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Birch’s ternary method

In 1991 (based on a 1988 talk in Luminy), Birch gave an algorithm
to compute classical modular forms of weight 2 based on the Hecke
action on classes of ternary quadratic forms.

Birch begins by analogy with la méthode des graphes due to
Mestre–Oesterlé: there is a natural Hecke action on the set of
supersingular elliptic curves in prime characteristic N via the
p-isogeny graph, and this Hecke module is isomorphic to
M2(Γ0(N)).

Birch sought a method that would work more generally for
composite N.
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Birch’s ternary method

Birch says:

[T]here is a great deal of interesting information to be
calculated; since the program is very fast, it is possible for
anyone who owns it to generate interesting numbers
much faster than it is possible to read them. ...
[However,] this attempt ... has so far failed in two ways:
first, it usually gives only half the information needed,
and, second, when the level is not square-free it gives
even less information. At least the program is very fast!

In this talk, we will show how to extend Birch’s method to compute
forms of nonsquare level N. It is indeed very fast!

Our method works for Hilbert modular forms (over totally real
fields), but we’ll mostly stick to Q in the talk.
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Quadratic forms and lattices

Let Q : V → Q be a positive definite ternary (dimQ V = 3)
quadratic space with associated bilinear form

T (x , y) := Q(x + y)− Q(x)− Q(y) for x , y ∈ V .

Let Λ < V be a lattice (Λ ' Z3) that is integral, so Q(Λ) ⊆ Z.
Choosing a basis Λ = Ze1 + Ze2 + Ze3 ' Z3 gives a quadratic form

QΛ(xe1 +ye2 +ze3) = ax2 +by2 +cz2 +uyz +vxz +wxy ∈ Z[x , y , z ]

and vice versa.

Define

disc(Λ) = disc(QΛ) := det(T (ei , ej))i ,j/2 =
1
2
det

2a w v
w 2b u
v u 2c


= 4abc + uvw − au2 − bv2 − cw2 ∈ Z>0
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Isometries and genus

Let

O(V ) := {g ∈ GL(V ) : Q(gx) = Q(x) for all x ∈ V }
SO(V ) := O(V ) ∩ SL(V )

Define O(Λ) etc. similarly; we have #O(Λ) <∞.

Lattices Λ,Π ⊂ V are isometric, written Λ ' Π, if there exists
g ∈ O(V ) such that gΛ = Π. Same with isometric over Qp.

The genus of Λ is

Gen(Λ) := {Π < V : Λp ' Πp for all p}.

The class set Cl(Λ) is the set of isometry classes in Gen(Λ).

By the geometry of numbers, #Cl(Λ) <∞.
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Neighbors

Kneser’s theory of p-neighbors gives an effective method to
compute the class set; it also gives the Hecke action!

Let p - disc(Λ) be prime (still with Λ integral); p = 2 is OK.

We say that a lattice Π < V is a p-neighbor of Λ, and write
Π ∼p Λ, if

[Λ : Λ ∩ Π] = [Π : Λ ∩ Π] = p.

If Λ ∼p Π, then:

I disc(Λ) = disc(Π),
I Π is integral, and
I Π ∈ Gen(Λ).

Moreover, there is an effectively computable finite set S of primes
such that every [Λ′] ∈ Cl(Λ) is an iterated S-neighbor

Λ ∼p1 Λ1 ∼p2 · · · ∼pr Λr ' Λ′

with pi ∈ S . Typically we may take S = {p} for any p - disc(Λ).
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Explicit neighbors

The set of p-neighbors is efficiently computable, as follows.

I Π ∼p Λ if and only if Λq = Πq for all q 6= p, and there exists a
Zp-basis e1, e2, e3 for Λp (called a p-standard basis) such that

Λp = Zpe1 + Zpe2 + Zpe3
Πp = Zp( 1

p e1) + Zp(pe2) + Zpe3

and Q(xe1 + ye2 + ze3) = xy + Q(e3)z2.
I Π ∼p Λ if and only if there exists v ∈ Λ such that Q(v) ≡ 0

(mod 2p2) and

Π = p−1v + {w ∈ Λ : T (v ,w) ∈ pZ}.

The line spanned by v uniquely determines Π, accordingly
there are exactly p + 1 neighbors Π.
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Example

Let Λ = Z3 = Ze1 + Ze2 + Ze3 ⊂ Q3 have the quadratic form

QΛ(x , y , z) = x2 + y2 + 3z2 + xz

and bilinear form given by

[TΛ] =

2 0 1
0 2 0
1 0 6

 .

Thus
disc(QΛ) = 11.

We have #Cl(Λ) = 2, with the nontrivial class represented by the
3-neighbor

Λ′ = Ze1 + 3Ze2 + 1
3Z(e1 + 2e2 + e3)

with corresponding quadratic form

QΛ′(x , y , z) = x2 + 9y2 + z2 + 4yz + xz .
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Hecke action

The space of orthogonal modular forms for Λ (with trivial
weight) is

M(O(Λ)) := Map(Cl(Λ),C).

In the basis of characteristic functions for Λ we have
M(O(Λ)) ' Ch where h = #Cl(Λ).

For p - disc(Λ), define the Hecke operator

Tp : M(O(Λ))→ M(O(Λ))

f 7→ Tp(f )

Tp(f )([Λ′]) :=
∑

Π′∼p Λ′

f ([Π′]).

The operators Tp commute and are self-adjoint with respect to a
natural inner product, so there is a basis of simultaneous
eigenvectors, called eigenforms.
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Computing the Hecke action

To compute the matrix representing the Hecke operator, we need
to sort p-neighbors of a lattice according to their isometry class.

This can be accomplished on lattices using an algorithm of
Plesken–Souveignier: match up short vectors and use lots of tricks
to compute an isometry or rule it out as early as possible. This is
very fast in practice and (in fixed dimension) is also theoretically
efficient.

One can do even better: there is an explicit reduction theory of
integral ternary quadratic forms due to Eisenstein which generalizes
Gauss reduction of integral quadratic forms. The result is a unique
reduced form so that isometry testing becomes table lookup.
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Example

In the running example with discriminant 11, we compute

[T3] =

(
2 2
3 1

)
, [T5] =

(
4 2
3 3

)
, . . . .

The constant function e =

(
1
1

)
∈ M(O(Λ)) is an Eisenstein series

with Tp(e) = (p + 1)e.

Another eigenvector is f =

(
2
−3

)
with Tp(f ) = ap(f ):

a3 = −1, a5 = 1, . . . , a11 = 1.

We match it with the modular form
∞∑

n=1

anqn =
∞∏

n=1

(1−qn)2(1−q11n)2 = q−2q2−q3+. . . ∈ S2(Γ0(11)).

The Atkin–Lehner involution z 7→ −1
11z

acts on f (z) dz with
eigenvalue w11 = −a11 = −1.
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Classical modular forms

Let S(O(Λ)) ⊂ M(O(Λ)) be the orthogonal complement of the
constant functions.

Theorem (Birch, Hein)

Suppose N = disc(Λ) is squarefree. Let εp ∈ {±1} be the p-Witt
invariant for p | N and let D =

∏
p:εp=−1 p. Then there is a

Hecke-equivariant inclusion

S(O(Λ)) ↪→ S2(Γ0(N))

whose image is S2(Γ0(N);D-new;w = ε) :=

{f ∈ S2(Γ0(N)) : f is new at all p | D and Wpf = εpf for all p | N}.

Birch sketches two arguments for this theorem. Hein gives a
complete proof using one of these arguments, as follows.
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Even Clifford algebra

Given

Q(x , y , z) = ax2 + by2 + cz2 + uyz + vxz + wxy ∈ Z[x , y , z ]

of discriminant disc(Q) = N, its even Clifford algebra is

O = Clf0(Q) := Z⊕ Zi ⊕ Zj ⊕ Zk

with standard involution and multiplication laws

i2 = ui − bc jk = ai = a(u − i)

j2 = vj − ac ki = bj = b(v − j)

k2 = wk − ab ij = ck = c(w − k)

so that e.g. kj = j k = −vw + ai + wj + vk .

Completing the square, we have

O ⊂ O⊗Q := B '
(
w2 − 4ab,−aN

F

)
so O is an order in a definite quaternion algebra B .
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Even Clifford algebra

The association Q 7→ O = Clf0(Q) is functorial and induces a
(reduced) discriminant-preserving bijection{

Lattices Λ ⊂ V
up to isometry

}
∼−→

{
Quaternion orders O ⊂ B

up to isomorphism

}
.

Let D = disc(B) =
∏

p∈Ram(B) p. If N is squarefree, then the
p-Witt invariant is wp = −1 if p | D and wp = 1 if p | M = N/D.

We have an exact sequence

1→ Q× → B× → SO(V )→ 1

which generalizes to

1→ {±1} → O× → SO(Λ)→ 1.
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p∈Ram(B) p. If N is squarefree, then the
p-Witt invariant is wp = −1 if p | D and wp = 1 if p | M = N/D.
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Sketch of proof of theorem

The even Clifford map induces a Hecke-equivariant isomorphism

M(O(Λ)) = Map(Cl(Λ),C)
∼−→ Map(Typ(O),C)

where Typ(O) is the type set of O.

By restricting Brandt matrices (Eichler’s Anzahlmatrizen) we have

Map(Typ(O),C) ↪→ M2(Γ0(N))

with an image that can be explicitly identified.
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Where are the other forms?

We only get a subspace of classical modular forms this way. To get
them all, we add a representation.

More generally, let ρ : O(V )→ GL(W ) be a representation with W
a finite-dimensional vector space over C. We refer to ρ as the
weight. For example:

I ρ : O(V )→ C× the trivial representation.
I ρ : O(V ) ↪→ GL(V ) the standard representation.
I ρ : O(V )→ GL(Hark) the natural change-of-variables action

on degree k harmonic polynomials in 3 variables.
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Spinor character

We have a natural homomorphism obtained from the composition

σ : O(V )→ O(V )/{±1} → SO(V ) ' B×/Q× nrd−−→ Q×/Q×2

called the spinor norm.

Lemma

Let γ ∈ SO(V ) have tr(γ) 6= −1. Then the spinor norm of γ is
tr(γ) + 1.

(There are more complicated but still nice formulas in the
degenerate case tr(γ) = −1.)

For r | N, the spinor character for r is

spinr : O(V )
σ−→ Q×/Q×2 → {±1}

a 7→
∏
p|r

(−1)ordp(a)
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Orthogonal modular forms with weight

Let Λ1, . . . ,Λh represent Cl(Λ), with Λ1 = Λ.

For a weight ρ, we define orthogonal modular forms for Λ of
weight ρ to be

M(O(Λ), ρ) := {f : Cl(Λ)→W | f ([Λi ]) ∈WO(Λi )} '
h⊕

i=1

WO(Λi ).

Let p - disc(Λ). For a p-neighbor Π ∼p Λ, we have Π = γΛj for
unique j and unique γ up to right multiplication by O(Λj).

Define the Hecke operator

Tp : M(O(Λ), ρ)→ M(O(Λ), ρ)

Tp(f )([Λ′]) :=
∑

γ′Λj=Π′∼p Λ′

f ([Π′])γ
′
.

The Hecke operators generate a commutative, semisimple ring.
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Modular forms: first theorem

Theorem (Hein–Tornaría–V)

Suppose N = disc(Λ) is squarefree. Let εp ∈ {±1} be the p-Witt
invariant for p | N and let D =

∏
p:εp=−1 p.

Let r | N, and for p | N let ε′p = 1,−1 as p - r or p | r .

Then there is a Hecke-equivariant isomorphism

S(O(Λ), ρ)
∼−→ S2(Γ0(N);D-new;w = ε′).
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∼−→ S2(Γ0(N);D-new;w = ε′).



Computational results

For level N = 1062347 = 11 · 13 · 17 · 19 · 23 and D = N (so all
forms are new), we take

Q(x , y , z) = x2 + 187y2 + 1467z2 − 187xz

and have #Cl(Λ) = 2016.

Given Q, we can compute [T2], [T3], [T5], [T7] for all characters
(giving all newforms) in 4 seconds on a standard desktop machine.
Then 1 minute of linear algebra computing kernels with sparse
matrices in Magma gives that there are exactly 5 elliptic curves
with conductor N.

This isn’t a “generic” level! But to make an unfair comparison: the
same computation with modular symbols in Magma crashed after
consuming all 24 GB of available memory.
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Relationship to Mestre–Oesterlé

To tie up the motivating thread...

Lemma

Let O be a maximal order in a quaternion algebra B with
discriminant disc(B) = p. Then there exist one or two supersingular
curves E up to isomorphism over Fp such that End(E ) ' O.

There exist two such elliptic curves if and only if j(E ) ∈ Fp2 r Fp if
and only if the unique two-sided ideal of O of reduced norm p is
not principal.

So the spinor characters account exactly for the identification of E
with its Galois conjugate φ(E ) when j(E ) 6∈ Fp; the two are
distinguished by an orientation, following Ribet.
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Extensions

To work with level N, we design a suitable lattice locally subject to
a global compatibility (Hilbert reciprocity).

A definite quadratic form Q which is locally isometric to xy + Nz2

for all primes p would work, but this does not satisfy global
compatibility.

We need a prime power pe ‖ N with e odd to ensure global
compatibility, and use instead a form isometric over Qp to
x2 − uy2 + Nz2 where u is a nonsquare modulo p 6= 2 (and
x2 + xy + y2 + Nz2 for p = 2). The corresponding quaternion order
O was investigated by Pizer; it is called residually inert, as
O/rad(O) ' Fp2 , where rad(O) is the Jacobson radical.

We can also work over a totally real field F to obtain Hilbert
modular forms, with the same techniques and analogous statements
of running time.
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Modular forms: main theorem

Theorem (Hein–Tornaría–V)

There exists an explicit, deterministic algorithm that, given as input

a weight k ∈ 2Z>0,
a factored nonsquare level N =

∏
i p

ei
i ,

D |
∏

2-ei
pi with an odd number of factors,

and ε ∈ {±1}r ,

computes as output the space Sk(Γ0(N);D-new;w = ε) as a Hecke
module.

After precomputation steps (hard to analyze, instantaneous in
practice), the running time of the algorithm to compute Tp is
Õ(pd), where

d = dim S(O(Λ), ρ) = dim Sk(Γ0(N);D-new;w = ε) = O(2−rkN).
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Õ(pd), where

d = dim S(O(Λ), ρ) = dim Sk(Γ0(N);D-new;w = ε)

= O(2−rkN).



Modular forms: main theorem

Theorem (Hein–Tornaría–V)

There exists an explicit, deterministic algorithm that, given as input

a weight k ∈ 2Z>0,
a factored nonsquare level N =

∏
i p

ei
i ,

D |
∏

2-ei
pi with an odd number of factors,

and ε ∈ {±1}r ,

computes as output the space Sk(Γ0(N);D-new;w = ε) as a Hecke
module.

After precomputation steps (hard to analyze, instantaneous in
practice), the running time of the algorithm to compute Tp is
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Conclusion

I Birch’s method for computing modular forms can be
understood intrinsically in the language of orthogonal modular
forms.

I This method then generalizes to capture classical (and Hilbert)
modular forms with nonsquare level in a natural way by adding
a representation.

I The implementation is very fast!

Thank you to the CIRM for 30+ years of algorithmic arithmetic
geometry!
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