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Introduction

@ You have users of a system (a social network, an e-commerce
platform, etc.)

@ You want to quantify the level of interaction between users

@ You don't want to use only declared interactions, such as
“friendship” or “likes”. This information is often deprecated,
and not really related to the activity of users

@ You want levels of interaction driven by user’s actions, using the
timestamps’ patterns of actions
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We want to quantify interactions between users:
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Model: Multivariate Hawkes Process (MHP)

@ A d-dimensional counting process N = [Ny, ..., Ng]"
e dis “large”

@ Observed on [0, T]. “Asymptotics” in T — +o0

e N, has intensity A;, namely

P(N; has a jump in [t, ¢t + dt] | F;) = \j(t)dt

for j=1,...,d where F; some filtration



Model: Multivariate Hawkes Process (MHP)

@ MHP assumes the following autoregressive structure:
d
Aj(t) = pi(t) + 0 > eik(t = s)dNi(s),
1) k=1

@ 41j(t) > 0 baseline intensity of the j-th coordinate
o ¢j: RT — RT self-exciting component
@ Write this in matrix form

AE) = i+ /(O Pl S)an(s),

with g0 = [p1, ..., 1] " and @(t) = [ k(t)]1<)k<d-
@ Notation:

/(Ot)go(t—s)de(s): S e(t- Tk

i0<T; k<t



A brief history of MHP

Introduced by Hawkes in 1971

Earthquakes and geophysics : Kagan and Knopoff (1981),
Zhuang, Harte, Werner, Hainzl and Zhou (2012)

Genomics : Reynaud-Bouret and Schbath (2010)

High-frequency Finance : Bacry Delattre Hoffmann and Muzy
(2013)

Terrorist activity : Porter and White (2012)
Neurobiology : Hansen, Reynaud-Bouret and Rivoirard (2012)

Social networks : Carne and Sornette (2008), Simma and
Jordan (2010), Zhou Song and Zha (2013)

And even FPGA-based implementation : Guo and Luk (2013)



A brief history of MHP

e cenesis [ETg

Digital currency research and data
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Estimation for MHP: some references

Parametric estimation (Maximum likelihood)

o First work : Ogata 78

e Simma and Jordan (2010), Zhou Song and Zha (2013)
— Expected Maximization (EM) algorithms, with priors

Non parametric estimation

e Marsan Lengliné (2008), generalized by Lewis, Mohler (2010)
— EM for penalized likelihood function
— Monovariate Hawkes processes, Small amount of data, No
theoretical results
@ Reynaud-Bouret and Schbath (2010)
— Developed for small amount of data (Sparse penalization)
e Bacry and Muzy (2014)
— Larger amount of data



What do we want to do with this?

@ Do inference directly from actions of users

@ Understand the community structure of users underlying the
actions

@ Exploit the hidden lower-dimensional structure of the network
for inference/prediction



MHP in large dimension

Dimension d is large:
@ Need a simple parametric model on @ and ¢

@ For inference: we want a tractable and scalable optimization
problem

@ We want to encode some prior assumptions using (convex)
penalization



A simple parametrization of the MHP

Simple parametrization:
e Constant baselines 1;(-) = p;
o Take
Pjk(t) = aj e Wkt
® a; = level of interaction between nodes j and k

@ «j = lifetime of instantaneous excitation of node j by node k

The matrix
A = [aj k|1<j k<d

is understood has a weighted adjacency matrix of mutual
excitement of nodes {1,...,d}

@ A is non-symmetric: “oriented graph”



A simple parametrization of the MHP

We end up with intensities

d
Nio(t) = pj +/ Z aj’ke_aj’k(t_s)de(S)

0.) =1

for j € {1,...,d} where

0= A
with
: _ T d
e baselines y1 = [p1,...,puq] € RY
e interactions A = [aj x|1<j k<d € RiXd

dxd
o decays o = [ «]i<jk<d € R



A simple parametrization of the MHP

For d = 1, intensity Ay looks like this:
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Goodness-of-fit functionals

Minus log-likelihood

—07(0) = Zd: { /()T(Ajﬂ(t) ~1)dt — /OT log Aj,g(t)de(t)}

with

= W —I—Zajk/ )exp —aj,k(t—s))de(s)
0,t

where 0 = [u, A, o] with pp = [1;], A= [aj ], @ = [ «]



A simple framework

Put ||)\9”2 = <)\97)\9>T with

d

1
<>\9,)\9/>T = — / A'Vg(t))\'vgx(t)dt.
T Jz_; [0,7] J J

so that least-squares writes

d
2
Rr(0) = [ hol% — 2 / A o(£)dN (1)
sz_; .1 !

It is natural: if N has ground truth intensity A\* then
E[R7(0)] = E[ Aol 7 — 2B, A) 7 = EllAe — X*IIF — |37,
where we used “signal + noise” decomposition (Doob-Meyer):
dN;(t) = X*(t)dt + dM;(t)

where M; martingale



A simple framework

A strong assumption: assume that

©jk(t) = aj khjk(t)

for known h; , meaning that

A

Jg(t / Zajk kt—Sde()

where 0 = [u, A] with g = [p1,...,pqg]" and
A = [3jkl1<)jk<d



A simple framework

Ways of cheating:

@ approximate hj , using a known dictionary {hi, ..., h }and learn
the coefficients

d L
Nolt) = 1 + /( SOS a bt — 5)dN(s),
0

) k=1 1=1

(but then use group Lasso 1 <4 [|h) k,ell2)
@ Don't estimate the kernels... (ongoing work)

But let’s stick with the simple framework



Prior encoding by penalization

Prior assumptions

@ Some users are basically inactive and react only if stimulated:
[ is sparse

@ Everybody does not interact with everybody:
A is sparse

@ Interactions have community structure, , a
small number of factors explain interactions:

A is low-rank
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Prior encoding by penalization

Standard convex relaxations [Tibshirani (01), ..., Srebro et
al. (05), Bach (08), Candés & Recht (08), ...]

o Convex relaxation of [|Allo =3, 1a;,>0 is £1-norm:
IAllz = Al
j)k

@ Convex relaxation of rank is trace-norm:

1AL = 05(A) = llo(A)

Jj

where o1(A) > -+ > 04(A) singular values of A



Prior encoding by penalization

So, we use the following penalizations

@ Use /1 penalization on u
@ Use /1 penalization on A

@ Use trace-norm penalization on A

[but other choices might be interesting...]
NB1: to induce sparsity AND low-rank on A, we use the mixed

penalization
A = wi||Allx + wa[|Ally

NB2: recent work by Richard et al (2013): much better way to
induce sparsity and low-rank than this (but no theory)



Sparse and low-rank matrices

Ve e

{A: Al <1} {A: Al <1} {A:[AlL+ Al < 1}

The balls are computed on the set of 2 x 2 symmetric matrices,
which is identified with R3.



Algorithm

We end up with the problem
€ argmin {Rr(0) + pen(6)},

d dxd
HeRY xRY™

with mixed penalizations

pen(0) = 7ufully + 71l Allx + [l All«

But there is the “features scaling” problem

@ Features scaling is necessary for “linear approaches” in
supervised learning

@ No features and labels here!

= Can be solved here by fine tuning of the penalization terms



Algorithm

Consider instead

0 € argmin {R7(0) + pen(6)},

9ERY xRY*?

where this time

pen(0) = llullrw + Al w + s [ All«
@ Penalization tuned by data-driven weights w, W and W, to
solve the “scaling” problem

@ Comes from sharp controls of the noise terms, using new
probabilistic tools



Convex optimization — numerical aspects

@ Can be solved using first-order routines

@ Gradient of R () using a recursion formula [Ogata (1988)]
— When carefully done complexity of one gradient is O(nd) (instead
of O(n?d) for the naive approach), where n = number of events (very
large)
— The gradient on each node j € {1,...,d} can be computed in
parallel

@ Computation bootleneck is the heavy use of exp and log [accelerated
using some ugly hacking]

@ Proximal of trace norm requires many truncated SVD: we use the
default’s Lanczos's implementation of Python (fast enough)



MLPP 0.1 Site ~ Page ~ Models [mipp.... » Source Search

Machine Learning (not only) with Point Processes

MLPP is yet another machine learning library for Python , with a particular is on point p (Poisson Hawkes pi ,
Cox regression), but includes also generalized linear models (GLM). It comes with optimization algorithms for inference and provides tools for
simulation of datasets. A particular focus is on imization: an imization toolbox is proposed, with recent state-of-the-art stochastic
solvers.
Main highlights

« Python 3 only!

Fast, most computation are done in C++11 (including multi-threading)

Contains an optimization toolbox: solvers (optimization algorithms), models (for computing gradient among other things) and prox (penalization)
classes can be combined |nterac1|vely in iPython for instance

Features state-of-the-art imization algorithms, with parallel implementations

Support sparse datasets (sparse features matrices)

Interplay between Python and C++ is done using swig

Optimization toolbox

* Models [mlpp.optim.model ]
Introduction
Contents
o Generalized linear models
o Hawkes model
o What'’s under the carpet?
o Proximal operators [ mlpp.optim.prox]
o Introduction
o Available operators
o Example
o Solvers [mlpp.optim.solver]
o Introduction
o Available solvers
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Numerical experiment

Toy example: take matrix A as




Numerical experiment: dimension 10, 210 parameters
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Numerical experiment: dimension 100, 20100 parameters

No penalization {1 penalization
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Numerical experiment: dimension 100, 20100 parameters

Ground truth
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Estimation errors of A (measured by ¢ norm)
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Theoretical guarantees: an oracle inequality

Towards a statistical guarantee: first order condition can be
written as: for any 0

12 = A 1F + 129 = AallF — 1A = X5
2

A R _ 2 A
< _<9870_9>+7<H_N7MT>+?<A_A72T>7

for 05 € O pen(#) and we use %(A—A, Zr) < %HZ\— Al | ZT1]|op



My = [fOT dMy(t) --- fOT dMy(t)] "and Z; matrix martingale
with entries

(Z = | /( | Bk (s, ()

or :
2.~ | disgldMJH..
0

with H; predictable process with entries
(He)jjr :/ hjjr(t — s)dNj (s)
(0,t)
Noise term is a matrix-martingale in continuous time:
1
=Z
TET

wee need to control +|Z1]lop



A consequence of our new concentration inequalities (more after):

[Z¢tllop - [2v(x +log(2d)) = b(x + log(2d))
P[ t Z\/ t - 3t '

b: < b, )\max(vt) < V:| < eij
for any v, x, b > 0, where
1t diag[\* 0
Vit [ IR |8 | o
0

0 H! diag[H H] ] diag[\:]H
and by = supsco,¢ [[Hsll2,00 (I - [|2,00 = maximum 2 row norm)

Useless for statistical learning! Event Amax(V¢) < v is annoying
and V; is not observable (depends on \*)!



Theorem [Something better]. For any x > 0, we have

HZtHOp < 8\/(X + |0g d ‘|’ gx,t)kmax(‘/\/t)

t t
N (x + log d + £,.+)(10.34 + 2.65b;)
t
with a probability larger than 1 — 84.9e™, where
N 1/t > |diag[dNs] 0
Ve= t/o IHsll2.0c [ 0 H! diag[H H /]! diag[dN,]H, ds

and small ugly term:

2max(Ve) + 2(4 + b7 /3)x

lﬁx,t = 4log log (
X

\/e) + 2log log (b? Ve).

This is a non-commutative deviation inequality with observable
variance



@ These concentration inequalities leads to a data-driven tuning of
penalization

@ Solves the “scaling” problem in this context = features
scaling in supervised learning

Controls on || Z1||cc = max; « |Aj | and || Z1]op leads to the
following tuning of the penalizations



For ¢1 penalization of p: ||p|l1,4 = 27:1 Wil ] with

logd + 0, : 7)N;([0, T])/ T
V@j:@\/ﬁ\/(x+°€ + Ley, 7)N;([0, T])/
T
x+|ogd+l?X,j,T
T

+27.93

where N;([0, T]) = fOT dN;(t), namely

o [N TY/T
J T

e Each coordinate j of y is penalized (roughly) by N;([0, T)]/T:
estimated average intensity of events of node j



For ¢y penalization of A: [|Al|; i, = > 1<) k<d W, (| A; x| with

- 4\f\/x+2|ogd+€wk7—)\7 «(T)
W, =

=
18 62(X+2|0gd+£xJ,k,T)Bj,k(T)
) T
where
B, (t) = sup/ By (t — 5)dNi(s)
s€[0,t] /(0,t)
. 1 [t 2
Vi =1 [ ([ sls = wyami(w) "ani(s)
tJo (0,s)
namely

5 V;k(T)
Wj,k ~ C J T

\7j x(t) estimates the “variance” of self-excitements between nodes

)

Jj and k



For trace-norm penalization of A: W, | A||. with

. \/ (x +108.d + b 1)V 7)

Wy = T
L 2x+logd + EX,TT)(10.34 + 2.65b;)
namely
i~ Amax(V 1)

T



Data-driven weights that comes from “empirical” Bernstein's
inequalities, entrywise and for operator norm of Z

V, k(t) and Amax(V;) are estimations (based on optional
variation) of the variance terms from Bernstein's inequality

B; «(t) and b; are L* terms (sub-exponential actually) from

these Bernstein's inequalities

Leads to a data-driven scaling of penalization: deals correctly
with the inhomogeneity of information over nodes



A sharp oracle inequality

o Recall (A1, \o)7 = 2 320 [ Avj(t)Aay(t)dt and
IAIF = (A A7
@ Assume RE in our setting (Restricted Eigenvalues), which is a

standard assumption to obtain fast rates for the Lasso (and
other convex-relaxation based procedures)

Theorem. We have

* * 5 ~
10 = X1 < inf {20 = 213 + 50 (Z1(W)suppi
9, .4 9,
+ SIOW ) uppa [ + 52 rank(A)) }
with a probability larger than 1 — 146e™*.

@ Leading constant 1



Roughly, 6 achieves an optimal tradeoff between approximation
and complexity given by

[l4llo(x + log d)

max ([0, T])/ T

T
|Allo(x + 2log d) -

+ T max V; (T)
rank(A)(x + log d A

A osd) gy

@ Complexity measured both by sparsity and rank

e Convergence has shape (logd)/ T, where T = length of the
observation interval

@ These terms are balanced by “empirical variance” terms



Concentration inequalities for matrix martingales in continuous time

Main tool: new concentration inequalities for matrix martingales in
continuous time

Introduce .
Z, _/ A.(C.® dM.,)B.,
0

where {A:}, {C:} and {B;} predictable and where {M;};>¢ is a
“white” matrix martingale, in the sense that [vecM]; is diagonal

NB: entries of Z; are given by



@ (M), = entrywise predictable quadratic variation, so that
M2 — (M),

martingale

@ vectorization operator vec : RP*9 — RPY stacks vertically the
columns of X

e (vecM); is the pg x pg matrix with entries that are all pairwise
quadratic covariations, so that

vec(My)vec(M;)T — (vecM),

is a martingale.



o M, = M¢ + MY, where M¢ is a continuous martingale and M¢
is a purely discountinuous martingale. lts (entrywise) quadratic
variation is defined as

[M]e = (M) + ) (AM,)?, (2)

0<s<t

and its quadratic covariation by

[vecM]; = (vecM®); + Z vec(AMg)vec(AM,)T.
0<s<t

We say that M is purely discontinuous if the process (vecM®),
is identically the zero matrix.



Concentration for purely discountinuous matrix martingale:

@ M.; is purely discountinuous and we have

(M), :/OtAsds

for a non-negative and predictable intensity process {A¢}+>0.

e Standard moment assumptions (subexponential tails)

Introduce .
V- / A2 | Bs|[2 o Wods
0
where .
(w0
we= 5w &

Wi = A, diag[A] A;] diag [(CP? © Ap)1] A/
W? = B/ diag[B.B/] 'diag [(CY? ® A;) 1] B,



Introduce also

be = sup [|As[loo2/|Bsl|2,00/| Cslloo-

s€[0,t]

Theorem.

b(x + log(m + n))
3 Y

P|[|Z¢llop >+/2v(x + log(m + n)) +

bt < b7 )\max(vt) <v| < e_X7

@ First result of this type for matrix-martingale in continuous time



Corollary. {N.} a p x g matrix, each (N);; is an independent
inhomogeneous Poisson processes with intensity (A;); ;. Consider the
martingale M; = N, — A;, where A; = jg Asds and let {C,} be
deterministic and bounded. We have

op

H /Otcs © d(N, — A,)

t t
<2l [ et o], v [ e it osto o

SUPseo,1] | Cslloc(x + log(p + q))
* 3

X

holds with a probability larger than 1 — e™.



Corollary. Even more particualar: N random matrix where N ;
are independent Poisson variables with intensity A; ;. We have

IN = Allop < \/2(H>\H1,oo V [ Alloo,1)(x + log(p + 9))

+ log(p +
L X gép q)'

@ Up to our knowledge, not previously stated in literature

@ NB: In the Gaussian case: variance depends on maximum />
norm of rows and columns (cf. Tropp (2011))



@ We have as well a non-commutative Hoeffding's inequality when
M has continuous paths (allowing I1td's formula...), with a
similar variance term

@ Tools from stochastic calculus, use of the dilation operator and
some classical matrix inequalities about the trace exponential
and the SDP order.

A difficult proposition: a control of the quadratic variation of the
pure jump process

vi= " (e“M(ZS)—uAy(zs)—l)

0<s<t

given by

t Aqlloo2|IBsll2.00 | Cslloo
(U= [ LAl B Cl) o,
0 slloo

where p(x) = ¥ — x — 1.



Conclusion

@ Theoretical study of learning algorithms for “time-oriented”
models needs new probabilistic results

@ In our case new concentration results for matrix martingales in
continuous time

@ Leads to a better scaling of penalizations



A word about something else...

Going back to maximume-likelihood estimation, with d very large

e For inference, exploit the fact that d is large

= use a Mean-Field approximation! (from Delattre et al. 2015)
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Mean-field inference for Hawkes

We don’t understand perfectly why this works yet (proof on a toy
example)

Fluctuations E'/2[(A\} /AT — 1)?]

100 E_ T T T _E 1
0.1
=10 B -
0.01
1 . . . 0.001

0 02 04 06 08
||



Mean-field inference for Hawkes

But it does very well empirically

True MF MLE




Mean-field inference for Hawkes

But it does very well empirically

0.01 1 0.01 NN | i
1000 10000 100000 1000 10000 100000

T T

Relative error E1/2 [(aing/owr — 1)7]



Mean-field inference for Hawkes

And it is faster by several order of magnitude than state-of-the-art

solvers
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@ Better understanding of the Mean-Field based inference
@ Quantifying influence without kernels estimation

e Experiments: ongoing project with Préfecture de I'Oise (car
theft), High-frequency Finance

e Non-constant baseline (block-stationarity): block constant with
total-variation penalization

@ NMF based learning of the self-excitement matrix
@ SBM prior for community detection results

@ Even better optimization using recent stochastic gradient
algorithms (but needs some tweaking...)
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