
Statistical learning with Hawkes processes and new
matrix concentration inequalities

Emmanuel Bacry1, Stéphane Gäıffas1, Jean-Francois Muzy1,2

Winter 2016

1École Polytechnique and CNRS
2CNRS, Université de Corse

Introduction

You have users of a system (a social network, an e-commerce
platform, etc.)

You want to quantify the level of interaction between users

You don’t want to use only declared interactions, such as
“friendship” or “likes”. This information is often deprecated,
and not really related to the activity of users

You want levels of interaction driven by user’s actions, using the
timestamps’ patterns of actions

Introduction

From:

We want to quantify interactions between users:

Model: Multivariate Hawkes Process (MHP)

A d-dimensional counting process N = [N1, . . . ,Nd]>

d is “large”

Observed on [0,T]. “Asymptotics” in T → +∞
Nj has intensity λj , namely

P
(
Nj has a jump in [t, t + dt] | Ft

)
= λj(t)dt

for j = 1, . . . , d where Ft some filtration

Model: Multivariate Hawkes Process (MHP)

MHP assumes the following autoregressive structure:

λj(t) = µj(t) +

∫

(0,t)

d∑

k=1

ϕj ,k(t − s)dNk(s),

µj(t) ≥ 0 baseline intensity of the j-th coordinate

ϕj : R+ → R+ self-exciting component

Write this in matrix form

λ(t) = µ+

∫

(0,t)
ϕ(t − s)dN(s),

with µ = [µ1, . . . , µd]> and ϕ(t) = [ϕj ,k(t)]1≤j ,k≤d .

Notation:
∫

(0,t)
ϕ(t − s)dNk(s) =

∑

i :0<Ti,k<t

ϕ(t − Ti ,k)

A brief history of MHP

Introduced by Hawkes in 1971

Earthquakes and geophysics : Kagan and Knopoff (1981),
Zhuang, Harte, Werner, Hainzl and Zhou (2012)

Genomics : Reynaud-Bouret and Schbath (2010)

High-frequency Finance : Bacry Delattre Hoffmann and Muzy
(2013)

Terrorist activity : Porter and White (2012)

Neurobiology : Hansen, Reynaud-Bouret and Rivoirard (2012)

Social networks : Carne and Sornette (2008), Simma and
Jordan (2010), Zhou Song and Zha (2013)

And even FPGA-based implementation : Guo and Luk (2013)

A brief history of MHP

Estimation for MHP: some references

Parametric estimation (Maximum likelihood)

First work : Ogata 78

Simma and Jordan (2010), Zhou Song and Zha (2013)
→ Expected Maximization (EM) algorithms, with priors

Non parametric estimation

Marsan Lengliné (2008), generalized by Lewis, Mohler (2010)
→ EM for penalized likelihood function
→ Monovariate Hawkes processes, Small amount of data, No
theoretical results

Reynaud-Bouret and Schbath (2010)
→ Developed for small amount of data (Sparse penalization)

Bacry and Muzy (2014)
→ Larger amount of data

What do we want to do with this?

Do inference directly from actions of users

Understand the community structure of users underlying the
actions

Exploit the hidden lower-dimensional structure of the network
for inference/prediction

MHP in large dimension

Dimension d is large:

Need a simple parametric model on µ and ϕ

For inference: we want a tractable and scalable optimization
problem

We want to encode some prior assumptions using (convex)
penalization

A simple parametrization of the MHP

Simple parametrization:

Constant baselines µj(·) ≡ µj
Take

ϕj ,k(t) = aj ,ke
−αj,k t

aj ,k = level of interaction between nodes j and k

αj ,k = lifetime of instantaneous excitation of node j by node k

The matrix
A = [aj ,k]1≤j ,k≤d

is understood has a weighted adjacency matrix of mutual
excitement of nodes {1, . . . , d}

A is non-symmetric: “oriented graph”

A simple parametrization of the MHP

We end up with intensities

λj ,θ(t) = µj +

∫

(0,t)

d∑

k=1

aj ,ke
−αj,k (t−s)dNk(s)

for j ∈ {1, . . . , d} where

θ = [µ,A,α]

with

baselines µ = [µ1, . . . , µd]> ∈ Rd
+

interactions A = [aj ,k]1≤j ,k≤d ∈ Rd×d
+

decays α = [αj ,k]1≤j ,k≤d ∈ Rd×d
+

A simple parametrization of the MHP

For d = 1, intensity λθ looks like this:

Goodness-of-fit functionals

Minus log-likelihood

−`T (θ) =
d∑

j=1

{∫ T

0
(λj ,θ(t)− 1)dt −

∫ T

0
log λj ,θ(t)dNj(t)

}

Least-squares

RT (θ) =
d∑

j=1

{∫ T

0
λj ,θ(t)2dt − 2

∫ T

0
λj ,θ(t)dNj(t)

}

with

λj ,θ(t) = µj +
d∑

k=1

aj ,k

∫

(0,t)
exp

(
− αj ,k(t − s)

)
dNk(s)

where θ = [µ,A,α] with µ = [µj], A = [aj ,k], α = [αj ,k]

A simple framework

Put ‖λθ‖2
T = 〈λθ, λθ〉T with

〈λθ, λθ′〉T =
1

T

d∑

j=1

∫

[0,T]
λj ,θ(t)λj ,θ′(t)dt.

so that least-squares writes

RT (θ) = ‖λθ‖2
T −

2

T

d∑

j=1

∫

[0,T]
λj ,θ(t)dNj(t)

It is natural: if N has ground truth intensity λ∗ then

E[RT (θ)] = E‖λθ‖2
T − 2E〈λθ, λ∗〉T = E‖λθ − λ∗‖2

T − ‖λ∗‖T ,

where we used “signal + noise” decomposition (Doob-Meyer):

dNj(t) = λ∗(t)dt + dMj(t)

where Mj martingale

A simple framework

A strong assumption: assume that

ϕj ,k(t) = aj ,khj ,k(t)

for known hj ,k meaning that

λj ,θ(t) = µj +

∫

(0,t)

d∑

k=1

aj ,khj ,k(t − s)dNk(s),

where θ = [µ,A] with µ = [µ1, . . . , µd]> and
A = [aj ,k]1≤j ,k≤d

A simple framework

Ways of cheating:

approximate hj ,k using a known dictionary {h1, . . . , hL}and learn
the coefficients

λj ,θ(t) = µj +

∫

(0,t)

d∑

k=1

L∑

l=1

aj ,k,lhl(t − s)dNk(s),

(but then use group Lasso
∑

1≤j ,k≤d ‖hj ,k,•‖2)

Don’t estimate the kernels... (ongoing work)

But let’s stick with the simple framework

Prior encoding by penalization

Prior assumptions

Some users are basically inactive and react only if stimulated:

µ is sparse

Everybody does not interact with everybody:

A is sparse

Interactions have community structure, possibly overlapping, a
small number of factors explain interactions:

A is low-rank

Prior encoding by penalization

Standard convex relaxations [Tibshirani (01), ..., Srebro et
al. (05), Bach (08), Candès & Recht (08), ...]

Convex relaxation of ‖A‖0 =
∑

j ,k 1Aj,k>0 is `1-norm:

‖A‖1 =
∑

j ,k

|Aj ,k |

Convex relaxation of rank is trace-norm:

‖A‖∗ =
∑

j

σj(A) = ‖σ(A)‖1

where σ1(A) ≥ · · · ≥ σd(A) singular values of A

Prior encoding by penalization

So, we use the following penalizations

Use `1 penalization on µ

Use `1 penalization on A
Use trace-norm penalization on A

[but other choices might be interesting...]

NB1: to induce sparsity AND low-rank on A, we use the mixed
penalization

A 7→ w∗‖A‖∗ + w1‖A‖1

NB2: recent work by Richard et al (2013): much better way to
induce sparsity and low-rank than this (but no theory)

Sparse and low-rank matrices

{A : ‖A‖∗ ≤ 1} {A : ‖A‖1 ≤ 1} {A : ‖A‖1 + ‖A‖∗ ≤ 1}

The balls are computed on the set of 2× 2 symmetric matrices,
which is identified with R3.

Algorithm

We end up with the problem

θ̂ ∈ argmin
θ∈Rd

+×R
d×d
+

{
RT (θ) + pen(θ)

}
,

with mixed penalizations

pen(θ) = τ1‖µ‖1 + γ1‖A‖1 + γ∗‖A‖∗

But there is the “features scaling” problem

Features scaling is necessary for “linear approaches” in
supervised learning

No features and labels here!

⇒ Can be solved here by fine tuning of the penalization terms

Algorithm

Consider instead

θ̂ ∈ argmin
θ∈Rd

+×R
d×d
+

{
RT (θ) + pen(θ)

}
,

where this time

pen(θ) = ‖µ‖1,ŵ + ‖A‖1,Ŵ + ŵ∗‖A‖∗

Penalization tuned by data-driven weights ŵ , Ŵ and ŵ∗ to
solve the “scaling” problem

Comes from sharp controls of the noise terms, using new
probabilistic tools

Convex optimization – numerical aspects

Can be solved using first-order routines

Gradient of RT (θ) using a recursion formula [Ogata (1988)]

→ When carefully done complexity of one gradient is O(nd) (instead
of O(n2d) for the naive approach), where n = number of events (very
large)

→ The gradient on each node j ∈ {1, . . . , d} can be computed in
parallel

Computation bootleneck is the heavy use of exp and log [accelerated
using some ugly hacking]

Proximal of trace norm requires many truncated SVD: we use the
default’s Lanczos’s implementation of Python (fast enough)

Numerical experiment

Toy example: take matrix A as

Numerical experiment: dimension 10, 210 parameters

No penalization `1 penalization

trace-norm penalization `1 + trace norm penalization

Numerical experiment: dimension 100, 20100 parameters

No penalization `1 penalization

trace-norm penalization `1 + trace norm penalization

Numerical experiment: dimension 100, 20100 parameters

Ground truth `1 `1 + trace

No pen w-`1 w-`1 + trace

Estimation errors of A (measured by `2 norm)

`1 VS w-`1 `1 + trace VS w-`1 + trace

AUC for support selection A

`1 + trace VS w-`1 + trace

Theoretical guarantees: an oracle inequality

Towards a statistical guarantee: first order condition can be
written as: for any θ

‖λθ̂ − λ∗‖2
T + ‖λθ̂ − λθ‖2

T − ‖λθ − λ∗‖2
T

≤ −〈θ∂ , θ̂ − θ〉+
2

T
〈µ̂− µ, M̄T 〉+

2

T
〈Â− A,ZT 〉,

for θ∂ ∈ ∂ pen(θ) and we use 2
T 〈Â−A,ZT 〉 ≤ 2

T ‖Â−A‖∗‖ZT‖op

M̄T = [
∫ T

0 dM1(t) · · ·
∫ T

0 dMd(t)]>and Z t matrix martingale
with entries

(Z t)j ,k =

∫ t

0

∫

(0,s)
hj ,k(s − u)dNk(u)dMj(s), (1)

or

Z t =

∫ t

0
diag[dMs]Hs ,

with H t predictable process with entries

(H t)j ,j ′ =

∫

(0,t)
hj ,j ′(t − s)dNj ′(s)

Noise term is a matrix-martingale in continuous time:

1

T
ZT

wee need to control 1
T ‖ZT‖op

A consequence of our new concentration inequalities (more after):

P
[‖Z t‖op

t
≥
√

2v(x + log(2d))

t
+

b(x + log(2d))

3t
,

bt ≤ b, λmax(V t) ≤ v

]
≤ e−x ,

for any v , x , b > 0, where

V t =
1

t

∫ t

0
‖Hs‖2

2,∞

[
diag[λ∗s] 0

0 H>s diag[HsH>s]−1 diag[λ∗s]Hs

]
ds

and bt = sups∈[0,t] ‖Hs‖2,∞ (‖ · ‖2,∞ = maximum `2 row norm)

Useless for statistical learning! Event λmax(V t) ≤ v is annoying
and V t is not observable (depends on λ∗)!

Theorem [Something better]. For any x > 0, we have

‖Z t‖op
t

≤ 8

√
(x + log d + ˆ̀

x ,t)λmax(V̂ t)

t

+
(x + log d + ˆ̀

x ,t)(10.34 + 2.65bt)

t

with a probability larger than 1− 84.9e−x , where

V̂ t =
1

t

∫ t

0
‖Hs‖2

2,∞

[
diag[dNs] 0

0 H>s diag[HsH>s]−1 diag[dNs]Hs

]
ds

and small ugly term:

ˆ̀x,t = 4 log log
(2λmax(V̂ t) + 2(4 + b2

t /3)x

x
∨ e

)
+ 2 log log

(
b2
t ∨ e

)
.

This is a non-commutative deviation inequality with observable
variance

These concentration inequalities leads to a data-driven tuning of
penalization

Solves the “scaling” problem in this context ≈ features
scaling in supervised learning

Controls on ‖ZT‖∞ = maxj ,k |Aj ,k | and ‖ZT‖op leads to the
following tuning of the penalizations

For `1 penalization of µ: ‖µ‖1,ŵ =
∑d

j=1 ŵj |µj | with

ŵj = 6
√

2

√
(x + log d + ˆ̀

x ,j ,T)Nj([0,T])/T

T

+ 27.93
x + log d + ˆ̀

x ,j ,T

T

where Nj([0,T]) =
∫ T

0 dNj(t), namely

ŵj ≈ c

√
Nj([0,T])/T

T

Each coordinate j of µ is penalized (roughly) by Nj([0,T)]/T :
estimated average intensity of events of node j

For `1 penalization of A: ‖A‖1,Ŵ =
∑

1≤j ,k≤d Ŵ j ,k |Aj ,k | with

Ŵ j ,k = 4
√

2

√
(x + 2 log d + ˆ̀

x ,j ,k,T)V̂ j ,k(T)

T

+ 18.62
(x + 2 log d + ˆ̀

x ,j ,k,T)B j ,k(T)

T

where

B j ,k(t) = sup
s∈[0,t]

∫

(0,t)
hj ,k(t − s)dNk(s)

V̂ j ,k(t) =
1

t

∫ t

0

(∫

(0,s)
hj ,k(s − u)dNk(u)

)2
dNj(s)

namely

Ŵ j ,k ≈ c

√
V̂ j ,k(T)

T

V̂ j ,k(t) estimates the “variance” of self-excitements between nodes
j and k

For trace-norm penalization of A: ŵ∗‖A‖∗ with

ŵ∗ = 8

√
(x + log d + ˆ̀

x ,T)λmax(V̂ T)

T

+
2(x + log d + ˆ̀

x ,T)(10.34 + 2.65bt)

T

namely

ŵ∗ ≈

√
λmax(V̂ T)

T

Data-driven weights that comes from “empirical” Bernstein’s
inequalities, entrywise and for operator norm of ZT

V̂ j ,k(t) and λmax(V̂ t) are estimations (based on optional
variation) of the variance terms from Bernstein’s inequality

B j ,k(t) and bt are L∞ terms (sub-exponential actually) from
these Bernstein’s inequalities

Leads to a data-driven scaling of penalization: deals correctly
with the inhomogeneity of information over nodes

A sharp oracle inequality

Recall 〈λ1, λ2〉T = 1
T

∑d
j=1

∫ T
0 λ1,j(t)λ2,j(t)dt and

‖λ‖2
T = 〈λ, λ〉T

Assume RE in our setting (Restricted Eigenvalues), which is a
standard assumption to obtain fast rates for the Lasso (and
other convex-relaxation based procedures)

Theorem. We have

‖λθ̂ − λ∗‖2
T ≤ inf

θ

{
‖λθ − λ∗‖2

T + κ(θ)2
(5

4
‖(ŵ)supp(µ)‖2

2

+
9

8
‖(Ŵ)supp(A)‖2

F +
9

8
ŵ2
∗ rank(A)

)}

with a probability larger than 1− 146e−x .

Leading constant 1

Roughly, θ̂ achieves an optimal tradeoff between approximation
and complexity given by

‖µ‖0(x + log d)

T
max

j
Nj([0,T])/T

+
‖A‖0(x + 2 log d)

T
max
j ,k

V̂ j ,k(T)

+
rank(A)(x + log d)

T
λmax(V̂ T)

Complexity measured both by sparsity and rank

Convergence has shape (log d)/T , where T = length of the
observation interval

These terms are balanced by “empirical variance” terms

Concentration inequalities for matrix martingales in continuous time

Main tool: new concentration inequalities for matrix martingales in
continuous time

Introduce

Z t =

∫ t

0
As(C s � dMs)Bs ,

where {At}, {C t} and {Bt} predictable and where {M t}t≥0 is a
“white” matrix martingale, in the sense that [vecM]t is diagonal

NB: entries of Z t are given by

(Z t)i ,j =

p∑

k=1

q∑

l=1

∫ t

0
(As)i ,k(C s)k,l(Bs)l ,j(dMs)k,l .

〈M〉t = entrywise predictable quadratic variation, so that

M�2
t − 〈M〉t

martingale

vectorization operator vec : Rp×q → Rpq stacks vertically the
columns of X
〈vecM〉t is the pq × pq matrix with entries that are all pairwise
quadratic covariations, so that

vec(M t)vec(M t)
> − 〈vecM〉t

is a martingale.

M t = Mc
t + Md

t , where Mc
t is a continuous martingale and Md

t

is a purely discountinuous martingale. Its (entrywise) quadratic
variation is defined as

[M]t = 〈Mc〉t +
∑

0≤s≤t
(∆M t)

2, (2)

and its quadratic covariation by

[vecM]t = 〈vecMc〉t +
∑

0≤s≤t
vec(∆Ms)vec(∆Ms)>.

We say that M is purely discontinuous if the process 〈vecMc〉t
is identically the zero matrix.

Concentration for purely discountinuous matrix martingale:

M t is purely discountinuous and we have

〈M〉t =

∫ t

0
λsds

for a non-negative and predictable intensity process {λt}t≥0.

Standard moment assumptions (subexponential tails)

Introduce

V t =

∫ t

0
‖As‖2

∞,2‖Bs‖2
2,∞W sds

where

W t =

[
W 1

t 0
0 W 2

t

]
, (3)

W 1
t = At diag[A>t At]

−1 diag
[
(C�2

t � λt)1
]
A>t

W 2
t = B>t diag[BtB>t]−1 diag

[
(C�2

t � λt)
>1
]
Bt

Introduce also

bt = sup
s∈[0,t]

‖As‖∞,2‖Bs‖2,∞‖C s‖∞.

Theorem.

P
[
‖Z t‖op ≥

√
2v(x + log(m + n)) +

b(x + log(m + n))

3
,

bt ≤ b, λmax(V t) ≤ v

]
≤ e−x ,

First result of this type for matrix-martingale in continuous time

Corollary. {N t} a p × q matrix, each (N t)i,j is an independent
inhomogeneous Poisson processes with intensity (λt)i,j . Consider the

martingale M t = N t − Λt , where Λt =
∫ t

0
λsds and let {C t} be

deterministic and bounded. We have

∥∥∥
∫ t

0

C s � d(N t − Λt)
∥∥∥
op

≤
√

2
(∥∥∥
∫ t

0

C�2
s � λsds

∥∥∥
1,∞
∨
∥∥∥
∫ t

0

C�2
s � λsds

∥∥∥
∞,1

)
(x + log(p + q))

+
sups∈[0,t] ‖C s‖∞(x + log(p + q))

3

holds with a probability larger than 1− e−x .

Corollary. Even more particualar: N random matrix where N i ,j

are independent Poisson variables with intensity λi ,j . We have

‖N − λ‖op ≤
√

2(‖λ‖1,∞ ∨ ‖λ‖∞,1)(x + log(p + q))

+
x + log(p + q)

3
.

Up to our knowledge, not previously stated in literature

NB: In the Gaussian case: variance depends on maximum `2

norm of rows and columns (cf. Tropp (2011))

We have as well a non-commutative Hoeffding’s inequality when
M t has continuous paths (allowing Itô’s formula...), with a
similar variance term

Tools from stochastic calculus, use of the dilation operator and
some classical matrix inequalities about the trace exponential
and the SDP order.

A difficult proposition: a control of the quadratic variation of the
pure jump process

Uu
t =

∑

0≤s≤t

(
eu∆S (Z s) − u∆S (Z s)− I

)

given by

〈Uξ〉t �
∫ t

0

ϕ
(
ξ‖As‖∞,2‖Bs‖2,∞‖C s‖∞

)

‖C s‖2
∞

W sds,

where ϕ(x) = ex − x − 1.

Conclusion

Theoretical study of learning algorithms for “time-oriented”
models needs new probabilistic results

In our case new concentration results for matrix martingales in
continuous time

Leads to a better scaling of penalizations

A word about something else...

Going back to maximum-likelihood estimation, with d very large

For inference, exploit the fact that d is large

⇒ use a Mean-Field approximation! (from Delattre et al. 2015)

�0.5

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

�
1 t
/⇤

1

t/T

0.1

1

1 10 100

E1
/
2
[(
�

1 t
/⇤

1
�

1)
2
]

d

d = 1
d = 16

d = 128

Simulation results
d�1/2

Mean-field inference for Hawkes

We don’t understand perfectly why this works yet (proof on a toy
example)

Fluctuations E1/2[(λ1t/Λ
1 − 1)2]

0 0.2 0.4 0.6 0.8

||Φ||

1

10

100

d

0.001

0.01

0.1

1

Mean-field inference for Hawkes

But it does very well empirically

Mean-field inference for Hawkes

But it does very well empirically

0.01

0.1

1

10

1000 10000 100000R
el

at
iv

e
er

ro
r
E1

/
2
[(α

in
f
/α

tr
−
1)

2
]

T

α = 0.3

0.01

0.1

1

10

1000 10000 100000

T

α = 0.7

d = 4
d = 8
d = 16
d = 32
T−1/2

d = 4
d = 8
d = 16
d = 32
T−1/2

Mean-field inference for Hawkes

And it is faster by several order of magnitude than state-of-the-art
solvers

15.25

15.3

15.35

15.4

15.45

15.5

15.55

15.6

1 10 100M
in

us
Lo

g-
Li

ke
lih

oo
d
−
lo
g
P(
N

t
|θ

in
f
)

Computational time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100R
el

at
iv

e
er

ro
r
E1

/
2
[(α

in
f
/α

tr
−
1)

2
]

Computational time (s)

BFGS
EM
CF
MF

BFGS
EM
CF
MF

Perspectives

Better understanding of the Mean-Field based inference

Quantifying influence without kernels estimation

Experiments: ongoing project with Préfecture de l’Oise (car
theft), High-frequency Finance

Non-constant baseline (block-stationarity): block constant with
total-variation penalization

NMF based learning of the self-excitement matrix

SBM prior for community detection results

Even better optimization using recent stochastic gradient
algorithms (but needs some tweaking...)

	Introduction
	Model
	A simple parametrization of the MHP

	Maximum Likelihood Estimation & Least-Squares
	Prior encoding by penalization
	Theoretical guarantees

