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Context

H1 (A,L0) ordinary and simple, principally polarized abelian
surface over Fq

(A = Jac(H), H genus 2 hyperelliptic curve over Fq)

H2 G finite subgroup-scheme over Fq of prime order ` - q
(⇒ G (Fq) cyclic) and such that A/G principally polarizable

Want to compute the isogeny

f : A→ A/G , i.e.,

I compute H ′ genus 2 hyperelliptic curve over Fq such that
A/G ∼= Jac(H ′) (as p.p.a.v)

I for x ∈ Jac(H)(Fq), compute f (x) ∈ Jac(H ′)(Fq)
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Main result

Theorem (Dudeanu, Jetchev, Robert, V.)

Given the equation of a curve H and given a generator t of G (in
Mumford coordinates) such that A = Jac(H) and G satisfy H1
and H2, for each choice of p.p. on A/G we can compute the
isogeny f : A→ A/G (on points x ∈ A(Fq) of order coprime to `).
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Remarks

I We have an implementation of the first part (computing H ′)
on Magma, second part will follow.

I Will see more about choices of principal polarization on A/G .
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Applications

I transporting DLP

I point counting in dimension 2

I computing endomorphsim rings
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Polarizability of A/G

(A,L0) ordinary and simple, principally polarized abelian surface
over Fq

I K := Q⊗Z EndFq
(A) - quartic CM-field

I End+
Fq

(A) ⊂ EndFq
(A) - real endomorphisms (stable under

Rosati involution)

Marius Vuille Computing cyclic isogenies



Polarizability of A/G

(A,L0) ordinary and simple, principally polarized abelian surface
over Fq

I K := Q⊗Z EndFq
(A) - quartic CM-field

I End+
Fq

(A) ⊂ EndFq
(A) - real endomorphisms (stable under

Rosati involution)

Marius Vuille Computing cyclic isogenies



Polarizability of A/G

(A,L0) ordinary and simple, principally polarized abelian surface
over Fq

I K := Q⊗Z EndFq
(A) - quartic CM-field

I End+
Fq

(A) ⊂ EndFq
(A) - real endomorphisms (stable under

Rosati involution)

Marius Vuille Computing cyclic isogenies



Polarizability of A/G

I β ∈ End+
Fq

(A) totally positive real endomorphism

A
β
// A

ϕL0
��

A∨

I isogeny ϕL0 ◦ β arises as the polarization isogeny of an ample

line bundle Lβ0 , i.e.,

A
β
//

ϕ
Lβ

0
  

A

ϕL0
��

A∨
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Polarizability of A/G

I K (Lβ0 ) := ker
(
ϕLβ0

: A→ A∨
)

= kerβ - abelian group with

symplectic pairing, induced by commutator pairing of
Mumford theta group

I Then : A/G principally polarizable if and only if
∃β ∈ End+

Fq
(A), β totally positive, such that

G ⊂ K (Lβ0 ) = kerβ maximally isotropic.
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Remarks

I Two distinct choices of totally positive real endomorphisms
β and β′ (satisfying G ⊂ kerβ and G ⊂ kerβ′ maximally
isotropic for the corresponding pairing) yield two distinct
principal polarizations on A/G .

I Adding β to the input of the algorithm uniquely determines
the principal polarization on A/G and hence H ′ (up to
isomorphism).
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Example 1

I (A,L0) p.p. abelian surface over Fq, ` odd prime, ` - q,
β = [`] is a totally positive real endomorphism, degβ = `4

I G ⊂ kerβ = A[`] maximally isotropic ⇒ G ∼= Z/`Z× Z/`Z
I Cosset-Robert compute A→ A/G , called an (`, `)-isogeny
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Example 2

I (A,L0) p.p. abelian surface over Fq, β ∈ End+
Fq

(A) \ Z,

β totally positive, degβ = `2, ` > 2 prime, ` - q

I G ⊂ kerβ maximally isotropic ⇒ G ∼= Z/`Z
I provided A is ordinary and simple and G is Galois-stable, we

can compute A→ A/G , called a β-cyclic isogeny

I conversely, given G Galois-stable of prime order `, provided
there exists β totally positive of degree `2 and such that
β(G ) = 0, we can compute A→ A/G
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Example 2

EndFq
(A) ⊂ K

|
β ∈End+

Fq
(A) ⊂ K+

|
[`] ∈ Z ⊂ Q
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Projective embeddings
Theta coordinates

I L := L⊗n0 , n ≥ 3, then fixing a basis {θi}i of Γ(A,L) gives an
embedding

A ↪→ Pn2−1

I different choice of basis changes image of A by an element of
Aut(Pn2−1)

I additional structure ΘL on (A,L), called theta structure,
determines ONE basis

I (A,L,ΘL) - polarized abelian variety with theta structure

A ↪→ Pn2−1, x 7→
(
θΘL
i (x)

)
i∈K1(L)

I theta coordinates of x with respect to ΘL

Marius Vuille Computing cyclic isogenies



Projective embeddings
Theta coordinates

I L := L⊗n0 , n ≥ 3, then fixing a basis {θi}i of Γ(A,L) gives an
embedding

A ↪→ Pn2−1

I different choice of basis changes image of A by an element of
Aut(Pn2−1)

I additional structure ΘL on (A,L), called theta structure,
determines ONE basis

I (A,L,ΘL) - polarized abelian variety with theta structure

A ↪→ Pn2−1, x 7→
(
θΘL
i (x)

)
i∈K1(L)

I theta coordinates of x with respect to ΘL

Marius Vuille Computing cyclic isogenies



Projective embeddings
Theta coordinates

I L := L⊗n0 , n ≥ 3, then fixing a basis {θi}i of Γ(A,L) gives an
embedding

A ↪→ Pn2−1

I different choice of basis changes image of A by an element of
Aut(Pn2−1)

I additional structure ΘL on (A,L), called theta structure,
determines ONE basis

I (A,L,ΘL) - polarized abelian variety with theta structure

A ↪→ Pn2−1, x 7→
(
θΘL
i (x)

)
i∈K1(L)

I theta coordinates of x with respect to ΘL

Marius Vuille Computing cyclic isogenies



Projective embeddings
Theta coordinates

I L := L⊗n0 , n ≥ 3, then fixing a basis {θi}i of Γ(A,L) gives an
embedding

A ↪→ Pn2−1

I different choice of basis changes image of A by an element of
Aut(Pn2−1)

I additional structure ΘL on (A,L), called theta structure,
determines ONE basis

I (A,L,ΘL) - polarized abelian variety with theta structure

A ↪→ Pn2−1, x 7→
(
θΘL
i (x)

)
i∈K1(L)

I theta coordinates of x with respect to ΘL

Marius Vuille Computing cyclic isogenies



Theta coordinates
Isogeny theorem

I f : (A,L,ΘL)→ (B,M,ΘM) isogeny of polarized abelian
varieties with theta structures

I Then : ∃λ ∈ F×q such that ∀x ∈ A(Fq) and ∀i ∈ K1(M)

θΘM
i (f (x)) = λ ·

∑
j∈K1(L)
f (j)=i

θΘL
j (x)

I given the theta coordinates of x ∈ A(Fq) wrt ΘL, this is a
formula for computing the theta coordinates of f (x) ∈ B(Fq)
wrt ΘM
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The algorithm
Input

I H genus 2 hyperelliptic curve over Fq such that A = Jac(H) is
ordinary and simple

I β totally positive real endomorphism of degree `2

I t ∈ A(Fq) of order `, such that β(t) = 0 and G = 〈t〉 defined
over Fq (⇒ G ⊂ kerβ maximally isotropic)
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The algorithm

I Fact 1 : we can convert points x ∈ Jac(H)(Fq) from
Mumford coordinates to theta coordinates, for L⊗4

0 and for
“a particular” theta structure ΘL⊗4

0

I Fact 2 : knowing the theta coordinates of 0A/G for M⊗4
0 (M0

induced by L0 and β) and for “a particular” theta structure
ΘM⊗4

0
, we can recover an equation for H ′

I Fact 3 : we can convert points y ∈ (A/G )(Fq) from theta
coordinates (for M⊗4

0 and for ΘM⊗4
0

) to Mumford coordinates

for Jac(H ′)
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The algorithm

I Problem : f : (A,L⊗4
0 ,ΘL⊗4

0
)→ (A/G ,M⊗4

0 ,ΘM⊗4
0

)

is NOT an isogeny that preserves polarizations

I can’t apply the isogeny theorem

I need some tricks
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The algorithm
How?

I apply isogeny theorem to β-contragredient isogeny

f̂ : A/G → A

(endowed with suitable polarizations and theta structures)

I apply isogeny theorem to some endomorphism

F : (A/G )4 → (A/G )4

(endowed with suitable polarizations and theta structures)

I try to recover theta coordinates for (A/G ,M⊗4
0 ,ΘM⊗4

0
) from

theta coordinates for (A/G )4 (with suitable polarization and
theta structure)
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Example

I over F23, consider

H : y2 = x5 + x4 + 3x3 + 22x2 + 19x

I β = −38(π + π†) + 215, totally positive real endomorphism of
degree 172 (π is the Frobenius, † is the Rosati involution)

I G ⊂ kerβ cyclic of order 17, Galois-stable and generated by
t ∈ Jac(H)(F2316) (c.f. next slide)

I ⇒ we compute the β-cyclic isogeny

Jac(H)→ Jac(H)/G ∼= Jac(H ′),

where

H ′ : y2 = 5x6 + 18x5 + 18x4 + 8x3 + 20x
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Example

I Let F2316 = F23(a), where

a16 + 19a7 + 19a6 + 16a5 + 13a4 + a3 + 14a2 + 17a + 5 = 0.

I Let t = (x2 + u1x + u0, v1x + v0) ∈ Jac(H)(F2316), where

u1 =10a15 + 9a14 + 17a13 + 5a12 + 14a11 + 19a10 + 14a9 + 14a8

+ 5a7 + 22a6 + a5 + 19a4 + 13a3 + 2a2 + 15a + 7,

u0 =6a15 + 11a14 + 17a13 + 19a12 + 10a11 + a10 + 21a9 + 15a8

+ 18a7 + 21a6 + 5a5 + 18a4 + 4a3 + 6a2 + 3a + 19,

v1 =19a15 + 11a14 + 18a13 + 3a12 + 20a11 + 11a10 + 8a9 + a8

+ 19a7 + 5a6 + 14a5 + 3a4 + 4a3 + 10a2 + 22a + 22,

v0 =a15 + 10a14 + 11a13 + 22a12 + 3a11 + 14a10 + 21a9 + 5a8

+ 9a7 + 17a5 + 20a4 + 6a3 + 8a2 + 13a + 5

I Then β(t) = 0 and G = 〈t〉 is Galois stable since π(t) = [6]t.
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Thank you!
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