant.

The degree, deg(X ), of a relevant variable X is the smallest size of a
subset B ⊆ V such that Y ⊥6⊥ X |B .

A Markov boundary is a minimal size subset M ⊆ V such that
Y ⊥⊥ V \M|M.
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Background: Feature selection (Nilsson et al., 2007)

V

Irrelevant
features

Weakly

Strongly

Relevant
features

M

Two different feature selection problems:
I Minimal-optimal: find a Markov boundary for the output Y .
I All-relevant: find all relevant features.

Notes:
I In general, both problems requires exhaustive subset search.
I When the input distribution is strictly positive (f (x) > 0), the

markov boundary is unique and it contains all and only the
strongly relevant features.
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Assumptions

Imp(Xm) =
1
NT

∑
T

∑
t∈T :v(t)=Xm

p(t)∆i(t)

Our working assumptions:
I All variables are discrete
I Multi-way splits à la C4.5, i.e. one branch per value of the variable
I Shannon entropy is used as the impurity measure:

i(t) = −
∑
c

Nt,c

Nt
log

Nt,c

Nt

I Asymptotic conditions: infinite sample size and number of trees

Two method parameters (with p the number of features):
I Number of features drawn at each node K ∈ [1, p]

I Maximum tree depth D ∈ [1, p]
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Totally random unpruned trees (K = 1,D = p)

Thm. Variable importances provide a three-level decomposition of
the information jointly provided by all the input variables about
the output, accounting for all interaction terms in a fair and
exhaustive way.

I (X1, . . . ,Xp;Y )︸ ︷︷ ︸
Information jointly provided

by all input variables
about the output

=

p∑
m=1

Imp(Xm)︸ ︷︷ ︸
i) Decomposition in terms of

the MDI importance of
each input variable

Imp(Xm) =

p−1∑
k=0

1(p
k

)
(p − k)︸ ︷︷ ︸

ii) Decomposition along
the degrees k of interaction
with the other variables

∑
B∈Pk (V−m)

I (Xm;Y |B)

︸ ︷︷ ︸
iii) Decomposition along all

interaction terms B
of a given degree k

E.g.: p = 3, Imp(X1) =
1
3 I (X1;Y ) + 1

6 (I (X1;Y |X2) + I (X1;Y |X3)) +
1
3 I (X1;Y |X2,X3)
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Impact of rrelevant variables (K = 1,D = p)

Variable importances depend only on the relevant variables

Prop. A variable Xm is irrelevant if and only if Imp(Xm) = 0.

Prop. The importance of a relevant variable is insensitive to the
addition or the removal of irrelevant variables in V .

⇒ Asymptotically, unpruned totally randomized trees thus solve the
all-relevant feature selection problem.
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Non-totally randomized trees (K>1, D=p)

Most properties are lost as soon as K > 1

⇒ There can be relevant variables with zero importances (due to
masking effect).

Example:
I (X1;Y ) = H(Y ), I (X1;Y ) ≈ I (X2;Y ), I (X1;Y |X2) = ε and I (X2;Y |X1) = 0

I K = 1→ ImpK=1(X1) ≈ 1
2 I (X1;Y ) + ε and ImpK=1(X1) ≈ 1

2 I (X2;Y )

I K = 2→ ImpK=2(X1) = I (X1;Y ) and ImpK=2(X2) = 0.

⇒ The importance of relevant variables can be influenced by the
number of irrelevant variables

I K = 2 and we add a new irrelevant variable X3 → ImpK=2(X2) > 0
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Illustration: 7-segment display (Breiman et al., 1984)

y x1 x2 x3 x4 x5 x6 x7

0 1 1 1 0 1 1 1
1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
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Illustration: 7-segment display (Breiman et al., 1984)

Imp(X ) =

p−1∑
k=0

1(p
k

)
(p − k)

∑
B∈Pk (V

−m)

I (Xm;Y |B)
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Illustration: 7-segment display (Breiman et al., 1984)
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Strongly relevant features can not be masked (K > 1,D = p)

Thm. ∀K : X strongly relevant
⇒ ImpK (X ) > 0.

V

Irrelevant
features

Strongly

Relevant
features

F1F2Fp

In the case of strictly positive distributions, non random trees always
find a superset of the minimal-optimal solution.

Note that Xi strongly relevant and Xj weakly relevant does not imply
that Imp(Xi ) ≥ Imp(Xj), even for strictly positive distribution.

E.g.:

⇒ Imp(X1)(= Imp(X2)) < Imp(X3) when α < 1
2
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Impact of pruning (K = 1,D < p)

Pruning all trees up to depth D = d ≤ p limits importances to the
first d terms of the decomposition.

ImpD=d(Xm) =
d−1∑
k=0

1(p
k

)
(p − k)

∑
B∈Pk (V−m)

I (Xm;Y |B)

In general, we have ImpD<p(Xm) 6= ImpD=p(Xm) and ImpD<p(Xm)
now depends on the number of irrelevant variables.

Pruned totally random trees still solves the all-relevant problem, i.e.,

Xm irrelevant iff ImpD<p(Xm) = 0

when either:
I For all relevant variables X ∈ V , deg(X ) < D

I The number r of relevant variables is ≤ D
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Non asymptotic setting: finite number of trees

In general, a single tree can not identify all relevant features, even the
strongly relevant ones.

E.g.: I (Y ;X1) = I (Y ;X2) = 0 and I (Y ;X1,X2) > 0

Note: All strongly relevant features will however be detected with a single tree
with K = p if the following property holds for all X1,X2 ∈ V ,B ⊆ V , b:

Y ⊥⊥ X1|B = b and Y ⊥⊥ X2|B = b ⇒ Y ⊥⊥ X1,X2|B = b

When NT <∞, ImpNT
(X ) > 0 implies that X is relevant but the

opposite is not true.
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Non asymptotic setting: finite number of samples

There is a positive bias in the estimation of mutual informations that
depends on the cardinality of X and Y :

I (Y ;X ) = 0⇒ E{Î (Y ;X )} =
(|Y | − 1)(|X | − 1)

2Nt log 2

To avoid false positives, one should use:
I Pruned trees (D < p), not to estimate mutual informations from

too few samples
I Non totally random trees (K > 1), to avoid splits on irrelevant

features at the top nodes

From previous analyses, decreasing D or increasing K will however
increase the number of false negatives (and also affect the final
ranking).
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Conclusions
Asymptotically, MDI is a sound statistic to detect weakly and strongly
relevant features

As a quantitative score to rank relevant features, it should however be
interpreted cautiously:

I Asymptotically, it is affected by the value of K , tree depth D,
redundant and irrelevant variables (when K > 1).

I In finite settings, it is affected by biases in the estimation of
impurity

To make the most of these scores, method parameters should be set
appropriately and independently of predictive performance.

Future works:
I Finite sample analysis
I Numerical features
I Design alternative statistics with better or complementary

properties.
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Outline

1 Tree-based variable importance scores

2 Towards a better understanding of the MDI measure

3 Towards large-scale feature selection

I We want to address large-scale feature selection problems where
one can not assume that all variables can be stored into memory

I Based on the previous analyses, we study and improve ensembles
of trees grown from random subsets of features

(Work in progress)
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Random subspace for feature selection

Simplistic memory constrained setting: We can not grow trees with
more than q features

Straightforward ensemble solution: Random Subspace (RS)

Train each ensemble tree from a random subset of q features

1. Repeat T times:

1.1 Let Q be a subset of q features randomly selected in V
1.2 Grow a tree only using features in Q (with randomization K )

2. Compute importance Impq,T (X ) for all X

Proposed e.g. by (Ho, 1998) for accuracy improvement, by (Louppe and
Geurts, 2012) for handling large datasets and by (Draminski et al., 2010,
Konukoglu and Ganz, 2014) for feature selection

Let us study the population version of this algorithm.
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RS for feature selection: correctness when T =∞

When K = 1, unpruned trees grown from q random features are strictly
equivalent to trees pruned to depth q grown using all features:

I Impq,∞(X ) =
∑q−1

k=0
1

(pk)(p−k)
∑

B∈Pk (V−m) I (Xm;Y |B)

I If deg(X ) < q for all relevant features X (e.g., when there are q
or less relevant features):

Impq,∞(X ) > 0 iff X is relevant.

When K > 1 and there are q or less relevant features:

X strongly relevant ⇒ Impq,∞(x) > 0.
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RS for feature selection: convergence

When q � p, finding all relevant features may require very large T ,
depending on variable degrees.

The probability to sample one feature X of degree k < q together with its

minimal conditioning is
(p−k−1
q−k−1)

(pq)

E.g.: p = 10000, q = 50, k = 1⇒ (p−k−1
q−k−1)

(pq)
= 2.5 · 10−5. In average, at least

T = 40812 trees are required to find X .

When the number of relevant features r � p, many trees will be grown
only from irrelevant features

E.g.: p = 10000, q = 50, r = 10⇒ 95% of the trees will not see any relevant
features
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How to improve convergence at fixed memory size?

Thm. Let B be a minimal subset of V such that Y ⊥6⊥ X |B for a
relevant X :

I All Xi ∈ B are relevant and deg(Xi ) ≤ |B|.
I For a PC distribution1, there exists an ordering {X1, . . . ,Xk} of

the variables in B such that

∀1 ≤ i ≤ k : ∃B ′ ⊆ {X1, . . . ,Xi−1} : Y ⊥6⊥ Xi |B ′

⇒ Suggests that RS convergence can be improved by enforcing the
selection of previously found relevant features.

1A strictly positive distribution is PC iff it satisfies the composition property, i.e.,
for any disjoint subsets R, T , R of V , we have:

Y ⊥⊥ T |R and Y ⊥⊥ U|R ⇒ Y ⊥⊥ T ∪ U|R.
27 / 35



Sequential Random Subspace (SRS)

Proposed algorithm:

1. Let F = ∅

2. Repeat T times:

2.1 Let Q = R ∪ C , where:
I R is a subset of min{αq, |F |} features randomly taken from F
I C is a subset of q − |R| features randomly selected in V \ R

2.2 Grow a tree only using features in Q
2.3 Add to F all features that get non-zero importance

3. Return F

↵q
F

Q

...

R C

V \ F

Note: α < 1 ensures some permanent exploration of new features
(α = 0⇒ RS).

28 / 35



SRS correctness when T =∞

If there are less than q relevant features, SRS provides the same
guarantee as RS, whatever α.

I With K = 1, F will contain all relevant features
I With K > 1, F will be a superset of the strongly relevant features

If there are more than q relevant features, α > 0 introduces some
masking effect. But we still have the following result:

When K = 1, F will contain all relevant features X such that
deg(X ) < (1− α)q

One should thus choose q according to the expected number of relevant
features and α according to the expected maximum feature degree.
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SRS convergence in specific scenarios (exact computations)

Average number N of iterations to find all k variables (with k � q):
I Chaining: NRS ' ( p

q
)k and NSRS ' k p

q

I Clique: NRS ' k(ln k + 1)( p
q

)k and NSRS ' ( p
q

)k

Assumptions: K = q, all relevant variables are strongly relevant and the same
variable used at all nodes of a given level
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Practical implementation
1. Let F = ∅

2. Repeat T times:

2.1 Let Q = R ∪ C , where . . .
2.2 Grow a tree only using features in Q
2.3 Add to F all features that get non-zero importance

3. Return F

In practice, even irrelevant features can get non-zero importance

Practical implementation:
I A random probe is added to the q features at each iteration
I F contains all features that

I were sampled more than L times in Q sets
I were more important than the random probe in at least β percent

of the trees
(In the experiments: L = 5, β = 95%)

I Output: ranking of the features according to importance
31 / 35



Experiments: protocol
Madelon data (Guyon et al., 2007)

I 1500 samples (|LS|=1000, |TS|=500)
I 20 relevant features: 5 features that define Y , 5

random linear combinations of the first 5, and 10
noisy copies of the first 10

I Increasing number of irrelevant features: 480, 1480,
2980, 5480

Parameters: q = 50, K = q, no bootstrap, threshold randomization
(Geurts et al., 2006)

Evaluation:
I Average over 50 random LS/TS splits
I Evolution of TS accuracy with number of iterations
I Evolution of the area under the precision-recall curve (auprc) with

number of iterations, when features are ranked according to
importances
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Experiments: results

Important improvement
of both auprc and
accuracy with SRS

The lower q/p, the
larger the improvement

Only SRS always
eventually perfectly
ranks the features
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Conclusions

Future works on SRS:
I More experiments on real data
I How to dynamically adapt K and α to improve correctness and

convergence?
I Parallelization of each step or of the global procedure

General conclusion:
Interpreting random forests as a way to explore variable
conditionings might shed new light on this algorithm and could
suggest further improvements
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Importances of strongly versus weakly features
The importance of strongly relevant features is not higher than the
importance of weakly relevant features, even in the case of strictly
positive distribution.
Example: Y = X1 ⊕ X2, X3 ⊥6⊥ X1, X3 ⊥⊥ X2, and Y ⊥6⊥ X3 (X1 and X2 are strongly relevant
and X3 is weakly relevant):

p X1 X2 X3 Y
(1−ε)

4 0 0 0 1
ε
4 0 0 1 1
ε
4 0 1 0 0

(1−ε)
4 0 1 1 0
ε
4 1 0 0 0

(1−ε)
4 1 0 1 0

(1−ε)
4 1 1 0 1
ε
4 1 1 1 1

With ε = 0.05, we have: I (Y ;X1) = I (Y ;X2) = 0, I (Y ;X1,X2) = 1,

I (Y ;X3) = 1− (1− ε) log(1− ε)− ε log(ε) = 0.714, I (Y ;X3|X1) = 0.714,

I (Y ;X1|X2,X3) = I (Y ;X2|X1,X3) = 0.286., I (Y ;X1|X3) = I (Y ;X2|X3) = 0 And thus:

Imp(X1) = Imp(X2) =
1
6 (1+ 0) + 1

30.286 = 0, 262

Imp(X3) =
1
30.714+

1
6 (0.714+ 0.714) = 0, 476 X3 is thus more important than X1 and X2

despite being weakly relevant.
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Illustration: decomposition (K = 1 and K = 7)

Imp K = 1 K = 7
X1 0.412 0.306
X2 0.581 0.799
X3 0.531 0.475
X4 0.542 0.412
X5 0.656 0.835
X6 0.225 0.120
X7 0.372 0.372
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Learning with a memory constraint

Simplistic constrained setting:
Memory size Mmax of computing node(s) is small with respect to
dataset size N × p.

Straightforward ensemble-based solutions:

Build a forest where each tree is
trained from a subset of:

I Ns ≤ Mmax/p samples
(Pasting, Breiman, 1999, Chawla et
al., 2004)

I Nf ≤ Mmax/N features
(Random Subspace, Ho, 1998)

I Ns samples and Nf inputs such that
NsNf ≤ Mmax

(Random Patches, Louppe et al.,
2012)
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Fig. 5: Accuracy under memory constraint.
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SRS convergence: numerical simulations in mixed setting
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I Degrees and minimal conditionings of relevant features are
selected at random, with maximum degree 5.

I p = 500 features, r = 20 relevant ones, q = 25, 50,
K ∈ {1, 0.25q, 0.5q, 0.75q, q}
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Experiments: results

DT versus ET

From theory, DT should
find all strongly relevant
features
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Redundant variables (K = 1, D = p)

Adding copies of an existing variable decreases the relevance of both
copies and increases the relevance of variables in interactions with these
variables
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