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Introduction : some major historical landmarks

1960 B.Dwork,
Rationality of the Zeta function of a variety of positive
characteristic.

1980 B.Dwork-P.Robba,
Affine line, neighborhood of a point (of Berkovich), Robba ring.

2000 G.Christol-Z.Mebkhout, (André, Berger, Crew, Kedlaya, ...)
Differential Equations over the Robba ring, application over rigid
curves, link with p-adic representations.

2010 F.Baldassarri, K.S.Kedlaya, J.Poineau, A.P.
Differential Equations over Berkovich curves (global theory).
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Introduction

Several different languages can be used to describe the geometry of
the space underling the equation (Tate, Raynaud, Berkovich, Huber,
Meredith,...).

We mention the language of rigid cohomology whose one of aims
consists in associating a “good” category of coefficients with all variety
in positive characteristic.

These coeficients are ”essentially” some differential equations,
defined over the generic fiber of a certain model of the variety.

The generic fiber has, in a natural way, a structure of Berkovich
analytic space.

The equations of rigid cohomology usually have certain operators
(Frobenius) plus some other restrictions.

In comparison with `-adic sheaves, p-adic differential equations
are more “explicit”, and allow sometimes direct computations.
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The view point of our recent works is somehow orthogonal to that of
rigid cohomology.

We do not start from a problem in positive characteristic. Instead,
we directly consider

1 a quasi-smooth Berkovich curve X ,
2 a differential equation F over X ,
3 with no restrictions.

The study of differential equations with such a degree of
generality, in particular the finiteness of their de Rham
cohomology groups, was an essentially unexplored problem
until 2013.

For instance, even for a curve as simple as an open disk or
annulus, there was no criteria describing the finiteness of the
cohomology.

Results in this direction are essentially due (among other actors)
to Dwork and Robba, then Christol and Mebkhout, and are (up to
some exceptions) of local nature in the sense of Berkovich.

Andrea Pulita (Université Grenoble Alpes) Overview on p-adic DE C.I.R.M., March 28, 2017 6 / 48



The view point of our recent works is somehow orthogonal to that of
rigid cohomology.

We do not start from a problem in positive characteristic. Instead,
we directly consider

1 a quasi-smooth Berkovich curve X ,
2 a differential equation F over X ,
3 with no restrictions.

The study of differential equations with such a degree of
generality, in particular the finiteness of their de Rham
cohomology groups, was an essentially unexplored problem
until 2013.

For instance, even for a curve as simple as an open disk or
annulus, there was no criteria describing the finiteness of the
cohomology.

Results in this direction are essentially due (among other actors)
to Dwork and Robba, then Christol and Mebkhout, and are (up to
some exceptions) of local nature in the sense of Berkovich.
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Introduction

Since Dwork and Robba, a particular attention began to be devoted to
a serious difference between the complex theory and the p-adic one :

Triviality over a disk
Over an open disk there are non singular differential equations with
solutions that do not converge on the whole disk.

Example
The equation y ′ = y has solution

y = exp(x) =
∑
n≥0

xn

n!
. (1)

Now, this series has a finite p-adic radius of convergence. However,
the equation shows no singularities.
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Dwork and Robba

I their pioneer work, Dwork and Robba introduced several key notions
as (among others)

1 Overconvergence ;

2 Frobenius structure ;
3 Solvability ;
4 Decomposition by the radii ;
5 Relation between the radii and the cohomology.

These ideas influenced large part of the literature.

After the pioneer work of Dwork and Robba, several authors have
pursued an agenda of analysis whose aim was to prove the following
important relations :

1 Factorization/decomposition theorems by the radii ;
2 Finite dimensionality of the de Rham cohomology and index

theorems.
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From 2010 on we assist at some important results of global nature :

Kedlaya’s book 2010 :
important improvements of classical results,
new decomposition results of global nature over disks and annuli ;

F.Baldassarri (following a common work with L.Di Vizio) :
2010 generalizes to curves Christol-Dwork’s proof of the continuity of the

smaller radius of convergence.

In a sequence of works (most of them with J.Poineau) we have
2012 Generalized the continuity : new property finiteness ;

2013 Established some decomposition theorems of global nature ;

2013 Proved the finiteness of the de Rham cohomology ;

2017 Established the link with the Riemann-Hurwitz formula.
Kedlaya 2013 :

- generalized the p-adic local monodromy thm ;
- reproved our result about the finiteness of the radii ;
- showed that the controlling graph contain no points of type 4 ;
- Improvement of exponent theory (see his talk).

Poineau-Bojkovic :
2016 Behavior of the radii by push-forward+relation with ramification
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In a sequence of works (most of them with J.Poineau) we have
2012 Generalized the continuity : new property finiteness ;

2013 Established some decomposition theorems of global nature ;

2013 Proved the finiteness of the de Rham cohomology ;

2017 Established the link with the Riemann-Hurwitz formula.
Kedlaya 2013 :

- generalized the p-adic local monodromy thm ;
- reproved our result about the finiteness of the radii ;
- showed that the controlling graph contain no points of type 4 ;
- Improvement of exponent theory (see his talk).

Poineau-Bojkovic :
2016 Behavior of the radii by push-forward+relation with ramification
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Notation on Berkovich curves
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Notation
(K , |.|) is a complete valued field of characteristic 0.

To simplify, in this talk we assume that K is algebraically closed.
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Berkovich curves

A K -analytic Berkovich curve is said rig-smooth or quasi-smooth if
Ω1

X is a locally free OX -module of rank one.

This definition allows boundary.
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Open disk

Open disk
As an analytic space, an open disk is the union of its closed sub-disks.

It is a arcwise connected space
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Closed disk

1 The union of all open sub-disks is an open, but not a covering
2 The space is connected
3 The red-point is the boundary
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Open annuli

}
Disks D−(c, |c|)

Skeleton

Annulus {r < |T | < 1}

x

D = {|T | < 1} D − {x}

Removing one point of a disk }
AnnulusDisks
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Type of a point

We can classify points in 4 types.
Informally speaking this translated in the following topological notions :

Type 1

Rational pts

Type 2

Bifurcation

Type 3

2 directions

Type 4

Final points
non rational

Type 4 points are absent if the base field is spherically complete.
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Semi-stable reduction

Theorem (V.Berkovich - A.Ducros)
Let X be a quasi-smooth curve. There exists a locally finite subset
S ⊆ X formed by points of type 2 or 3 such that X − S is a disjoint
union of open disks and annuli.

We call S a weak triangulation.

Skeleton
The union ΓS of the skeletons of the annuli that are connected
components of X − S together with the points of S is a locally finite
graph in X . Called the skeleton of S.
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Projective line

Projective line P1,an
K

Andrea Pulita (Université Grenoble Alpes) Overview on p-adic DE C.I.R.M., March 28, 2017 18 / 48



Droite Affine

Droite Affine A1,an
K
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Une courbe

Une courbe
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Open boundary

The open boundary is formed by the germs of open segments that
are not relatively compact in X .
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Residual curve and genus of a point

K̃ = residual field of K ;

x ∈ X be a point of type 2 (bifurcation) ;

H (x) = field of the point x ;

H̃ (x) = residual field of H (x).

Then, H̃ (x)/K̃ is a field with degree of transcendence 1.

It is the field of functions of a unique smooth projective curve Cx over
K̃ . Set

g(x) := g(Cx ) .

If x is a point of type 6= 2 we set g(x) = 0. In this case x has a
neighborhood in X isomorphic to a domain of A1,an

K .

If g(x) > 0, there is no neighborhood of x isomorphic to a
domain of the line.

Points of positive genus form a locally finite set in the curve.
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There exists an injective map

ψx : {Directions out of x} −−→ {K̃ -rational Pts of Cx} . (2)

x
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Genus and Euler characteristic of X

Genus
The genus g(X ) of the quasi-smooth curve X is by definition

g(X ) = 1− χtop(X ) +
∑
x∈X

g(x) ≥ 0 (3)

where χtop(X ) ≤ 1 is the Euler characteristic of the topological space
underling X in the sense of singular homology.

Characteristic of X
The Euler characteristic of X (following Q.Liu) is by definition

χc(X ) = 2− 2g(X )− N(X ) (4)

where N(X ) is the number of germ of segments at the open
boundary of X .
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If X = Can is the analytification of a smooth algebraic curve C then

g(X ) = algebraic genus of C . (5)
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Differential equations over quasi-smooth Berkovich curves
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Differential equations

Let X be a quasi-smooth curve

Definition (Differential equation)
A differential equation over X is a locally free OX -module of finite rank
F , endowed with a connection

∇ : F → F ⊗ Ω1
X/K .

(6)

Contrary to the complex case, a differential equation of this type is not
always analytically trivial over an open disk. The reason is that the radii
of convergence of the Taylor solutions are not always maximal.
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Radii of convergence and convergence Newton polygon
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Radii of convergence

Let us fix a weak triangulation S. Let ΓS be its skeleton.

Let x ∈ X (K ) be a K -rational point.
Then x /∈ ΓS and we denote by D(x ,S) the largest open disk in X
centered at x such that ΓS ∩ D(x ,S) = ∅.

Definition
Let r := rangx (F ). Denote by DS,i(x ,F ) ⊆ D(x ,S) the largest open
sub-disk on which F has at least r − i + 1 linearly independent
solutions :

{x} 6= DS,1(x ,F ) ⊆ DS,2(x ,F ) ⊆ · · · ⊆ DS,r (x ,F ) ⊆ D(x ,S) . (7)
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Andrea Pulita (Université Grenoble Alpes) Overview on p-adic DE C.I.R.M., March 28, 2017 29 / 48



Radii of convergence

Let us fix a weak triangulation S. Let ΓS be its skeleton.
Let x ∈ X (K ) be a K -rational point.
Then x /∈ ΓS and we denote by D(x ,S) the largest open disk in X
centered at x such that ΓS ∩ D(x ,S) = ∅.

Definition
Let r := rangx (F ).

Denote by DS,i(x ,F ) ⊆ D(x ,S) the largest open
sub-disk on which F has at least r − i + 1 linearly independent
solutions :

{x} 6= DS,1(x ,F ) ⊆ DS,2(x ,F ) ⊆ · · · ⊆ DS,r (x ,F ) ⊆ D(x ,S) . (7)
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Radii of convergence

{x} 6= DS,1(x ,F ) ⊆ DS,2(x ,F ) ⊆ · · · ⊆ DS,r (x ,F ) ⊆ D(x ,S) . (8)

Radii of convergence
Fix a coordinate on D(x ,S).

R = radius of D(x ,S) in this coordinate.

Ri = radius of DS,i(x ,F ) ⊆ D(x ,S)

Then, set

RS,i(x ,F ) :=
Ri

R
≤ 1 . (9)
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Radius at an arbitrary point

If x ∈ X is an arbitrary point, it is possible to define RS,i(x ,F ).

Namely, there exists a complete valued field extension Ω/K such that
x becomes Ω-rational.

We then define the radii after base change to XΩ.
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General polygons

A polygon is the datum of a sequence of slopes

−∞ < s1 ≤ s2 ≤ · · · ≤ sr < +∞ .

This defines a unique convex function that is = 0 at 0 and which that is
affine of slope si over [i − 1, i] :

• • • • • • • • •

••

•

•

•

1 2 3 · · ·
r

s1

s2
s3

s4
s5

hr

}
h1

(10)

Define the partial heights as h0 = 0 and

hi := s1 + s2 + · · ·+ si .
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The convergence Newton polygon

We set
si := ln(RS,i(x ,F )) . (11)

We consider the sequence of slopes

ln(RS,1(x ,F )) ≤ · · · ≤ ln(RS,r (x ,F )) .

The corresponding polygon is called the convergence Newton
polygon of (F ,∇).

• • • • • • • • •

•

•

• •

ln(RS(x ,F )) :

1 2 3 · · · rln(HS,r (x, F)) = ln(
∏

i RS,i (x, F))

(12)
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Continuity and finiteness of the radii
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Continuity of the first radius

Remember that RS,1(x ,F ) is the radius of the largest disk “at x”
where all the solutions converge.
It is a function

RS,1 : X → R>0 .

The continuity of the first radius RS,1(x ,F ) has been proved in several
steps

1994 Christol-Dwork : skeletons of annuli

2007 Baldassarri-Di Vizio : affinoid domains of the line +
semi-continuity in more variables

2010 Baldassarri : Berkovich curves.
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Continuity of higher radii

Let us now consider i ≥ 1

RS,i : X → R>0 .

2010 Kedlaya’s book : Continuity along skeletons of annuli

2012 Pulita-Poineau : Continuity and finiteness over Berkovich
curves
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Finiteness

Theorem (Poineau-P., 2012)
For all i , the function RS,i(−,F ) verifies :

1 It is continuous ;

2 It factorizes through a locally finite graph ΓS,i(F ) containing ΓS ;
3 Along any edge ΓS,i(F ) the function ln(RS,i(x ,F )) is piecewise

affine, with a locally finite number of breaks.

The graph ΓS,i(F ) is called the controlling graph of F .

In 2013 Kedlaya
re-proved the same result (similar methods)
showed that ΓS,i(F ) has no points of type 4 (Tannakian
methods).
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The locally finite graph ΓS,i(F )

X := Curve ΓS = skeleton of S

Open disks

S

{
+

}S = weak triangulation
ΓS ⊆ ΓS(F )

= Controlling graph
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Global decomposition by the radii
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Major historical landmarks

The informal idea is that the filtration by the radii of the space of the
solutions implies a decomposition of the differential equation itself by
sub-differential equations.

1975 Robba : decomposition over H (x), where x = η0,1 ∈ A1,an
K (Gauss

norm) ;

1977 Dwork-Robba : decomposition over Ox , where x = η0,1 ∈ A1,an
K ;

2000 Christol-Mebkhout : decomposition over the Robba ring ;

2010 Kedlaya’s Book : decomposition over disks and annuli ;

2013 Poineau-P. : global decomposition over curves.
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Global decomposition/factorization by the radii

Theorem (Poineau-P.)
Let i ∈ {1, . . . , r} be a fixed index. Assume that for all x ∈ X we have

RS,i−1(x ,F ) < RS,i(x ,F ) .

(13)

Then F decomposes as

0→ F≥i → F → F<i → 0 , (14)

where rank(F<i) = i − 1 and for all x ∈ X we have

RS,k (−,F ) =

{
RS,k (x ,F<i) if k < i
RS,k−i+1(x ,F≥i) if k ≥ i

(15)

For differential equations over C((T )) this “is” the classical
decomposition of B.Malgrange.
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Direct sum decomposition

In literature decompositions by the radii all are in direct sum. There are
examples where the global decomposition is not always in direct sum.

Theorem
The exact sequence

0→ F≥i → F → F<i → 0 , (16)

splits in the following cases
1 For all x ∈ X one has RS,i−1(x ,F ∗) < RS,i(x ,F ∗) ;
2 We have the following inclusion of graphs(

ΓS,1(F ) ∪ · · · ∪ ΓS,i−1(F )
)
⊆ ΓS,i(F ) . (17)

It result important to measure the size of these graphs.
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A measure of the complexity of the graphs
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A measure of the complexity of the graphs

We have been able to provide an explicit upper bound for the
number of vertex and edges of the controlling graphs.

The bound is given in term of the slopes of the radii at the
boundary of X and the open boundary of X .

Over a projective curve, the bound only depends on the rank
of the differential equation.

Under appropriate conditions on the exponents, the bound is
related to the de Rham index.
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Andrea Pulita (Université Grenoble Alpes) Overview on p-adic DE C.I.R.M., March 28, 2017 44 / 48



Global irregularity and index theorem
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Global irregularity

Set
1 ∂oX = open boundary of X ;

2 b = germ of segment in X ;
3 ∂bHS,r = slope along b of the total height HS,r of the

convergence Newton polygon ;
We define the global irregularity of F as

IrrX (F ) :=
∑

b∈∂oX

∂bHS,r (−,F ) + [
∑

x∈∂X

ddcHS,r (x ,F ) + χ(x ,S)]

where
1 ∂X=boundary of X ;
2 ddcHS,r is the sum of all slopes ∂bHS,r of HS,r out of x , (b is a

germ of segment out of x) ;
3 χ(x ,S) := 2− 2g(x)− NS(x), where NS(x) is the number of

directions of ΓS out of x . It is a certain characteristic related to
the residual curve of x .
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Index theorem

Let X be a quasi-smooth Berkovich curve, with
1 a finite genus,

2 a finite boundary,
3 admitting a finite skeleton ΓS.

Theorem (Poineau-P.)
Let F be a differential equation over X, such that
(1) F is free of Liouville numbers (technical assumption) ;
(2) The radii of F are affine functions at the open boundary of X ;
(3) The radii of F are not maximal at the boundary of X.

Then,
dim H•dR(X ,F ) < +∞

and we have the following index formula

χdR(X ,F ) = χc(X ) · rank(F )− IrrX (F ) . (18)
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Andrea Pulita (Université Grenoble Alpes) Overview on p-adic DE C.I.R.M., March 28, 2017 47 / 48



Index theorem

Let X be a quasi-smooth Berkovich curve, with
1 a finite genus,
2 a finite boundary,
3 admitting a finite skeleton ΓS.

Theorem (Poineau-P.)
Let F be a differential equation over X, such that
(1) F is free of Liouville numbers (technical assumption) ;

(2) The radii of F are affine functions at the open boundary of X ;
(3) The radii of F are not maximal at the boundary of X.

Then,
dim H•dR(X ,F ) < +∞

and we have the following index formula

χdR(X ,F ) = χc(X ) · rank(F )− IrrX (F ) . (18)
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Index Theorem

The major assumption is the assumption (2) about the affinity of the
radii.

Assumption (2) is automatically satisfied in the following
situations

1 Around a meromorphic singularity ;

2 If X is relatively compact in a larger curve Y and F is the
restriction of an equation defined over Y ;

3 In particular, in the overconvergent case ;

If X is a general quasi-smooth curve, under assumptions
analogous to (1) and (3), we provide a necessary and sufficient
criterion for the finite dimensionality of the de Rham cohomology.

We also treat the case of meromorphic singularities.
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Andrea Pulita (Université Grenoble Alpes) Overview on p-adic DE C.I.R.M., March 28, 2017 48 / 48



Index Theorem

The major assumption is the assumption (2) about the affinity of the
radii.

Assumption (2) is automatically satisfied in the following
situations

1 Around a meromorphic singularity ;

2 If X is relatively compact in a larger curve Y and F is the
restriction of an equation defined over Y ;

3 In particular, in the overconvergent case ;

If X is a general quasi-smooth curve, under assumptions
analogous to (1) and (3), we provide a necessary and sufficient
criterion for the finite dimensionality of the de Rham cohomology.

We also treat the case of meromorphic singularities.
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