
Generalized Howgrave-Graham–Szydlo and
Side-Channel Attacks against BLISS

Mehdi Tibouchi

NTT Secure Platform Laboratories

AGC2T, 2017–06–22

joint work with T. Espitau, P.-A. Fouque and B. Gérard

1/26 ©2017 NTT Secure Platform Laboratories

Outline

Introduction

The side-channel leakage in BLISS
The BLISS signature scheme
The rejection sampling leakage

Exploiting the leakage
Applying Howgrave-Graham–Szydlo
What about the inner product leakage?

2/26 ©2017 NTT Secure Platform Laboratories

Towards postquantum cryptography

▸ Quantum computers would break all currently deployed
public-key crypto: RSA, discrete logs, elliptic curves

▸ Agencies warn that we should prepare the transition to
quantum-resistant crypto

▸ NSA deprecating Suite B (elliptic curves)
▸ NIST starting their postquantum competition

▸ In theory, plenty of known cryptosystems are
quantum-resistant

▸ Some primitives achieved with codes, hash trees, multivariate
crypto, knapsacks, isogenies...

▸ Almost everything possible with lattices

▸ In practice, few actual implementations
▸ Secure parameters often unclear
▸ Concrete software/hardware implementation papers quite rare
▸ Almost no consideration for implementation attacks

▸ Serious issue if we want practical postquantum crypto

3/26 ©2017 NTT Secure Platform Laboratories

Lattice-based cryptography

▸ Roughly speaking, lattice-based cryptography is crypto based
on hard problems in the “geometry of numbers”

▸ given a basis of a submodule M of large rank in Zm, find a
short element of M (for the Euclidean norm)

▸ Very fruitful class of problems for constructing interesting
crypto; believed to remain hard even against quantum
computers

▸ Drawback: for security, dimensions in the hundreds or
thousands are necessary, resulting in large keys and limited
performance

▸ Solution: use modules over larger rings, e.g. ideals of OK for
K number field of large degree over Q

▸ in practice, people use K = Q(ζm), m = 2k
▸ interesting playground for algorithmic number theorists (cf.
Alice Silverberg’s talk)

4/26 ©2017 NTT Secure Platform Laboratories

Attacks on lattice-based cryptography

▸ Nice feature of lattice-based cryptosystems: they usually come
with very strong security arguments

▸ “if you can break this scheme, you can solve lattice problems
of the same dimension (and over the same ring) in the worst
case”

▸ Thus, to attack a lattice-based cryptosystem
“algorithmically”, you have to make significant progress on
the analysis of a number-theoretic problem believed to be hard

▸ Some suspect this may be feasible over certain rings (e.g. in
cyclotomic fields); research is ongoing

▸ However, this is not what this talk is about (too hard for me).
This talk is about cheating to break things!

5/26 ©2017 NTT Secure Platform Laboratories

Black-box vs real-world security

▸ Consider the security of e.g. digital signatures
▸ Traditional, “black-box” view of security:

▸ the attacker, Alice, interacts with the signer, Bob
▸ Alice sends Bob messages to sign, only gets the results of Bob’s
computation (no other info about the computation is revealed)

▸ based on that, Alice tries to forge new signatures/extract info
about Bob’s signing key

▸ Real-world security:
▸ Bob is actually a smart card, say
▸ Alice can measure all sorts of emanation from the card as it
operates, or mess with it in various ways

▸ all that extra information can be useful to break things!

6/26 ©2017 NTT Secure Platform Laboratories

Implementation attacks

▸ The security guarantees offered by “security proofs” for
lattice-based crypto are in the black-box model

▸ But to break a real-world crypto implementation, no need to
play by the rules of that model

▸ This talk: measure the side-channel leakage of an
implementation of lattice-based signatures, and use it together
with a little bit of number theory to recover the entire key

▸ specifically, electromagnetic emanations
▸ it would also work with power consumption, etc.

▸ FWIW: there are other types of interesting implementation
attacks, including fault attacks (actively tamper with the
device during the computation) that also lead to key recovery
(but with even less math involved)

7/26 ©2017 NTT Secure Platform Laboratories

Outline

Introduction

The side-channel leakage in BLISS
The BLISS signature scheme
The rejection sampling leakage

Exploiting the leakage
Applying Howgrave-Graham–Szydlo
What about the inner product leakage?

8/26 ©2017 NTT Secure Platform Laboratories

BLISS: the basics

▸ The BLISS signature scheme is one of the top contenders for
postquantum signatures

▸ Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at
CRYPTO’13

▸ Implementations exist on various platforms: desktop
computers, microcontrollers/smartcards, and even hardware
(FPGAs)

▸ Deployed in the VPN library strongSwan

▸ Based on ideal lattices over the ring of cyclotomic integers
R = Z[ζ] with ζ primitive 1024-th root of unity

9/26 ©2017 NTT Secure Platform Laboratories

BLISS: signing and verification keys

▸ We identify R as Z[x]/(xn + 1) (with n = 512), and elements
of R as polynomials in x of degree < 512, or vectors in Z512

▸ We fix q a rational prime which splits completely in R
(q = 12289)

▸ The secret signing key consists of two random elements
s1, s2 ∈ R with coefficients in {−1,0,1}, sparse

▸ The verification key is a = −s2/s1 mod q
▸ restart if s1 not invertible

10/26 ©2017 NTT Secure Platform Laboratories

BLISS: signature

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z†
2, c)

10: end function

11/26 ©2017 NTT Secure Platform Laboratories

BLISS: signature

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z†
2, c)

10: end function

11/26 ©2017 NTT Secure Platform Laboratories

BLISS: signature

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z†
2, c)

10: end function

11/26 ©2017 NTT Secure Platform Laboratories

BLISS: signature

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z†
2, c)

10: end function

11/26 ©2017 NTT Secure Platform Laboratories

BLISS: signature

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z†
2, c)

10: end function

11/26 ©2017 NTT Secure Platform Laboratories

BLISS: verification

1: function Verify(µ,a, (z1, z†
2, c))

2: z′2 ← Uncompress(z†
2)

3: if ∥(z1∣z′2)∥2 > B2 then reject
4: if ∥(z1∣z′2)∥∞ > B∞ then reject
5: accept iff c = H(a ⋅ z1 + z′2, µ)
6: end function

12/26 ©2017 NTT Secure Platform Laboratories

Outline

Introduction

The side-channel leakage in BLISS
The BLISS signature scheme
The rejection sampling leakage

Exploiting the leakage
Applying Howgrave-Graham–Szydlo
What about the inner product leakage?

13/26 ©2017 NTT Secure Platform Laboratories

Attack overview

▸ The rejection sampling step is the cornerstone of BLISS
security (difference with NTRUSign) and efficient (the
bimodal aspect)

▸ In practice: difficult to implement (needs high-precision
evaluation of transcendental functions), so some tricks have
to be used

▸ The optimized version of the rejection sampling uses iterated
Bernoulli trials on each of the bits of ∥Sc∥2; as a result, we
can read that value on a power analysis/electromagnetic
analysis trace

▸ This yields to the recovery of the relative norm s1 ⋅ s̄1 in the
totally real subfield (and similarly for s2)

▸ Algorithmic number theoretic techniques
(Howgrave-Graham–Szydlo) can then be used to retrieve the
si up to a root of unity (which is a complete break!)

14/26 ©2017 NTT Secure Platform Laboratories

BLISS rejection sampling

1: function SampleBernExp(x ∈
[0,2ℓ) ∩Z)

2: for i = 0 to ℓ − 1 do
3: if xi = 1 then
4: Sample a ←Bci

5: if a = 0 then return 0
6: end if
7: end for
8: return 1
9: end function ▷ x = K − ∥Sc∥2

1: function SampleBern-
Cosh(x)

2: Sample a ←Bexp(−x/f)
3: if a = 1 then return 1
4: Sample b ←B1/2
5: if b = 1 then restart
6: Sample c ←Bexp(−x/f)
7: if c = 1 then restart
8: return 0
9: end function ▷ x = 2 ⋅ ⟨z,Sc⟩

Sampling algorithms for the distributions Bexp(−x/f) and

B1/ cosh(x/f) (ci = 2i/f precomputed)

15/26 ©2017 NTT Secure Platform Laboratories

BLISS rejection sampling

1: function SampleBernExp(x ∈
[0,2ℓ) ∩Z)

2: for i = 0 to ℓ − 1 do
3: if xi = 1 then
4: Sample a ←Bci

5: if a = 0 then return 0
6: end if
7: end for
8: return 1
9: end function ▷ x = K − ∥Sc∥2

1: function SampleBern-
Cosh(x)

2: Sample a ←Bexp(−x/f)
3: if a = 1 then return 1
4: Sample b ←B1/2
5: if b = 1 then restart
6: Sample c ←Bexp(−x/f)
7: if c = 1 then restart
8: return 0
9: end function ▷ x = 2 ⋅ ⟨z,Sc⟩

Sampling algorithms for the distributions Bexp(−x/f) and

B1/ cosh(x/f) (ci = 2i/f precomputed)

15/26 ©2017 NTT Secure Platform Laboratories

Experimental leakage

-1.5

-1

-0.5

0

0.5

1

1.5

2

150000 200000 250000 300000 350000 400000

1 1 1

0000

1 1

0

1 1 1 1 1

Electromagnetic measure of BLISS rejection sampling for norm
∥Sc∥2 = 14404. One reads the value:

K − ∥Sc∥2 = 46539 − 14404 = 111000011011112

16/26 ©2017 NTT Secure Platform Laboratories

Outline

Introduction

The side-channel leakage in BLISS
The BLISS signature scheme
The rejection sampling leakage

Exploiting the leakage
Applying Howgrave-Graham–Szydlo
What about the inner product leakage?

17/26 ©2017 NTT Secure Platform Laboratories

Exploiting the leakage

▸ Each time a signature is computed, we obtain the Euclidean
norm ∥s1 ⋅ c∥2 + ∥s2 ⋅ c∥2, where c is a known element of R
that changes every time

▸ In other words, each signature gives a Z-linear equation on
the coefficients of the relative norms s1 ⋅ s̄1 and s2 ⋅ s̄2

▸ These elements are in Q(ζ + ζ−1) (degree 256 over Q) so
collecting around 2 × 256 = 512 signatures should yield a linear
system of full rank, and let us recover both of the relative
norms

▸ the linear equations really are independent w.h.p.
▸ very efficient in practice
▸ the collection of 512 EM traces is an easy task by the
standards of side-channel analysis

▸ Then, how can we use our knowledge of s1 ⋅ s̄1 and s2 ⋅ s̄2 to
recover s1 and s2 themselves?

▸ This is where Howgrave-Graham–Szydlo comes into play

18/26 ©2017 NTT Secure Platform Laboratories

Howgrave-Graham–Szydlo (I)

▸ The situation is as follows: for s in the cyclotomic ring Z[ζ],
we are given the relative norm r = s ⋅ s̄ in the totally real
subfield. Can we recover s?

▸ First, we compute the absolute norm:

N = NQ(ζ)/Q(s) =
√

NQ(ζ)/Q(r)

▸ Suppose that N = p is prime. This heuristically happens with
significant probability

▸ variant of the result saying that the density of ideals with
prime norm among ideals of norm < x is asymptotically 1/ log x
(Landau)

▸ we can bound the norm of s, and s heuristically behaves like a
random element of R up to that bound

▸ experimentally, around 1% of keys s satisfy the condition

19/26 ©2017 NTT Secure Platform Laboratories

Howgrave-Graham–Szydlo (I)

▸ The situation is as follows: for s in the cyclotomic ring Z[ζ],
we are given the relative norm r = s ⋅ s̄ in the totally real
subfield. Can we recover s?

▸ First, we compute the absolute norm:

N = NQ(ζ)/Q(s) =
√

NQ(ζ)/Q(r)

▸ Suppose that N = p is prime. This heuristically happens with
significant probability

▸ We must have p ≡ 1 (mod 4), because p is the norm of an
element of Z[

√
−1]

▸ In particular, p splits as ππ̄ in Z[
√
−1]. Then, rR is the

product of the two ideals (r, π) and (r, π̄): one of them is
thus sR and the other is s̄R

19/26 ©2017 NTT Secure Platform Laboratories

Howgrave-Graham–Szydlo (II)

▸ Previous slide: when we are given r = ss̄ for s ∈ R of prime
absolute norm, we can recover 2 possible candidates for the
principal ideal sR

▸ More generally, if we are able to factor the absolute norm N
of s, a similar approach yields a polynomial number of
candidates for sR

▸ basically, write all the possible ways in which rR decomposes
as a product of two conjugate ideals of norm N

▸ Is this sufficient to recover s?

▸ Usually, finding a generator of a prime ideal is hard. However,
in our case, we also have the relative norm r of the generator

▸ This is just what we need to apply a magical algorithm due to
Gentry and Szydlo, which recovers the generator up to a root
of unity!

20/26 ©2017 NTT Secure Platform Laboratories

Completing the attack

▸ To sum up, assuming that we can factor the absolute norm of
s1, we recover a small number of candidates for s1, up to
multiplication by a root of unity

▸ Checking whether a solution is correct is easy
▸ compute the corresponding candidate for s2 as a ⋅ s1 mod q
▸ it should have coefficients in {−1,0,1} and be sparse

▸ Moreover, multiplying a correct key (s1, s2) by a root of unity
results in a completely equivalent key, so we are done!

▸ Attack works for weak keys for which we can factor the
absolute norm of either s1 or s2: for example when the norm
is of the form N0p where N0 is smooth (removed by trial
division) and p prime

21/26 ©2017 NTT Secure Platform Laboratories

Efficiency of the attack

n B = 5 B = 65537 B = 655373 B = 6553733

BLISS-0 256 3% 3.8% 6% 6.5%
BLISS-I/II 512 1.5% 2% 2.8% 3.7%
BLISS-III/IV 512 1% 1.75% 2% 2.5%

Experimental density of keys with semi-smooth absolute norm
(N = N0 ⋅ p with B-smooth N0) for various BLISS parameters

Field size n 32 64 128 256 512

CPU time 0.6 s 13 s 21 min. 17h 22 min. 38 days
Clock cycles ≈ 230 ≈ 235 ≈ 241 ≈ 247 ≈ 253

Average running time of the attack for various field sizes n
BLISS parameters: n = 256 or 512

22/26 ©2017 NTT Secure Platform Laboratories

Outline

Introduction

The side-channel leakage in BLISS
The BLISS signature scheme
The rejection sampling leakage

Exploiting the leakage
Applying Howgrave-Graham–Szydlo
What about the inner product leakage?

23/26 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (I)

▸ Recall the rejection sampling probability of BLISS signing:

1/
⎛
⎝
M exp(− ∥Sc∥

2

2σ2
) cosh(⟨z,Sc⟩

σ2
)
⎞
⎠
,

▸ The exp part of the rejection sampling leaks ∥Sc∥2 and
ultimately the relative norm of s1 and s2: what we have used
so far

▸ Can’t we use the cosh part instead? It directly leaks:

⟨z1, s1c⟩ + ⟨z2, s2c⟩

▸ If we know (c, z1, z2), this gives a linear relation on the secret:
recover everything from around 1024 signatures without
breaking a sweat!

24/26 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (II)

▸ Problem: signatures do not contain z2, but only a compressed
variant z†

2, and the compression is lossy: we only obtain a
noisy linear system on the secret

▸ Our first reaction: this is like Learning With Errors in twice
the original dimension, so probably hopeless

▸ Update (recent work with J. Bootle): not hopeless at all.
Since there is no modular reduction, we can simply approach
the problem with linear least squares

▸ Works on 100% of keys, but needs ≈ 30000 signatures vs.
≈ 512 for Howgrave-Graham–Szydlo

25/26 ©2017 NTT Secure Platform Laboratories

Conclusion and possible countermeasures

▸ Postquantum crypto in general, and lattices in particular, are
hot topics

▸ Many constructions use some algebraic number theory, but
haven’t been looked at by actual mathematicians

▸ you can probably find many problems in our schemes!
▸ implementation attacks in particular are an easy way to wreak
havoc on all this stuff

▸ they have to be considered before standardization/deployment

▸ Possible countermeasures?
▸ compute rejection probability with floating point arithmetic
(slow)

▸ use a constant-time Bernoulli sampling (doable)
▸ prefer a scheme with simpler structure (without those pesky
Gaussians!)

26/26 ©2017 NTT Secure Platform Laboratories

	Introduction
	The side-channel leakage in BLISS
	The BLISS signature scheme
	The rejection sampling leakage

	Exploiting the leakage
	Applying Howgrave-Graham–Szydlo
	What about the inner product leakage?

