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PCA

I Principal Components Analysis is a very widely used
technique for dimension reduction in data analysis and
visualization, machine learning, signal processing, etc ...
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PCA
I An application example: Eigenface for face recognition

I In these example images above you can see the average
face and the first and last eigenfaces that were generated
from a collection of 30 images each of 4 people.

I Notice that the average face will show the smooth face
structure of a generic person, the first few eigenfaces will
show some dominant features of faces, and the last
eigenfaces (eg: Eigenface 119) are mainly image noise.
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PCA

I Eigenfaces figures out the main differences between all the
images in the training set,

I One can then efficiently represent each training image
using a combination of those differences (eigen-images).
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PCA

I One neat property is that most eigen-faces are noise-like
and only a few are associated with high eigenvalues of the
covariance matrix

I Given a new image, one can project it onto the space
generated by the most relevant eigenfaces and find the
closest projection of an image in the training set to identify
the face !
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PCA
I PCA is also a fascinating topic from both the algorithmic

and theoretical perspective !
I The SVD is another view point on PCA
I A very fast method based on a randomized algorithm has

been proposed by Candès and Witten (many previous
contributions in the litterature)
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PCA
I PCA is also a fascinating topic from both the algorithmic

and theoretical perspective !
I For Gaussian iid data, the eigenvalues induce a random

empirical measure which has been studied extensively
I The empirical spectrum converges to the Marchenko

Pastur law (even universality under the fourth moment
condition by Tao, Vu and Wang)
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PCA

I PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

I For Gaussian iid data, the eigenvalues induce a random
empirical measure which has been studied extensively

I The limit distribution of the maximal eigenvalue is the
Tracy-Widom distribution (Johnstone, El Karoui, . . . )
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PCA
I PCA is also a fascinating topic from both the algorithmic

and theoretical perspective !
I For Gaussian iid data, the eigenvalues induce a random

empirical measure which has been studied extensively
I The spacings between the successive zeros of the Laguerre

polynomials (defining an empirical distribution converging to
the Marchenko-Pastur law) have been studied with Sébastien
Darses
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ON THE SPACINGS BETWEEN THE SUCCESSIVE ZEROS
OF THE LAGUERRE POLYNOMIALS

STÉPHANE CHRÉTIEN AND SÉBASTIEN DARSES

(Communicated by Sergei K. Suslov)

Abstract. We propose a simple uniform lower bound on the spacings between
the successive zeros of the Laguerre polynomials L

(α)
n for all α > −1. Our

bound is sharp regarding the order of dependency on n and α in various ranges.
In particular, we recover the orders given in a work of Ahmed, Laforgia and
Muldoon (1982) for α ∈ (−1, 1].

1. Introduction

The study of orthogonal polynomials has a long history with exciting interplay
with numerous fields, including random matrix theory. The Laguerre polynomials
which occur as the solutions of important differential equations [13], have had many
applications in physics (electrostatics, quantum mechanics [6]), engineering (control
theory; see e.g. [2]), random matrix theory (Wishart distribution; see e.g. [3] and
[5]) and many other fields. The knowledge of the spacings between successive zeros
of the Laguerre polynomials, interesting in its own right, is also potentially of great
interest in many situations, e.g., for the spacings between successive eigenvalues of
Wishart matrices, for bounding the gaps between sucessive energy levels in quan-
tum mechanics or for the analysis of numerical algorithms in system identification
problems, to name a few.

In this short note, we provide a uniform lower bound for the gaps between
successive zeros of the Laguerre polynomials L

(α)
n . In [1], important bounds were

proposed in the case α ∈ (−1, 1] for individual spacings (i.e. bounds depending also
on the ranking). Our bound is uniform but it is valid on the entire range α > −1.
For this reason, our bound might be helpful in a large number of applications. In
particular, the cases including large values of α, are those of interest for random
matrices with Wishart distribution. Our approach is based on a remarkable well-
known identity (a Bethe ansatz equation; see e.g. [11], [12]).

2. Preliminaries: Bethe ansatz equality

We first recall the following remarkable general result; see e.g. Lemma 1 in [11].
Let f be a polynomial with real simple zeros x1 < · · · < xn, satisfying the ODE
f ′′−2af ′+bf = 0 where a and b are meromorphic function whose poles are different
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PCA

I PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

I The Spiked model provides a very interesting example of a
phase transition phenomenon (discovered by Baik, Ben Arous
and Peche) on the detectability of a signal into a noisy
environment

Theorem
Assume Xi = Uiv + σεi ∈ Rd, i = 1, . . . ,n and d/n = c. Then, as
n→∞,

λmax(Covariance)→
{
σ2(1 +

√
c)2 if ‖v‖2 ≤ σc1/4

(‖v‖2 + σ2)(1 + cσ2/‖v‖2
2) otherwise
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PCA
I PCA is also a fascinating topic from both the algorithmic

and theoretical perspective !
I PCA has also been modified in order to impose that the

principal components be combinations of just a few
original coordinates (variables) and the resulting method
is called Sparse PCA.

I Semi-Definite Programming relaxations have been
proposed by D’Aspremont, El Ghaoui, Jordan and
Lanckriet

A DIRECT FORMULATION FOR SPARSE PCA USING
SEMIDEFINITE PROGRAMMING∗

ALEXANDRE D’ASPREMONT†, LAURENT EL GHAOUI‡ , MICHAEL I. JORDAN§ , AND

GERT R. G. LANCKRIET¶

Abstract. Given a covariance matrix, we consider the problem of maximizing the variance
explained by a particular linear combination of the input variables while constraining the number
of nonzero coefficients in this combination. This problem arises in the decomposition of a covari-
ance matrix into sparse factors or sparse PCA, and has wide applications ranging from biology to
finance. We use a modification of the classical variational representation of the largest eigenvalue of
a symmetric matrix, where cardinality is constrained, and derive a semidefinite programming based
relaxation for our problem. We also discuss Nesterov’s smooth minimization technique applied to the
semidefinite program arising in the semidefinite relaxation of the sparse PCA problem. The method
has complexity O(n4

p

log(n)/ǫ), where n is the size of the underlying covariance matrix, and ǫ is
the desired absolute accuracy on the optimal value of the problem.

Key words. Principal component analysis, Karhunen-Loève transform, factor analysis, semidef-
inite relaxation, Moreau-Yosida regularization, semidefinite programming.

AMS subject classifications. 90C27, 62H25, 90C22.

1. Introduction. Principal component analysis (PCA) is a popular tool for data
analysis, data compression and data visualization. It has applications throughout
science and engineering. In essence, PCA finds linear combinations of the variables
(the so-called principal components) that correspond to directions of maximal variance
in the data. It can be performed via a singular value decomposition (SVD) of the
data matrix A, or via an eigenvalue decomposition if A is a covariance matrix.

The importance of PCA is due to several factors. First, by capturing directions
of maximum variance in the data, the principal components offer a way to compress
the data with minimum information loss. Second, the principal components are un-
correlated, which can aid with interpretation or subsequent statistical analysis. On
the other hand, PCA has a number of well-documented disadvantages as well. A par-
ticular disadvantage that is our focus here is the fact that the principal components
are usually linear combinations of all variables. That is, all weights in the linear com-
bination (known as loadings) are typically non-zero. In many applications, however,
the coordinate axes have a physical interpretation; in biology for example, each axis
might correspond to a specific gene. In these cases, the interpretation of the princi-
pal components would be facilitated if these components involved very few non-zero
loadings (coordinates). Moreover, in certain applications, e.g., financial asset trading
strategies based on principal component techniques, the sparsity of the loadings has
important consequences, since fewer non-zero loadings imply fewer transaction costs.

It would thus be of interest to discover sparse principal components, i.e., sets of
sparse vectors spanning a low-dimensional space that explain most of the variance
present in the data. To achieve this, it is necessary to sacrifice some of the explained

∗A preliminary version of this paper appeared in the proceedings of the Neural Information
Processing Systems (NIPS) 2004 conference and the associated preprint is on arXiv as cs.CE/0406021.

†ORFE Dept., Princeton University, Princeton, NJ 08544. aspremon@princeton.edu
‡EECS Dept., U.C. Berkeley, Berkeley, CA 94720. elghaoui@eecs.berkeley.edu
§EECS and Statistics Depts., U.C. Berkeley, Berkeley, CA 94720. jordan@cs.berkeley.edu
¶ECE Dept., U.C. San Diego, La Jolla, CA 92093. gert@ece.ucsd.edu
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PCA
I PCA is also a fascinating topic from both the algorithmic

and theoretical perspective !
I See also the paper by Berthet and Rigollet on these topics

The Annals of Statistics
2013, Vol. 41, No. 4, 1780–1815
DOI: 10.1214/13-AOS1127
© Institute of Mathematical Statistics, 2013

OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS IN
HIGH DIMENSION

BY QUENTIN BERTHET1 AND PHILIPPE RIGOLLET2

Princeton University

We perform a finite sample analysis of the detection levels for sparse
principal components of a high-dimensional covariance matrix. Our mini-
max optimal test is based on a sparse eigenvalue statistic. Alas, computing
this test is known to be NP-complete in general, and we describe a compu-
tationally efficient alternative test using convex relaxations. Our relaxation is
also proved to detect sparse principal components at near optimal detection
levels, and it performs well on simulated datasets. Moreover, using polyno-
mial time reductions from theoretical computer science, we bring significant
evidence that our results cannot be improved, thus revealing an inherent trade
off between statistical and computational performance.

1. Introduction. The sparsity assumption has become preponderant in mod-
ern, high-dimensional statistics. In the high dimension, low sample size setting,
where consistency seems to be hopeless, sparsity turns out to be the statistician’s
salvation. It formalizes the a priori belief that only a few parameters, among a large
number of them, are significant for the statistical task at hand. This paper explores a
specific high-dimensional problem, namely Principal Component Analysis (PCA).
Indeed, without further assumptions, classical PCA is known to produce inconsis-
tent estimators of the directions that explain the most variance [Johnstone and Lu
(2009), Nadler (2008), Paul (2007)]. For PCA, the spiked covariance model in-
troduced by Johnstone (2001) provides a natural setting for statistical problems.
Namely, this model relies on the assumption that there exists a small number of
directions that explain most of the variance. In this work, we assume that observa-
tions are drawn from a multivariate Gaussian distribution with mean zero and co-
variance matrix given by I + θvv�, where I is the identity matrix, v is a unit norm
sparse vector and θ > 0. Akin to other models, the sparsity assumption drives both
methods and analysis in a wide variety of applications ranging from signal pro-
cessing to biology; see Alon et al. (1999), Chen (2011), Jenatton, Obozinski and
Bach (2010), Wright et al. (2011) for a few examples. Most contributions to this
problem have focused on consistent estimation of the sparse principal component

Received December 2012; revised April 2013.
1Supported in part by a Gordon S. Wu fellowship.
2Supported in part by NSF Grants DMS-09-06424 and CAREER-DMS-1053987.
MSC2010 subject classifications. Primary 62H25; secondary 62F04, 90C22.
Key words and phrases. High-dimensional detection, sparse principal component analysis, spiked

covariance model, semidefinite relaxation, minimax lower bounds, planted clique.
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ROBUST PCA

I However, it is known to be very sensitive to perturbations,
e.g. Outliers.



BACKGROUND Robust PCA RECALLS ON CONVEXITY AND RECOVERY NEW ANALYSIS OF ROBUST PCA Conclusion

ROBUST PCA

I In a 2010 paper, Candès, Li, Ma, Wright studied a new
version of PCA, called Robust PCA where the question of
efficiently removing outliers is approached via convex
optimization.
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ROBUST PCA

I Quick detection of outliers in high dimensions is very
important at the National Physical Laboratory.

I Many researchers have worked on various sexy
applications
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ROBUST PCA

I The magic behind Robust PCA is just convex optimization
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ROBUST PCA
I In the original version of Candès et al., the problem is the

one of Low Rand + Sparse decomposition

min
L,S

‖L‖∗ + λ‖S‖1 s.t. X = L + S

I the nuclear norm is

‖L‖∗ =

rank(L)∑
k=1

σk(L),

I the ‖ · ‖1-norm is

‖S‖1 =

n,m∑
i,j=1

|Si,j|.



BACKGROUND Robust PCA RECALLS ON CONVEXITY AND RECOVERY NEW ANALYSIS OF ROBUST PCA Conclusion

ROBUST PCA

I Why these norms ?
I The norm `1 on Rn is the convex envelope of the cardinal of

the support on the `∞-ball.
I Thus, the nuclear norm is the best approximation in a

certain sense of the cardinal of the support of the singular
spectrum

I ... and the `1 is the best approximation in a certain sense of
the cardinal of the support of the set of matrix entrees.

I Why an exact decomposition ?
I Can we add some potential noise ?
I In this case, we can try and solve

min
L,S

‖L‖∗ + λ‖S‖1 s.t. ‖X − L− S‖F ≤ η.
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ROBUST PCA
I Let L0 = UΣVt be the SVD of L0 and r its rank. Suppose

that X = L0 + S0 where L0 is d× n, obeys

max
i
‖Utei‖2 ≤ µr

d
max

i
‖Vtei‖2 ≤ µr

n

‖UVt‖∞ ≤
√
µr
dn

and that the support set of S0 is uniformly distributed
among all sets of cardinality s.

Theorem (Candes et al. (2010))
With probability at least 1− cn−10 (over the choice of support of S0),
Robust PCA with λ = 1/

√
max{d,n} is exact, provided that

rank(L0) ≤ ρr min{d,n}µ−1(log max{d,n})2.

and s ≤ ρsdn.
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GOAL OF THE PRESENT WORK

I The proof of the Theorem of Candès et al. is quite intricate
although it relies on the Golfing scheme of Gross

I Since the original paper, different approaches have
emerged for other problems involving sparsity, e.g. the
descent cone/gaussian mean width approach of
Amelunxen et al.

I In the present work, we suggest a simple analysis of
Robust PCA in the noisy setting based on the convex
geometric setting of Amelunxen et al.
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GOAL OF THE PRESENT WORK

I The approach will also use Lagrange duality and a nice
formula for the infimum of quadratic functionals over the
sphere due to Hager.
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SOME CONVEX ANALYSIS

I Convexity
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SOME CONVEX ANALYSIS

I Subdifferential

∂f (x) =
{

g | f (y) ≥ f (x) + 〈g, y− x〉
}
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SOME CONVEX ANALYSIS
I Descent cone

Df (x) =
{

h | f (x + εh) ≤ f (x) for some ε > 0
}
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DESCENT CONES AND POLARITY

Definition (Polarity)
Given a cone K in a euclidean space E, the polar cone K◦ is given by

K◦ =
{

y | 〈y, x〉 ≤ 0 ∀x ∈ K
}
.

Proposition (Descent cone and subdifferential)
We have

D(f , x) = cone(∂f (x))◦.
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THE DESCENT CONE APPROACH TO RECOVERY
I Consider the inverse problem y = Ax] + z
I the estimator is taken as

x̂ = min
x

f (x) s.t. ‖y− Ax‖ ≤ η.
I in the case η = 0

¨
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THE DESCENT CONE APPROACH TO RECOVERY

I Consider the inverse problem y = Ax] + z
I the estimator is taken as

x̂ = min
x

f (x) s.t. ‖y− Ax‖ ≤ η.

I We will also need the following definition for the smallest
eigenvalue λmin(Φ,K) of a linear map Φ with respect to a
cone K.

λmin(Φ,K) = min
‖x‖=1
x∈K

‖Φ(x)‖2. (1)
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THE DESCENT CONE APPROACH TO RECOVERY

I Consider the inverse problem y = Ax] + z
I the estimator is taken as

x̂ = min
x

f (x) s.t. ‖y− Ax‖ ≤ η.

I A recent result of Tropp et al. is the following theorem:

Theorem (Tropp et al.)
Assume that y = Φ(x]) + z and that ‖z‖2 ≤ η. Let

x̂ ∈ argminx∈E f (x) s.t. ‖y− Φ(x)‖2 ≤ η.

Then, we have

‖x̂− x]‖2
F ≤

2η
λmin(Φ,D(f , x0))

.
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A LOWER BOUND ON λmin(Φ,K)

I For Robust PCA, the observation operator is very simple:

Φ(L,S) = L + S

I A main difference with previous work based on the
descent cone and the conic singular value is that

Φ is not random !
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A LOWER BOUND ON λmin(Φ,K)

I The sparsity promoting penalty is

f (L,S) = ‖L‖∗ + λ‖S‖1.

I We have

λmin

(
Φ,D(f , (L0,S0))

)2
= min

‖L‖2
F+‖S‖2

F=1;
(L,S)∈D(f ,(L0,S0))

‖Φ(L,S)‖2
F

= min
‖L‖2

F+‖S‖2
F=1;

(L,S)∈D(f ,(L0,S0))

‖L + S‖2
F
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A LOWER BOUND ON λmin(Φ,K)

I By the rules of subdifferential calculus, we have

∂f (L0,S0) = ∂‖ · ‖∗(L0)× λ ∂‖ · ‖1(S0)

with
I

∂‖ · ‖∗(L0) = {U0Vt
0 + W0 | ‖W0‖ ≤ 1, Ut

0W = 0, W0V0 = 0}

where L0 = U0Σ0Vt
0 is a SVD of L0,

I and

∂‖ · ‖1(S0) = sign(S0).
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A LOWER BOUND ON λmin(Φ,K)

I Consider the Lagrange function:

(L,S,ΓL,ΓS) = ‖L + S‖2
F + 〈ΓL,L〉+ 〈ΓS,S〉

subject to the implicit constraint

‖L‖2
F + ‖S‖2

F = 1

I and the associated dual function

Θ(ΓL,ΓS) = inf
L, S∈Rd×n

‖L‖2
F+‖S‖2

F=1

L(L,S,ΓL,ΓS).

I Moreover, the dual variables ΓL and ΓS should be
constrained to lie in the polar cone D(f , (L0,S0))◦.
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A LOWER BOUND ON λmin(Φ,K)
I Although presented as a nonconvex problem, the infimum

in

Θ(ΓL,ΓS) = inf
L, S∈Rd×n

‖L‖2
F+‖S‖2

F=1

L(L,S,ΓL,ΓS).

has in fact a closed form expression
I this is well described in a previous work on spherically

constrained quadractic optimization by W. Hager (SIAM
Opt 2001)
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A LOWER BOUND ON λmin(Φ,K)

I Let γL = vec(ΓL), γC = vec(ΓC) in Rdn.
I Thus, the dual function Θ is given by

Θ(ΓL,ΓS) = inf
z∈R2dn

ztz=1

ztQz− 2γtz

I with

Q =

[
I
I

] [
I
I

]t

I and

γ = −1
2

[
γL
γC

]
.
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A LOWER BOUND ON λmin(Φ,K)

I The matrix Q has the eigenvalue decomposition

Q = UΛUt,

with

U =
1√
2

[
I I
I −I

]
and Λ =

[
2I 0
0 0

]
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A LOWER BOUND ON λmin(Φ,K)

I Following Hager’s paper, if γL − γC = 0, the solution is
given by

z∗ = U
[

c∗L
c∗S

]
with


c∗L = − 1√

2
γL

c∗S

,

and

‖γL‖2
2

2
+ ‖c∗S‖2

2 = 1. (2)

I Another expression for z∗ is

z∗ = U

[
1√
2
γL

c∗S

]
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A LOWER BOUND ON λmin(Φ,K)

I Using this formula, one obtains that

Θ(ΓL,ΓS) = 2 ‖ΓL‖2
F.

I Notice also that we should satisfy the following constraints

ΓL = ΓS

‖ΓL‖2
2

2
+ ‖c∗S‖2

2 = 1.

when this problem is feasible.
I Therefore, if the above constraints can be satisfied, the

optimal value of the dual function Θ has optimal value
which will simply be equal to 4.
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WHEN DO WE HAVE ΓL = ΓS ?

I We now address the question of feasibility of the
constraints

ΓL = ΓS

I Recall that we should have the constraint that

(ΓL,ΓS) ∈ cone(∂f (L0,S0)).
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WHEN DO WE HAVE ΓL = ΓS ?

I Moreover, we have

cone(∂f (L0,S0)) =

{
µ (ΓL,ΓS) | ΓL ∈

{
U0Vt

0 + W0

| Ut
0W0 = 0, W0V0 = 0, ‖W0‖ ≤ 1

}
,

ΓS ∈ λ sign(S0) and µ ∈ R+

}
.
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WHEN DO WE HAVE ΓL = ΓS ?

I We can take W0 as a solution of the following system(
U0Vt

0 + W
)

Ω
= λ sign(S0)Ω, |

(
U0Vt

0 + W
)

Ωc | ≤ λ

and

Ut
0W = 0, WV0 = 0, (3)

where Ω is the support of S0.
I The constraints (3) are equivalent to

W = U⊥0 CV⊥
t

0 .
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WHEN DO WE HAVE ΓL = ΓS ?

I Let us first consider a toy case, namely when U0Vt
0 = 0.

I In this case, we look for a solution C to the feasibility
problem

−λ ≤
(

U⊥0 CV⊥
t

0

)
i,i′
≤ λ, (i, i′) ∈ Ωc (4)

and (
U⊥0 CV⊥

t

0

)
i,i′

= λ sign(S0)i,i′ , (i, i′) ∈ Ω. (5)
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WHEN DO WE HAVE ΓL = ΓS ?

I Notice that we can rewrite the system given by (4) and (5)
as

Ωc
(

U⊥0 CV⊥
t

0

)
≤ λe, (6)

−Ωc
(

U⊥0 CV⊥
t

0

)
≤ λe (7)

and

Ω
(

U⊥0 CV⊥
t

0

)
= λ Ω

(
sign(S0)

)
. (8)
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WHEN DO WE HAVE ΓL = ΓS ?

I Let us also define the operator A : Rr0×r0 7→ Rd×n as given
by

A(C) = U⊥0 CV⊥
t

0 . (9)

Its adjoint is easily seen to be given by

A∗(X) = U⊥
t

0 XV⊥0 . (10)
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WHEN DO WE HAVE ΓL = ΓS ?
I Taking the dual approach, we may now use the Farkas

lemma to study the feasibility of (4) and (5).

I Thus (4) and (5) will be infeasible if there exist z+, z− in
Rdn−s0

+ and y in Rs0 such that

A∗ ◦ Ωc∗(z1 − z2) +A∗ ◦ Ω∗(y) = 0 (11)

and

et(z1 + z2) + Ω(sign(S0))ty < 0. (12)
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WHEN DO WE HAVE ΓL = ΓS ?

I Moreover, infeasibility of (4) and (5) is equivalent to the
existence of z in Rdn−s0 and y in Rs0 such that

U⊥
t

0 X (z, y)V⊥0 = 0 (13)

and

‖z‖1 + Ω(sign(S0))ty < 0. (14)
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WHEN DO WE HAVE ΓL = ΓS ?

I To handle this expression easily, one may want to use a
Null Space-type condition

U⊥
t

0 CV⊥0 = 0 ⇒ ‖CΩ‖2 ≤
ρ√
s0
‖CΩc‖1 (15)

I Thus, we obtain that ‖y‖2 ≤ ρ√
s0
‖z‖1 and using

Hoeffding’s inequality, we get

P

‖z‖1 + Ω(sign(S0))ty
‖z‖1

≤

1− ρ
√

2
log (1/α)

s0

 ≤ α.
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WHEN DO WE HAVE ΓL = ΓS ?

I Now, we have to consider the infimum of
1 + Ω(sign(S0))ty/‖z‖1 over all possible values of z and y
satisfying the condition ‖y‖2 ≤ ρ/

√
s0 ‖z‖1.

I Due to the Hoeffding bound, one only needs to consider
the infimun of 1 + Ω(sign(S0))tỹ for all ỹ in the euclidean
ball B2(ρ/

√
s0).

I For this purpose, we will simply introduce an ε-net and
use the union bound.
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WHEN DO WE HAVE ΓL = ΓS ?

I For any ε > 0, it is known that there exists an ε-net of size
at most (3/ε)s0 such that the ball B2(1) is covered by balls
of radius ε centered at the points of the net.

I By dilation, we deduce that we only need at most the same
number of points to obtain a ρε/

√
s0-net, denoted by

N (ρε/
√

s0), which may be used to cover the ball B2(ρ/
√

s0).
I Using the union bound, we get

P

 min
ỹ∈N (ρε)

1 + Ω(sign(S0))tỹ ≤

1− ρ
√

2
log (1/α)

s0


≤ α (3/ε)s0 .
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WHEN DO WE HAVE ΓL = ΓS ?
I Moreover, since every point in the ball B2(ρ/

√
s0) is at most

at a distance of ρε/
√

s0 from a point in the net N (ρε/
√

s0),
using the Cauchy-Schwartz inequality, we get

max
ỹ∈B2(ρ/

√
s0)

min
˜̃y∈N (ρε/

√
s0)

∣∣∣Ω(sign(S0))tỹ− Ω(sign(S0))t˜̃y
∣∣∣ ≤ ρε.

I From this, we obtain

P

 min
ỹ∈B2(ρ/

√
s0)

1 + Ω(sign(S0))tỹ ≤ 1− ρ
√

2
log (1/α)

s0
− ρε


≤ α (3/ε)s0 .

I Therefore, we deduce that if ρ <
√
ε/4 the system is

infeasible, with probability at most (ε/3)s0 .
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WHEN DO WE HAVE ΓL = ΓS ?

I In the effective case (not the toy model), assuming that

− λ

2
≤ Ωc(U0V0) ≤ λ

2
. (16)

I and doing the same computations again, we obtain

P

 min
ỹ∈B2(ρ/

√
s0)

1 + Ω(sign(S0))tỹ ≤ 1
2
− ρ

√
2 log (1/α)

s0
− ρε

 ≤ α (3/ε)s0 .

(17)

I Therefore, we deduce from this computation that if
ρ <

√
ε/16 the system is infeasible, with probability at

most (ε/3)s0 .
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SUMMING UP !

I What did we need ?
I −λ2 ≤ Ωc(U0V0) ≤ λ

2
I The (ρ, s0)-Null Space property of C 7→ U⊥

t

0 CV⊥0 with
ρ <

√
ε/16

I What did we obtain ?

‖(L̂, Ŝ)− (L0,S0)‖2
F ≤

2η
4
.

with probability at most (ε/3)s0
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WHAT ABOUT THE NULL-SPACE CONDITION ?

I Note that the Null Space condition is equivalent to

∀(i, j), trace
(

CV⊥0 Ei,jU⊥
t

0

)
= 0 ⇒ ‖CΩ‖2 ≤

ρ√
s0
‖CΩc‖1.

I Let M denote the matrix whose rows are the row vectors.
vec(U⊥0 Ej,iV⊥

t

0 )t

I Let c = vec(C).
I Let ω denote the index set of the components of c

satisfying cω = CΩ.
I Then, the Null Space condition can be rewritten as

Mc = 0 ⇒ ‖cω‖2 ≤
ρ√
s0
‖cωc‖1.
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WHAT ABOUT THE NULL-SPACE CONDITION ?

I Moreover, we have

U⊥0 Ej,iV⊥
t

0 = U⊥0,jV
⊥t

0,i .

where U⊥0,j is the jth column of U⊥0 and V⊥0,i is the ith column
of V0,i.

I Therefore, the row of M indexed by (i, j), further denoted
by mi,j is the row vector whose components are the product
of the components of U0,j with the components of V0,i.
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WHAT ABOUT THE NULL-SPACE CONDITION ?

I The matrix M has orthogonal rows. Indeed, let us compute
the scalar product of the row indexed by (i, j) with the row
indexed by (i′, j′)

〈mi,j,mi′,j′〉 =

r∑
k=1

r∑
k′=1

U0,j,kV0,i,k′U0,j′,kV0,i′,k′

=

(
r∑

k=1

U0,j,kU0,j′,k

) (
r∑

k′=1

V0,i,k′V0,i′,k′

)

I Due to the orthogonality of the columns of U0 and V0,

〈mi,j,mi′,j′〉 = 0
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WHAT ABOUT THE NULL-SPACE CONDITION ?

I The number of rows of (Mij)(i,j)∈Ωc is (min{d,n} − r0)2 − s0
and it has dn columns.

I Since its rows form an orthonormal matrix in Rdn×dn, and
after rescaling, an orthogonal matrix satisfies 2s0-Restricted
Invertibility Property for any s0 less than dn/2 and

I If r0 and s0 are small compared to min{d,n}, the matrix
(Mij)(i,j)∈Ωc has only a few less rows than an orthogonal
matrix, it seems reasonable to require the 2s0-Restricted
Invertibility Property for some s0 in the applications.

I Since the 2s0-Restricted Invertibility Property implies the
s0-Null Space Property, this Null Space Property seems
reasonable in the application as well.



BACKGROUND Robust PCA RECALLS ON CONVEXITY AND RECOVERY NEW ANALYSIS OF ROBUST PCA Conclusion

CONCLUSIONS ?

I PCA is still full of surprises and is fun to analyse !
I We obtained a result which depends on a Null Space

Property of the original eigenvectors: plug in your model
of choice and obtain the possible values of r0 and s0 !

I If we use delocalization types of results (eigenvectors have
components with same magnitude), we obtain

I that λ is in the range of values obtained in the paper by
Candès, Li, Ma, Wright.

I the Null space property holds for s0 ≤ Cs(ρ) min{d,n}2 and
r0 ≤ Cr(ρ) min{d,n}/ log(min{d,n}), which is of the same
order as in the paper by Candès, Li, Ma, Wright (up to a log
!), using a modification of a famous theorem of Rudelson
and Vershynin on RIP for Discrete Fourier Transform
matrices.

I but ... is delocalization relevant for all applications ?
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CONCLUSIONS ?

I PCA is still full of surprises and is fun to analyse !
I We obtained a result which depends on a Null Space

Property of the original eigenvectors: plug in your model
of choice and obtain the possible values of r0 and s0 !

I The Null Space condition could be addressed by other
means than RIP and (?) because we only need such a
property to hold for the support of the outliers (RIP is in
fact much stronger than what we really need !)

I The main goal of this work is to provide a simple method
for addressing low-rand + more complex sparse structured
models for which we don’t know how to extend the
approach by Candès et al.
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CONCLUSIONS ?

Thank you for your attention !
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