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PCA

» Principal Components Analysis is a very widely used
technique for dimension reduction in data analysis and
visualization, machine learning, signal processing, etc ...

Springer Series in Statistics
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» An application example: Eigenface for face recognition

iy

» In these example images above you can see the average
face and the first and last eigenfaces that were generated
from a collection of 30 images each of 4 people.

» Notice that the average face will show the smooth face
structure of a generic person, the first few eigenfaces will
show some dominant features of faces, and the last
eigenfaces (eg: Eigenface 119) are mainly image noise.
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» Eigenfaces figures out the main differences between all the
images in the training set,

» One can then efficiently represent each training image
using a combination of those differences (eigen-images).
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» One neat property is that most eigen-faces are noise-like

and only a few are associated with high eigenvalues of the
covariance matrix

» Given a new image, one can project it onto the space

generated by the most relevant eigenfaces and find the

closest projection of an image in the training set to identify
the face !
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PCA

» PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

» The SVD is another view point on PCA

» A very fast method based on a randomized algorithm has
been proposed by Candes and Witten (many previous
contributions in the litterature)

Algorithmica (2015) 72:264-281
DOI 10.1007/500453-014-9891-7

Randomized Algorithms for Low-Rank Matrix
Factorizations: Sharp Performance Bounds

Rafi Witten - Emmanuel Candés
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PCA

» PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

» For Gaussian iid data, the eigenvalues induce a random
empirical measure which has been studied extensively

» The empirical spectrum converges to the Marchenko
Pastur law (even universality under the fourth moment
condition by Tao, Vu and Wang)
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PCA

» PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

» For Gaussian iid data, the eigenvalues induce a random
empirical measure which has been studied extensively

» The limit distribution of the maximal eigenvalue is the
Tracy-Widom distribution (Johnstone, El Karoui, .. .)

p(A)
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PCA

» PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

» For Gaussian iid data, the eigenvalues induce a random
empirical measure which has been studied extensively

» The spacings between the successive zeros of the Laguerre
polynomials (defining an empirical distribution converging to
the Marchenko-Pastur law) have been studied with Sébastien
Darses

PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 143, Number 10, October 2015, Pages 4383-4388
http://dx.doi.org/10.1090/proc/12574

Article electronically published on April 21, 2015

ON THE SPACINGS BETWEEN THE SUCCESSIVE ZEROS
OF THE LAGUERRE POLYNOMIALS

STEPHANE CHRETIEN AND SEBASTIEN DARSES
(Communicated by Sergei K. Suslov)

ApsTrRACT. We propose a simple uniform lower bound on the spacings betweeti! =
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PCA

» PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

» The Spiked model provides a very interesting example of a
phase transition phenomenon (discovered by Baik, Ben Arous
and Peche) on the detectability of a signal into a noisy

environment
Theorem
Assume X; = Upp +oe; € R4, i=1,...,nand d/n = c. Then, as
n— oo,
2(1 c)? if |o]], < ocl/*
Amax (Covariance) — o(1+ \/;) ) ) flell2 _,J
(loll2 + %) (1 + co*/||v]|5) otherwise
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PCA

» PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !

» PCA has also been modified in order to impose that the
principal components be combinations of just a few
original coordinates (variables) and the resulting method
is called Sparse PCA.

» Semi-Definite Programming relaxations have been
proposed by D’ Aspremont, El Ghaoui, Jordan and
Lanckriet

A DIRECT FORMULATION FOR SPARSE PCA USING
SEMIDEFINITE PROGRAMMING*

ALEXANDRE D’ASPREMONTT, LAURENT EL GHAOUI!, MICHAEL 1. JORDANS, AND
GERT R. G. LANCKRIETY

Abstract. Given a covariance matrix, we consider the problem of maximizing the variance
explained by a particular linear combination of the input variables while constraining the number
of nonzero coefficients in this combination. This problem arises in the decomposition of a covari-
ance matrix into sparse factors or sparse PCA, and has wide applications ranging from biology to
lassical variational representation of the largest cigenvalue of
is constrained, and derive a semidefinite programming bascd
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PCA

» PCA is also a fascinating topic from both the algorithmic
and theoretical perspective !
» See also the paper by Berthet and Rigollet on these topics

The Annals of Statistics

2013, Vol. 41, No. 4, 1780-1815

DOI: 10.1214/13-A0S 1127

© Institute of Mathematical Statistics, 2013

OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS IN
HIGH DIMENSION

By QUENTIN BERTHET1 AND PHILIPPE RIGOLLET2
Princeton University

We perform a finite sample analysis of the detection levels for sparse
principal p of a high-di ional covariance matrix. Our mini-
max optimal test is based on a sparse eigenvalue statistic. Alas, computing
this test is known to be NP-complete in general, and we describe a compu-
tationally efficient alternative test using convex relaxations. Our relaxation is
also proved to detect sparse principal components at near optimal detection
levels, and it performs well on simulated datasets. Moreover, using polyno-
mial time reductions from theoretical computer science, we bring significant
evidence that our results cannot be improved, thus revealing an inherent trade
off between statistical and computational performance.

1. Introduction. The sparsity assumption has become preponderant in mod-
ern, high-dimensional statistics. In the high dimension, low sample size setting,
where consistency seems to be hopeles: arsity turns out to Be the §etistician’s
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» However, it is known to be very sensitive to perturbations,

e.g. Outliers.
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RoBUST PCA

» In a 2010 paper, Candes, Li, Ma, Wright studied a new
version of PCA, called Robust PCA where the question of
efficiently removing outliers is approached via convex
optimization.
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applications

» Quick detection of outliers in high dimensions is very
» Many researchers have worked on various sexy

important at the National Physical Laboratory.
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» The magic behind Robust PCA is just convex optimization
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» In the original version of Candes et al., the problem is the
one of Low Rand + Sparse decomposition

misn L[« + AlS|li st X=L+S
» the nuclear norm is

rank(L)

L= o),
» the || - |[j-norm is

k=1

n,m

ISl = Z S5,

17]:1
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» Why these norms ?

» The norm ¢; on R” is the convex envelope of the cardinal of
the support on the {-ball.

» Thus, the nuclear norm is the best approximation in a
certain sense of the cardinal of the support of the singular
spectrum

» ... and the /; is the best approximation in a certain sense of
the cardinal of the support of the set of matrix entrees.

» Why an exact decomposition ?

» Can we add some potential noise ?
» In this case, we can try and solve

min L], +MJSh st [X—L-S|<n

)



BACKGROUND  Robust PCA RECALLS ON CONVEXITY AND RECOVERY NEW ANALYSIS OF ROBUST PCA Conclusion
00000000000 000000800 0000000 000000000000000000000000000

ROBUST PCA
» Let Lo = UXV! be the SVD of Lj and r its rank. Suppose
that X = Ly + So where L is d x n, obeys

2 o M 2 M1
< = < =
<& <2

max || U'e; max || V'e;
1 1

Vil < 2
UV || < In

and that the support set of Sy is uniformly distributed
among all sets of cardinality s.

Theorem (Candes et al. (2010))

With probability at least 1 — cn=1° (over the choice of support of S),
Robust PCA with A = 1/\/max{d, n} is exact, provided that

rank(L0) < p, min{d, n}p ! (logmax{d,n})>.

and s < pgdn.
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GOAL OF THE PRESENT WORK

» The proof of the Theorem of Candes et al. is quite intricate
although it relies on the Golfing scheme of Gross

» Since the original paper, different approaches have
emerged for other problems involving sparsity, e.g. the
descent cone/gaussian mean width approach of
Amelunxen et al.

» In the present work, we suggest a simple analysis of

Robust PCA in the noisy setting based on the convex
geometric setting of Amelunxen et al.
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sphere due to Hager.

» The approach will also use Lagrange duality and a nice
formula for the infimum of quadratic functionals over the
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SOME CONVEX ANALYSIS

» Convexity
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» Subdifferential

OF(x) = {g | f0) = f(x) + @y —=)
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Conclusion

Df(x) = {h | £(x + ) < f(x) for some € > o}

0
{h:fx+h)<flx)}

2(f, )
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DESCENT CONES AND POLARITY

Definition (Polarity)

Given a cone K in a euclidean space E, the polar cone K° is given by

Koz{y\ (y,x) <0 VxeK}.

Proposition (Descent cone and subdifferential)
We have

D(f,x) = cone(df (x))°.
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THE DESCENT CONE APPROACH TO RECOVERY

» Consider the inverse problem y = Ax* + z
» the estimator is taken as

X =min f(x) s.t
X
» in thecasen =0

ly — Ax|| < 7.

7\
x4+ null(A)
i
T
{z: f(=) < (@)} /

xf 4+ null(A)

20

{z: f(=) < (=)}

zt + D(f, z")

zt + D(f, x")
Success!

Failure!
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THE DESCENT CONE APPROACH TO RECOVERY

» Consider the inverse problem y = Ax* + z
» the estimator is taken as

Xx=min f(x) st |y—Ax| <n.

» We will also need the following definition for the smallest
eigenvalue Amin(®, K) of a linear map ® with respect to a
cone K.

Amin(®, K) = min

min |2 (x)][2.

xeK

@)
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THE DESCENT CONE APPROACH TO RECOVERY

» Consider the inverse problem y = Axt +z
» the estimator is taken as

X =min f(x) st |ly—Ax|]| <.
X

» A recent result of Tropp et al. is the following theorem:
Theorem (Tropp et al.)
Assume that y = ®(x*) + z and that ||z||p < 7. Let

X € argmin, p f(x) s.t.
Then, we have

Iy = @@)[2 <.

. 2
1% — |2 < 7

Amin (@, D(f, x0))

[m]

&
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A LOWER BOUND ON Apin (P, K)

» For Robust PCA, the observation operator is very simple:
®(L,S)=L+S

» A main difference with previous work based on the
descent cone and the conic singular value is that

® is not random !
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Conclusion

» The sparsity promoting penalty is

f(L,S) = L[|« + AllS]|1-
» We have

Amin (<I>, D(f, (Lo, So)))2 =

min
2 2_4.
ILIIE+ISlIE=1;
(L,5)eD(f,(Lg,Sp))

12 (L, S)IF

min L + SH%
ILIZ+ISI2=1;

(L,S)eD(f,(Lgy,S0))
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Conclusion

with

>

» By the rules of subdifferential calculus, we have

9f (Lo, So) = 0| - [[+(Lo) x A 8| - [[1(S0)

Al - l+(Lo) = {UoVy + Wo | [[Woll <1, UgW =0, WV = 0}
where Ly = UpXo V), is a SVD of Ly,
» and

|l - [[1(So) = sign(So)-
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A LOWER BOUND ON Apin (P, K)

» Consider the Lagrange function:
(L,S,T1,Ts) = IL+ S||F + (T, L) + (T's, S)
subject to the implicit constraint
ILIE + [ISIIE =1
» and the associated dual function

@(FL7FS) = inf E(L787FL7FS)'
L, SeRrdxn
ILIE+IISIE=1

» Moreover, the dual variables I'; and I'g should be
constrained to lie in the polar cone D(f, (Lo, So))°.
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A LOWER BOUND ON Apin (P, K)

» Although presented as a nonconvex problem, the infimum
in
@(FL,Fs) = inf ﬁ(L,S,FL,F5>.

L, SeRdxn
ILI2+ISI12=1

has in fact a closed form expression
» this is well described in a previous work on spherically

. i oo Lo ko jra. php
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Conclusion

» Letqr = vec(T'), vc = vec(I'c) in R,
» Thus, the dual function O is given by

@(FL, Fs) = inf ZtQZ — Z’YtZ
zeR2dn

ztz=1
» with

o-[1][1]
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Conclusion

» The matrix Q has the eigenvalue decomposition

Q = UAU,
with
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A LOWER BOUND ON Apin (P, K)

Conclusion

» Following Hager’s paper, if 71, — 7c = 0, the solution is
given by

* 1
c* L = V2 L
Z=U [ L ] with ,
Cs
and
IRl

5ot llesllz = 1. @

» Another expression for z* is

1
z¥=U vz L
€5
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A LOWER BOUND ON Apin (P, K)
» Using this formula, one obtains that
O(L, T's) = 2 || T
» Notice also that we should satisfy the following constraints
I, =T

T2 )13

*112
=1.
5 + Ilcsllz

when this problem is feasible.

» Therefore, if the above constraints can be satisfied, the
optimal value of the dual function © has optimal value
which will simply be equal to 4.
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Conclusion

» We now address the question of feasibility of the
constraints

I'L="Ts
» Recall that we should have the constraint that

(', T's) € cone(0f (Lo, So))-
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Conclusion

» Moreover, we have
cone(df (Lo, So)) = 4 i (U1, Ts) | Ty € {uovg + W

| UpWo =0, WoV = 0, |[Wol| < 1},

I's € Asign(Sp) and pr € R
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WHEN DO WE HAVE I', =17 ?

» We can take Wy as a solution of the following system
(UoV+ W), = Asign(So)a, | (UoVh+ W) | <A
and
UGW =0, WV, =0, 3)

where (2 is the support of Sy.
» The constraints (3) are equivalent to

W = UgCVy .
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WHEN DO WE HAVE I', =17 ?

» Let us first consider a toy case, namely when UV = 0.

» In this case, we look for a solution C to the feasibility
problem

_a<(ugevy ) <A G eqf 4)
it

and

UrCVy | = Asign(So)is, (i,7) € Q. ()

it
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as

» Notice that we can rewrite the system given by (4) and (5)

QC(uoicvof) < e,

(6)
—QC(u&cvolt) < e
and

)
Q(uoicvoﬂ) =\ Q<sign(so)). )
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by

» Let us also define the operator A : R"0*70 1 R¥*" a5 given

A(C) = UgCVy. )
Its adjoint is easily seen to be given by

A*(X) = Uy XV

(10)
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WHEN DO WE HAVE I', =17 ?

» Taking the dual approach, we may now use the Farkas
lemma to study the feasibility of (4) and (5).

Theorem 2.4 (Farkas Lemma)?  Let A be an m x n matrix, b € B™ and
F={x e BR": Ax = b,x = 0}. Then either F # @ or there exists y € B™ such
that yA = 0 and y - b < 0 but not both.

Proof First we prove that both statements cannot hold simultaneously. Suppose
not. Let x* = 0 be a solution to Ax = b and y* a solution to yA = 0 such that
v*b = 0. Notice that x* must be a solution to y*Ax = y*b. Thus y*Ax* = y*b.
Then 0 < y*Ax* = y*b < 0, a contradiction.

» Thus (4) and (5) will be infeasible if there exist z, z_ in
R?"™* and y in R% such that

A*0Q (21 —23) + A0 Q*(y) =0 (11)
and

el (z1 + z2) + Q(sign(Sp))'y < 0. (12)

[m] = = =
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Conclusion

» Moreover, infeasibility of (4) and (5) is equivalent to the
existence of z in R¥"~% and y in R% such that

Ug' X(z,y)Vg =0
and

(13)
Izl + Qsign(S0)'y < 0.

(14)
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WHEN DO WE HAVE I', =17 ?

» To handle this expression easily, one may want to use a
Null Space-type condition

urfcvi—o = HCQHZS\/p%HCQCHl (15)

» Thus, we obtain that ||y||2 < ﬁ ||lz||1 and using
Hoeftding’s inequality, we get

: t
Izl + O(sign(So))'y _ (4 _ [ log(1/a)

P
1z]|1 S0
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Conclusion

WHEN DO WE HAVE I', =17 ?

» Now, we have to consider the infimum of
1+ Q(sign(So))'y/||z|l1 over all possible values of z and y
satisfying the condition ||y||>» < p/+/50 ||z]1-

» Due to the Hoeffding bound, one only needs to consider
the infimun of 1 + Q(sign(Sp))'¥ for all 7 in the euclidean
ball Ba(p//50).

» For this purpose, we will simply introduce an e-net and
use the union bound.

;
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WHEN DO WE HAVE I', =17 ?

» For any € > 0, it is known that there exists an e-net of size
at most (3/¢)® such that the ball B>(1) is covered by balls
of radius € centered at the points of the net.

» By dilation, we deduce that we only need at most the same
number of points to obtain a pe/,/Sp-net, denoted by
N (pe/+/50), which may be used to cover the ball B>(p/+/50).

» Using the union bound, we get

P min 1+ QGsign(so)7< [1-p4/2 80/
JEN (pe) S0

< a(3/€)%.
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WHEN DO WE HAVE I', =17 ?

» Moreover, since every point in the ball By(p/+/5o) is at most
at a distance of pe/,/sy from a point in the net V' (pe/\/5p),
using the Cauchy-Schwartz inequality, we get

max _ min |Q(sign(Sy))y — Q(sign(So))t]ﬂ < pe.
Y€B2(p/\/50) JEN (pe/\/50)

» From this, we obtain

P min 1+ Q(sign(Sp))'y <1—p /2 log (1/a) _ pe

JE€B2(p/+/50) 50
< a (3/¢)™.

» Therefore, we deduce that if p < \/€/4 the system is
infeasible, with probability at most (e/3)%.
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WHEN DO WE HAVE I', =17 ?

» In the effective case (not the toy model), assuming that

- % < Q(UpVy) < % (16)

» and doing the same computations again, we obtain

) ) 1 2 log (1/c)
P min 1+ Q(sien(Sp))'y < = — — 2T 7 _pe| <a(8/€)%.
min 1+ 00sign(50)7 < 5 —p | B e | <a 370

(17)

» Therefore, we deduce from this computation that if
p < \/€/16 the system is infeasible, with probability at
most (e/3)%.
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SUMMING UP !

RY NEW ANALYSIS OF ROBUST PCA
0000000000000000000000e0000

Conclusion

» What did we need ?
> =2 <OQ(UpVo) < 3

» The (p, so)-Null Space property of C — U CVi with
p<+/€/16

» What did we obtain ?

PN 2
I(L,5) = (Lo, So)IF < -
with probability at most (¢/3)%

[m]
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WHAT ABOUT THE NULL-SPACE CONDITION ?

» Note that the Null Space condition is equivalent to

V(i ), trace (CVEE,jUf') =0 = |Call2 < = [|Cax .

\F

» Let M denote the matrix whose rows are the row vectors.
vec(Ui E; Vi)t

» Letc = vec(C).

» Let w denote the index set of the components of c
satisfying c,, = Cq.

» Then, the Null Space condition can be rewritten as

Mc=0 = [eull2 < —= llew]lr-

\/>
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WHAT ABOUT THE NULL-SPACE CONDITION ?

» Moreover, we have
1 1t gl gLt
UO E]JVO — UO’]VOJ

where U&j is the j column of Uy and Vg is the i column
of VOJ'.

» Therefore, the row of M indexed by (i, j), further denoted
by m; ; is the row vector whose components are the product
of the components of Uy ; with the components of Vj ;.
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WHAT ABOUT THE NULL-SPACE CONDITION ?

» The matrix M has orthogonal rows. Indeed, let us compute
the scalar product of the row indexed by (i, ) with the row

indexed by (7',")
r r
(mij,mige) = > UojkVowUojk Vo
k=1 k'=1
r T
= (Z uo,j,kUOJ’,k) (Z Vo,ik VO,i’k’)
k=1 kK'=1

» Due to the orthogonality of the columns of Uy and V),

<mi,j) mi’,j’) g 0



BACKGROUND  Robust PCA RECALLS ON CONVEXITY AND RECOVERY NEW ANALYSIS OF ROBUST PCA Conclusion

00000000000 000000000 0000000 0000000000000 0000000000000e
:

WHAT ABOUT THE NULL-SPACE CONDITION ?

» The number of rows of (M) ; j)eqc is (min{d,n} — r0)? — so

and it has dn columns.

» Since its rows form an orthonormal matrix in R¥>4" and
after rescaling, an orthogonal matrix satisfies 2sp-Restricted
Invertibility Property for any s less than dn/2 and

» If ro and sy are small compared to min{d, n}, the matrix
(M;j) (i jyeqe has only a few less rows than an orthogonal
matrix, it seems reasonable to require the 2sp-Restricted
Invertibility Property for some s in the applications.

» Since the 2sp-Restricted Invertibility Property implies the

so-Null Space Property, this Null Space Property seems
reasonable in the application as well.
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CONCLUSIONS ?

» PCA is still full of surprises and is fun to analyse !

» We obtained a result which depends on a Null Space
Property of the original eigenvectors: plug in your model
of choice and obtain the possible values of 1y and sp !

» If we use delocalization types of results (eigenvectors have
components with same magnitude), we obtain

» that ) is in the range of values obtained in the paper by
Candes, Li, Ma, Wright.

» the Null space property holds for sy < Cs(p) min{d, n}* and
1o < Cr(p) min{d, n}/log(min{d, n}), which is of the same
order as in the paper by Candes, Li, Ma, Wright (up to a log
!), using a modification of a famous theorem of Rudelson
and Vershynin on RIP for Discrete Fourier Transform
matrices.

» but ... is delocalization relevant for all applications ?
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CONCLUSIONS ?

» PCA is still full of surprises and is fun to analyse !

» We obtained a result which depends on a Null Space
Property of the original eigenvectors: plug in your model
of choice and obtain the possible values of rg and sg !

» The Null Space condition could be addressed by other
means than RIP and (?) because we only need such a
property to hold for the support of the outliers (RIP is in
fact much stronger than what we really need !)

» The main goal of this work is to provide a simple method
for addressing low-rand + more complex sparse structured
models for which we don’t know how to extend the
approach by Candes et al.

u]
]
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w
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CONCLUSIONS ?

Conclusion

Thank you for your attention !

N
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