Pushforwards of *p*-adic differential equations

Velibor Bojković

Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau

Luminy March, 2017

Problem

Problem

Given a finite étale morphism $\varphi : Y \to X$, a differential equation (\mathcal{E}, ∇) on Y, a point $x \in X$ and $(\mathcal{F}, \nabla) := \varphi_*(\mathcal{E}, \nabla)$, find $\mathcal{MR}(x, (\mathcal{F}, \nabla))$ in terms of morphism φ and $\mathcal{MR}(y_i, (\mathcal{E}, \nabla))$, where $\varphi^{-1}(x) = \{y_1, \ldots, y_l\}.$

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations

- Basic Objects
- Profile of a morphism
- *p*-adic differential equations
- Problem

Pushforwards of p-adic differential equations

- Pushforward over open discs
- Pushforward: general case
- Examples

Some applications

- Herbrand function and *p*-adic differential equations
- Irregularity and Laplacians

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \mathcal{O} \bigcirc \mathcal{O}$ Pushforwards of p-adic differential equations Introduction

Assumptions

- The base field k is algebraically closed, complete with respect to a nontrivial and nonarchimedean valuation and of characteristic 0
- All the curves are quasi-smooth *k*-analytic (in the sense of Berkovich)

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations

Projective k-algebraic line

Projective *k*-analytic line

Open disc

Open disc

Open disc

Open annulus

Open annulus

Open annulus

Open annulus

Open annulus

Radial morphisms of open discs

Let $\varphi: D(0,1^-) \to D(0,1^-)$ be a finite morphism of degree d that maps 0 to 0.

Then, we have $\varphi(\eta_{0,r}) = \eta_{0,f(r)}$, and we obtain a function

 $f:[0,1]\rightarrow [0,1].$

Definition

 φ is radial with the profile function f if $\forall a \in D(0, 1^-)(k)$ and $r \in (0, 1)$, $\varphi(\eta_{a,r}) = \eta_{\varphi(a),f(r)}$ (i.e. f does not depend on the chosen coordinates).

If φ is radial then it is étale.

 Velibor Bojković
 Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau

 Pushforwards of p-adic differential equations

 $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \langle \Box \rangle < \langle \overline{\Box} \rangle
 </td>$

Profile function graph

More generally...

Suppose $\varphi : Y \to X$ is a finite étale morphism of quasi-smooth *k*-analytic curves and let $\Gamma = (\Gamma_Y, \Gamma_X)$ be a skeleton of φ (i.e. $\Gamma_Y = \varphi^{-1}(\Gamma_X)$).

Definition

We say that φ is radial with respect to Γ if restriction of φ to any open disc D in $Y \setminus \Gamma_Y$ is radial and the profile function only depends on the endpoint of D in Γ_Y .

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations

More generally: Picture

More generally: Picture

More generally: Picture

Radializing skeleton

Theorem (M. Temkin)

Given $\varphi : Y \to X$, $\Gamma = (\Gamma_Y, \Gamma_X)$, as before. Then, there exists a skeleton $\Gamma' = (\Gamma'_Y, \Gamma'_X)$ which contains Γ and which is radializing for φ .

To every type 2 point $y \in Y$ we can assign a profile function f_y . But, the procedure can be extended nicely to all the points in Y^{hyp} .

 Velibor Bojković
 Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau

 Pushforwards of p-adic differential equations

 $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \langle \Box \rangle < 0$

Another construction

Let $y \in Y^{\text{hyp}}$, $K/\mathscr{H}(y)$ a complete valued extension. Then, we have two maps $\pi_K : Y_K \to Y$ and $\sigma_K : Y \to Y_K$.

Theorem (B-P)

Let $K/\mathscr{H}(y)$ be a complete valued extension, let $y_K \in Y_K(K)$ be "above y" ($\pi_K(y_K) = y$) and let D be a connected component of $\pi_K^{-1}(y) \setminus \{\sigma_K(y)\}$. Then, $\varphi_K : D \to \varphi_K(D)$ is a radial morphism of open discs with the profile that coincides with f_y .

Another construction

Another construction

Another construction

Let $y \in Y^{\text{hyp}}$, $K/\mathscr{H}(y)$ a complete valued extension. Then, we have a two maps $\pi_K : Y_K \to Y$ and $\sigma_K : Y \to Y_K$.

Theorem (B-P)

Let $K/\mathscr{H}(y)$ be a complete valued extension, let $y_K \in Y_K(K)$ be a rational point above y ($\pi_K(y_K) = y$) and let D be the maximal connected component of $Y_K \setminus \{\sigma_K(y)\}$. Then, $\varphi_K : D \to \varphi_K(D)$ is a radial morphism of open discs with the profile that coincides with f_y .

Definition

The separable residual degree of φ at y is the number $\mathfrak{s} := \deg(\varphi, y)/\deg(\varphi_{K|D}).$

Similarly, we define residual inseparable degree of φ at y as $\mathfrak{i} := \deg(\varphi_{K|D}) = \deg(\varphi, y)/\mathfrak{s}.$

 Velibor Bojković
 Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau

 Pushforwards of p-adic differential equations
 <□>><10><10><10><10><10><10><10><10</td>

Another construction

Multiradius of convergence

Let (\mathcal{E}, ∇) be a *p*-adic differential equation on *Y* of rank *r*.

• Suppose that $Y = D(0, 1^-)$. The multiradius of (\mathcal{E}, ∇) at $a \in D(0, 1^-)(k)$ is the *r*-tuple

$$\mathcal{MR}(a,(\mathcal{E},\nabla)) := (\mathcal{R}_1,\ldots,\mathcal{R}_r),$$

where $\mathcal{R}_{i} = \sup\{s \in (0,1) \mid \dim_{k} H^{0}(D(a, s^{-}), (\mathcal{E}, \nabla)) = r - i + 1\}$

- For Y general and $y \in Y^{hyp}$ we proceed as follows:
 - Extend scalars by $K = \mathscr{H}(y)$
 - Let y_K ∈ Y_K be any rational point above y, let D be a connected component (open disc) in π_K⁻¹(y) \ {σ_K(y)} that contains y_K. Then,

$$\mathcal{MR}(y,(\mathcal{E},\nabla)) := \mathcal{MR}(y_{\mathcal{K}},\pi_{\mathcal{K}}^*(\mathcal{E},\nabla)_{|D}).$$

• $\mathcal{MR}(y, (\mathcal{E}, \nabla))$ does not depend on the choice of y_k .

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations イロン・イラン・イラン・イラン・イラン・モーン

Multiradius of convergence: first case

Multiradius of convergence: first case

Multiradius of convergence: general case

V

Multiradius of convergence: general case

Multiradius of convergence: general case

Pushforwards of p-adic differential equations Introduction Problem

Problem

Problem

Given a finite étale morphism $\varphi : Y \to X$, a differential equation (\mathcal{E}, ∇) on Y, a point $x \in X$ and $(\mathcal{F}, \nabla) := \varphi_*(\mathcal{E}, \nabla)$, find $\mathcal{MR}(x, (\mathcal{F}, \nabla))$ in terms of morphism φ and $\mathcal{MR}(y_i, (\mathcal{E}, \nabla))$, where $\varphi^{-1}(x) = \{y_1, \ldots, y_l\}$.

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations $\langle \Box
angle \times \langle \overline{\Box}
angle \times \langle \overline{\Xi}
angle = \langle \overline{\Box}
angle \rangle$ Pushforwards of p-adic differential equations Pushforwards of p-adic differential equations Pushforward over open discs

Two functions: N_x and Φ_x

Let $\varphi: D_1 \to D_2$ be a finite étale morphism of open unit discs, and let $x \in D_2(k)$

• We define function $N_{\!\scriptscriptstyle X}:[0,1]
ightarrow [0,1]$ by

$$N_x(t) := \#\{\varphi^{-1}(D(x,t^-))\}$$

• Let (\mathcal{E}, ∇) be a *p*-adic differential equation of rank *r* on D_1 and let $(\mathcal{F}, \nabla) := \varphi_*(\mathcal{E}, \nabla)$. We define the function $\Phi_x = \Phi(x, (\mathcal{E}, \nabla)) : [0, 1] \rightarrow [0, rd]$ by

$$\Phi_x(t) := \sum_{i=1}^{N_x(t)} \dim_k H^0(D_t^i,(\mathcal{E},\nabla))$$

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \mathcal{O} \land \mathcal{O}$ Pushforwards of p-adic differential equations Pushforwards of p-adic differential equations Pushforward over open discs

Pushforwards of p-adic differential equations Pushforwards of p-adic differential equations Pushforward over open discs

$\Phi_x(s,(\mathcal{E},\nabla))$

Comparison of N_x and f

$\varphi: D_1 \rightarrow D_2$ is radial.

Pushforward over open discs

 $arphi: D_2 o D_1$, $(\mathcal{E},
abla)$ on D_1 , $(\mathcal{F},
abla) = arphi_*(\mathcal{E},
abla)$ on D_2 , and $x \in D_1(k)$

Theorem (B-P)

Let $x \in D_1$. We have

$$\#\{i\in\{1,\ldots,\mathit{rd}\}\mid \mathcal{R}_i(x,(\mathcal{F},
abla))=1\}=\Phi_x(1)$$

and, for each $R \in (0,1)$,

$$\#\{i\in\{1,\ldots,rd\}\mid \mathcal{R}_i(x,(\mathcal{F},\nabla))=R\}=\Phi_x(R)-\Phi_x(R^+).$$

In other words, the multiradus $\mathcal{MR}(x, (\mathcal{F}, \nabla))$ consists of break-points of the function Φ_x and each break-point s_i appears $\Phi_x(s_i) - \Phi_x(s_i^+)$ - times.

 Velibor Bojković
 Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau

 Pushforwards of p-adic differential equations

 $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \langle \Box \rangle < \langle \overline{\Box} \rangle
 </td>$

Proof

$$\#\{i \in \{1,\ldots, rd\} \mid \mathcal{R}_i(x,(\mathcal{F},\nabla)) = R\} = \Phi_x(R) - \Phi_x(R^+)$$

Proof.

 $\mathcal{R}_i(x,(\mathcal{F},\nabla)) = \sup \left\{ s \in (0,1) \mid \dim_k H^0(D(x,s^-),(\mathcal{F},\nabla)) \geq rd - i + 1 \right\}$

Proof

$$\#\{i \in \{1,\ldots, rd\} \mid \mathcal{R}_i(x,(\mathcal{F},\nabla)) = R\} = \Phi_x(R) - \Phi_x(R^+)$$

Proof.

 $\mathcal{R}_i(x,(\mathcal{F},\nabla)) = \sup\left\{s \in (0,1) \mid \dim_k H^0(D(x,s^-),(\mathcal{F},\nabla)) \geq rd - i + 1\right\}$

 $= \sup \left\{ s \in (0,1) \mid \dim_k H^0(\varphi^{-1}(D(x,s^-)),(\mathcal{E},\nabla)) \geq rd - i + 1 \right\}$

Proof

$$\#\{i \in \{1,\ldots, rd\} \mid \mathcal{R}_i(x,(\mathcal{F},\nabla)) = R\} = \Phi_x(R) - \Phi_x(R^+)$$

Proof.

 $\mathcal{R}_i(x,(\mathcal{F},\nabla)) = \sup\left\{s \in (0,1) \mid \dim_k H^0(D(x,s^-),(\mathcal{F},\nabla)) \geq rd - i + 1\right\}$

$$= \sup \left\{ s \in (0,1) \mid \dim_k H^0(arphi^{-1}(D(x,s^-)),(\mathcal{E},
abla)) \geq rd-i+1
ight\}$$

$$= \sup \big\{ s \in (0,1) \mid \Phi_x(s) \geq rd - i + 1 \big\}.$$

Proof

$$\#\{i \in \{1,\ldots, rd\} \mid \mathcal{R}_i(x,(\mathcal{F},\nabla)) = R\} = \Phi_x(R) - \Phi_x(R^+)$$

Proof.

$$\mathcal{R}_i(x,(\mathcal{F},\nabla)) = \sup\left\{s \in (0,1) \mid \dim_k H^0(D(x,s^-),(\mathcal{F},\nabla)) \geq rd - i + 1\right\}$$

$$= \sup \left\{ s \in (0,1) \mid \dim_k H^0(\varphi^{-1}(D(x,s^-)),(\mathcal{E},\nabla)) \geq rd - i + 1 \right\}$$

$$= \sup \{s \in (0,1) \mid \Phi_x(s) \ge rd - i + 1\}.$$

So $\mathcal{R}_i(x, (\mathcal{F}, \nabla)) = R$ is a break-point of Φ_x and it will appear in multiradius exactly $\Phi_x(R) - \Phi_x(R^+)$ - times.

Proof/visual

Pushforward: general case

Pushforward: general case

Pushforward: general case

Pushforward: general case

Theorem (B-P)

Let $y \in \varphi^{-1}(x)$, let R be a component of $\mathcal{MR}(y, (\mathcal{E}, \nabla))$ and let t_1, \ldots, t_n be the break-points of the function f_y , $s_j := f_y(t_j)$, and $n_i := N(s_i)$. Then, every R in $\mathcal{MR}(y, (\mathcal{E}, \nabla))$ and $t_i < R \leq t_{i+1}$ we have

$$R \quad \longleftrightarrow \quad \underbrace{(s_1, \ldots, s_1, s_2, \ldots, s_2, s_i, \ldots, s_i, f_y(R), \ldots, f_y(R))}_{\text{repeated } s_y \text{ times}},$$

where each s_j appears $n_j - n_{j+1}$ times and $f_y(R)$ appears n_{i+1} times.

All the radii in $MR(x, (\mathcal{F}, \nabla))$ appear in this way (by varying R and $y \in \varphi^{-1}(x)$).

 Velibor Bojković
 Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau

 Pushforwards of p-adic differential equations

 $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \langle \Box \rangle < \langle \overline{\Box} \rangle
 </td>$

Pushforward: general case

Pushforward: general case

Pushforward of the constant connection

Residually separable morphisms

As before, we have φ : Y → X finite étale of degree d, (E, ∇) on Y of rank r and (F, ∇) := φ_{*}(E, ∇) on X of rank rd, y ∈ Y^{hyp} and x = φ(y) ∈ X^{hyp};

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations $\langle \Box
angle \times \langle \overline{\Box}
angle \times \langle \overline{\Xi}
angle = \langle \overline{\Box}
angle \rangle$

Residually separable morphisms

- As before, we have φ : Y → X finite étale of degree d, (E, ∇) on Y of rank r and (F, ∇) := φ_{*}(E, ∇) on X of rank rd, y ∈ Y^{hyp} and x = φ(y) ∈ X^{hyp};
- We also have f_y-the profile function at y, s-the residual separable degree at y;

Residually separable morphisms

- As before, we have φ : Y → X finite étale of degree d, (E, ∇) on Y of rank r and (F, ∇) := φ_{*}(E, ∇) on X of rank rd, y ∈ Y^{hyp} and x = φ(y) ∈ X^{hyp};
- We also have f_y-the profile function at y, s-the residual separable degree at y;
- Suppose that $\mathfrak{s} = d$.

Residually separable morphism

Residually separable morphisms

- As before, we have φ : Y → X finite étale of degree d, (E, ∇) on Y of rank r and (F, ∇) := φ_{*}(E, ∇) on X of rank rd, y ∈ Y^{hyp} and x = φ(y) ∈ X^{hyp};
- We also have f_y-the profile function at y, s-the residual separable degree at y;
- Suppose that $\mathfrak{s} = d$. Then

$$\mathcal{MR}(y,(\mathcal{E},\nabla)) \longleftarrow R \longleftrightarrow \underbrace{(R,\ldots,R)}_{\mathfrak{s}} \longrightarrow \mathcal{MR}(x,(\mathcal{F},\nabla)).$$

Residually separable morphisms

- As before, we have φ : Y → X finite étale of degree d, (E, ∇) on Y of rank r and (F, ∇) := φ_{*}(E, ∇) on X of rank rd, y ∈ Y^{hyp} and x = φ(y) ∈ X^{hyp};
- We also have f_y-the profile function at y, s-the residual separable degree at y;
- Suppose that $\mathfrak{s} = d$. Then

$$\mathcal{MR}(y,(\mathcal{E},\nabla)) \longleftarrow R \longleftrightarrow \underbrace{(R,\ldots,R)}_{\mathfrak{s}} \longrightarrow \mathcal{MR}(x,(\mathcal{F},\nabla)).$$

This could also be proved directly.

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \mathcal{O} \land \mathcal{O}$

Frobenius pushforward

• Suppose that residue field \tilde{k} is of characteristic p > 0 and that $\varphi : A(0; q, 1) \rightarrow A(0; q^p, 1)$ is the Frobenius morphism, acting on rational points as $\alpha \mapsto \alpha^p$. Let (\mathcal{E}, ∇) and (\mathcal{F}, ∇) as before;

Frobenius pushforward

- Suppose that residue field \tilde{k} is of characteristic p > 0 and that $\varphi : A(0; q, 1) \rightarrow A(0; q^p, 1)$ is the Frobenius morphism, acting on rational points as $\alpha \mapsto \alpha^p$. Let (\mathcal{E}, ∇) and (\mathcal{F}, ∇) as before;
- Let $ho \in (q,1)$ so that $\eta_{
 ho} \mapsto \eta_{
 ho^{
 ho}}$;

Frobenius pushforward

- Suppose that residue field \tilde{k} is of characteristic p > 0 and that $\varphi : A(0; q, 1) \rightarrow A(0; q^p, 1)$ is the Frobenius morphism, acting on rational points as $\alpha \mapsto \alpha^p$. Let (\mathcal{E}, ∇) and (\mathcal{F}, ∇) as before;
- Let $ho \in (q,1)$ so that $\eta_{
 ho} \mapsto \eta_{
 ho^{
 ho}}$;
- We want to compare $\mathcal{MR}(\eta_{\rho}, (\mathcal{E}, \nabla))$ and $\mathcal{MR}(\eta_{\rho^{p}}, (\mathcal{F}, \nabla))$.

Visual presentation of Frobenius morphism 1

The profile function of Frobenius morphism

Frobenius N_x and profile

Frobenius pushforward: first case

Frobenius pushforward: first case

Frobenius pushforward: first case

$$\mathcal{MR}(\eta_{\rho}, (\mathcal{E}, \nabla)) \quad \longleftrightarrow \quad \mathcal{MR}(\eta_{\rho^{p}}, (\mathcal{F}, \nabla))$$

•
$$R \leq p^{-1/(p-1)}$$
 \longleftrightarrow $p^{-1}R: p$ -times

Frobenius pushforward: second case

Frobenius pushforward: second case

Frobenius pushforward

$$\mathcal{MR}(\eta_{\rho}, (\mathcal{E}, \nabla)) \quad \longleftrightarrow \quad \mathcal{MR}(\eta_{\rho^{p}}, (\mathcal{F}, \nabla))$$

•
$$R \leq p^{-1/(p-1)}$$
 \longleftrightarrow $p^{-1}R: p$ -times

• $R > p^{-1/(p-1)} \quad \longleftrightarrow \quad p^{-p/(p-1)} : (p-1)$ -times and R^p .

Generalized Frobenius pushforward

We come back to general setting and assume that $y = \varphi^{-1}(x)$ and that φ is residually purely inseparable of degree p at y and that the different of the extension $\mathcal{H}(y)/\mathcal{H}(x)$ is δ .

(The different of $\mathscr{H}(\eta_{
ho})/\mathscr{H}(\eta_{
ho^p})$ was p^{-1})

Profile and N_x of generalized Frobenius pushforward

Correspondence for generalized Frobenius pushforward

$$\mathcal{MR}(y,(\mathcal{E},
abla)) \quad \longleftrightarrow \quad \mathcal{MR}(x,(\mathcal{F},
abla))$$

•
$$R \leq \delta^{1/(p-1)}$$
 \longleftrightarrow $\delta \cdot R : p$ -times

• $R > \delta^{1/(p-1)} \iff \delta^{p/(p-1)} : (p-1)$ -times and R^p .
Pushforwards of padic differential equations Some applications Herbrand function and padic differential equations Relation with ramification of one-dimensional analytic fields

• $\varphi: Y \to X$, $y \in Y^{hyp}$ and $x = \varphi(y)$ as before and assume that $\operatorname{char} \tilde{k} = p > 0$.

Publications Some applications Herbrand function and pradic differential equations Relation with ramification of one-dimensional analytic fields

- $\varphi: Y \to X$, $y \in Y^{hyp}$ and $x = \varphi(y)$ as before and assume that $\operatorname{char} \tilde{k} = p > 0$.
- Suppose that $\mathscr{H}(y)/\mathscr{H}(x)$ is Galois with the group G, and let $\sigma \in G$; Then, one defines (at least when y is of type 2) $i(\sigma) := \sup_{a \in \mathscr{H}^{\circ}(y)} |\sigma(a) - a|$ and

$$arphi_{y/x}: [0,1] o [0,1], \quad s \mapsto \prod_{\sigma \in \mathcal{G}, \sigma
eq \mathsf{Id}} \max(i(\sigma),s);$$

Publications Some applications Herbrand function and pradic differential equations Relation with ramification of one-dimensional analytic fields

- $\varphi: Y \to X$, $y \in Y^{hyp}$ and $x = \varphi(y)$ as before and assume that $\operatorname{char} \tilde{k} = p > 0$.
- Suppose that $\mathscr{H}(y)/\mathscr{H}(x)$ is Galois with the group G, and let $\sigma \in G$; Then, one defines (at least when y is of type 2) $i(\sigma) := \sup_{a \in \mathscr{H}^{\circ}(y)} |\sigma(a) - a|$ and

$$arphi_{y/x}: [0,1]
ightarrow [0,1], \quad s \mapsto \prod_{\sigma \in \mathcal{G}, \sigma
eq \mathsf{Id}} \max(i(\sigma),s)$$

• Function *i* gives a lower ramification filtration on *G*, their images by $\varphi_{y/x}$ give jumps in the upper ramification filtration on *G*.

Theorem (M. Temkin)

The Herbrand's function $\varphi_{y,x}$ coincides with the profile function of φ at y.

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations Pushforwards of p-adic differential equations Some applications Herbrand function and p-adic differential equations

Relation with pushforward of the constant connection

Theorem (B-P)

Assume that $\varphi^{-1}(x) = \{y\}$ and that the extension $\mathcal{H}(y)/\mathcal{H}(x)$ is Galois with group G. Then, the radii of convergence of the differential equation $\varphi_*(\mathcal{O}, d)$ at x coincide with the non-zero upper ramification jumps of the extension $\mathcal{H}(y)/\mathcal{H}(x)$.

More precisely, if we denote by $v_{-1} = 1 > v_0 > \cdots > v_n > v_{n+1} = 0$ the jumps of the upper ramification filtration of the extension $\mathscr{H}(y)/\mathscr{H}(x)$, then we have

$$\mathcal{MR}(x,\varphi_*(\mathcal{O},d))=(v_n,\ldots,v_n,\ldots,v_0,\ldots,v_0,1),$$

where, for each j = 0, ..., n, v_j appears $(G : G^{v_{j+1}}) - (G : G^{v_j})$ times.

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations

Irregularity $\operatorname{Irr}_{\overline{t}}(y, (\mathcal{E}, \nabla))$

Let $y \in Y^{\text{hyp}}$ of type 2 (for simplicity) and let A(0; q, 1) be a small open annulus "attached" to y (corresponds to an element \vec{t} in the tangent space $T_y Y$).

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations $\langle \Box
angle \times \langle \overline{\Box}
angle \times \langle \overline{\Xi}
angle = \langle \overline{\Box}
angle \rangle$

Irregularity $\operatorname{Irr}_{\overline{t}}(y,(\mathcal{E},\nabla))$

Irregularity $\operatorname{Irr}_{\vec{t}}(y, (\mathcal{E}, \nabla))$

Irregularity $\operatorname{Irr}_{\vec{t}}(y, (\mathcal{E}, \nabla))$

Irregularity $\operatorname{Irr}_{\vec{t}}(y, (\mathcal{E}, \nabla))$

Irregularity $\operatorname{Irr}_{\vec{t}}(y, (\mathcal{E}, \nabla))$

Irregularity $\operatorname{Irr}_{\vec{t}}(y, (\mathcal{E}, \nabla))$

Irregularity $\operatorname{Irr}_{\overline{t}}(y, (\mathcal{E}, \nabla))$

Let $y \in Y^{\text{hyp}}$ of type 2 (for simplicity) and let A(0; q, 1) be a small open annulus "attached" to y (corresponds to an element \vec{t} in the tangent space $T_y Y$).

 $\operatorname{Irr}_{\vec{t}}(y,(\mathcal{E},\nabla))$

Velibor Bojković : Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau Pushforwards of p-adic differential equations $\langle \Box
angle \times \langle \overline{\Box}
angle \times \langle \overline{\Xi}
angle = \langle \overline{\Box}
angle \rangle$

Comparison of $\operatorname{Irr}_{\vec{t}}(y, (\mathcal{E}, \nabla))$ and $\operatorname{Irr}_{\vec{v}}(x, (\mathcal{F}, \nabla))$

Let $(\mathcal{E}, \nabla)_{\vec{t}}$ be the restriction of (\mathcal{E}, ∇) on $A_{\vec{t}}$. let $(\mathcal{F}, \nabla)_{\vec{t}}$ be the pushforward of $(\mathcal{E}, \nabla)_{\vec{t}}$ by $\varphi_{\vec{t}} := \varphi_{|A_{\vec{t}}|}$ (it will be a connection on a small open annulus $A_{\vec{v}} = A(0; q^d, 1)$ attached to $x = \varphi(y)$). In some coordinates we have $S = \varphi_{\vec{t}}(T) = T^d(1 + h(T))$ and $\frac{dS}{dT} = aT^{\sigma}(1 + g(T))$. We put $\nu := \sigma - d + 1$.

Irregularity $\operatorname{Irr}_{\vec{t}}(y, (\mathcal{E}, \nabla))$

Let $(\mathcal{E}, \nabla)_{\vec{t}}$ be the restriction of (\mathcal{E}, ∇) on $A_{\vec{t}}$, let $(\mathcal{F}, \nabla)_{\vec{t}}$ be the pushforward of $(\mathcal{E}, \nabla)_{\vec{t}}$ by $\varphi_{\vec{t}} := \varphi_{|A_{\vec{t}}|}$ (it will be a connection on a small open annulus $A_{\vec{v}} = A(0; q^d, 1)$ attached to $x = \varphi(y)$). In some coordinates we have $S = \varphi_{\vec{t}}(T) = T^d(1 + h(T))$ and $\frac{dS}{dT} = aT^{\sigma}(1 + g(T))$. We put $\nu := \sigma - d + 1$.

Theorem (B-P)

For each $\rho < 1$ close enough to 1, we have

$$h(\eta_{\rho^d}, (\mathcal{F}, \nabla)_{\vec{t}}) = d h(\eta_{\rho}, (\mathcal{E}, \nabla)_{\vec{t}}) - r\nu \log \rho^d - rd \log |a|.$$

In particular, we have

$$Irr_{\vec{v}}(x,(\mathcal{F},\nabla)_{\vec{t}}) = Irr_{\vec{t}}(y,(\mathcal{E},\nabla)_{\vec{t}}) + r\nu.$$

 Velibor Bojković
 Department of mathematics Tullio Levi-Civita, University of Padova Joint work with Jérôme Poineau

 Pushforwards of p-adic differential equations

 $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle = \langle \Box \rangle < \langle \overline{\Box} \rangle
 </td>$

Laplacians

Theorem (B-P)

Suppose that $\varphi^{-1}(x) = \{y\}$ and let $(\mathcal{F}, \nabla) := \varphi_*(\mathcal{E}, \nabla)$. Let Γ_x be a finite subset of $T_x X$ and let $\Gamma_y := \varphi_y^{-1}(\Gamma_x) \subset T_y Y$. Then

$$\Delta_y(\Gamma_y,(\mathcal{E},
abla)) = \Delta_x(\Gamma_x,(\mathcal{F},
abla)) + r\sum_{ec{t}\in\Gamma_y}
u_{ec{t}}.$$

Theorem (B-P)

Let $x \in X$ be an inner point of type 2. Let $i \in \{1, ..., r\}$. Then, for each finite subset Γ_x of $T_x X$ we have

 $\Delta_x^i(\Gamma_x,(\mathcal{E},\nabla)) \leq (2g(x) - 2 + \#\Gamma_x)i$

with equality in the following case: i = r and $\mathcal{R}_r(x, (\mathcal{E}, \nabla)) < 1$.

Thank you! Merci! Хвала!