Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

On the linear bounds on the genus of pointless curves

Pogildiakov Ivan

Université de la Polynésie française, Tahiti, Polynésie française

Arithmetic, Geometry, Cryptography and Coding Theory Marseille, June 19 - 23, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof , even <i>q</i>	Conclusion
000	00000	0000	0000	000
		Overview		

Preliminaries

Proof of the theorem, odd q

Proof of the theorem, even q

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

$q+1-g\lfloor 2\sqrt{q} floor\leq q+1+g\lfloor 2\sqrt{q} floor.$

Let q, g be such that $q+1-g\lfloor 2\sqrt{q} \rfloor \leq 0$, i.e. $g \geq (q+1)/\lfloor 2\sqrt{q} \rfloor$. Question: Does there exist a curve over \mathbb{F}_q of genus g with no rational points (which is called *pointless*)? Main directions:

- 1. g is fixed (E. W. Howe, K. E. Lauter, J. Top, 2005),
- 2. *q* is fixed (R. Becker, D. Glass, 2013).

$q+1-g\lfloor 2\sqrt{q} floor\leq q+1+g\lfloor 2\sqrt{q} floor$.

Let q, g be such that $q+1-g\lfloor 2\sqrt{q}\rfloor \leq 0$, i.e. $g \geq (q+1)/\lfloor 2\sqrt{q}\rfloor$. Question: Does there exist a curve over \mathbb{F}_q of genus g with no rational points (which is called *pointless*)? Main directions:

- 1. g is fixed (E. W. Howe, K. E. Lauter, J. Top, 2005),
- 2. *q* is fixed (R. Becker, D. Glass, 2013).

$\boldsymbol{q} + \boldsymbol{1} - \boldsymbol{g} \lfloor 2\sqrt{\boldsymbol{q}} \rfloor \leq N_1(\mathcal{C}) \leq \boldsymbol{q} + 1 + \boldsymbol{g} \lfloor 2\sqrt{\boldsymbol{q}} \rfloor.$

Let q, g be such that $q+1-g\lfloor 2\sqrt{q} \rfloor \leq 0$, i.e. $g \geq (q+1)/\lfloor 2\sqrt{q} \rfloor$. Question: Does there exist a curve over \mathbb{F}_q of genus g with no rational points (which is called *pointless*)? Main directions:

- 1. g is fixed (E. W. Howe, K. E. Lauter, J. Top, 2005),
- 2. *q* is fixed (R. Becker, D. Glass, 2013).

$q + 1 - g \lfloor 2\sqrt{q} \rfloor \leq N_1(\mathcal{C}) \leq q + 1 + g \lfloor 2\sqrt{q} \rfloor.$

Let q, g be such that $q+1-g\lfloor 2\sqrt{q} \rfloor \leq 0$, i.e. $g \geq (q+1)/\lfloor 2\sqrt{q} \rfloor$. Question: Does there exist a curve over \mathbb{F}_q of genus g with no rational points (which is called *pointless*)? Main directions:

- 1. g is fixed (E. W. Howe, K. E. Lauter, J. Top, 2005),
- 2. q is fixed (R. Becker, D. Glass, 2013).

$\boldsymbol{q} + \boldsymbol{1} - \boldsymbol{g} \lfloor 2\sqrt{\boldsymbol{q}} \rfloor \leq N_1(\mathcal{C}) \leq \boldsymbol{q} + 1 + \boldsymbol{g} \lfloor 2\sqrt{\boldsymbol{q}} \rfloor.$

Let q, g be such that $q+1-g\lfloor 2\sqrt{q}\rfloor \leq 0$, i.e. $g \geq (q+1)/\lfloor 2\sqrt{q}\rfloor$. Question: Does there exist a curve over \mathbb{F}_q of genus g with no rational points (which is called *pointless*)? Main directions:

- 1. g is fixed (E. W. Howe, K. E. Lauter, J. Top, 2005)
- 2. q is fixed (R. Becker, D. Glass, 2013).

$\boldsymbol{q} + \boldsymbol{1} - \boldsymbol{g} \lfloor 2\sqrt{\boldsymbol{q}} \rfloor \leq N_1(\mathcal{C}) \leq \boldsymbol{q} + 1 + \boldsymbol{g} \lfloor 2\sqrt{\boldsymbol{q}} \rfloor.$

Let q, g be such that $q+1-g\lfloor 2\sqrt{q}\rfloor \leq 0$, i.e. $g \geq (q+1)/\lfloor 2\sqrt{q}\rfloor$. Question: Does there exist a curve over \mathbb{F}_q of genus g with no rational points (which is called *pointless*)? Main directions:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

1. g is fixed (E. W. Howe, K. E. Lauter, J. Top, 2005),

2. q is fixed (R. Becker, D. Glass, 2013).

Introduction ○●○ Preliminaries

Proof, odd *q* 0000 Proof, even q

・ロト ・ 行下・ ・ ヨト ・ ヨト ・ ヨー

Conclusion 000

The case of fixed *q*

Given q, denote by g_q^{min} the number such that for all $g \ge g_q^{min}$ there is a smooth pointless genus g curve over \mathbb{F}_q .

Theorem (R. Becker and D. Glass, 2013) Let a be the least residue of g mod p. Suppose that

$$g \ge (p - a - 1)(q - 1)$$
, if $a ,$

or

$$g \ge (p-2a-2)(q-1)$$
, if $0 \le a \le (p-3)/2$.

Then there is a non-singular hyperelliptic pointless curve of genus g defined over \mathbb{F}_q .

Remarks. This result shows that $g_q^{min} \leq O(pq)$ when q is odd. However, under special assumptions they obtain that $g_q^{min} \leq O(q)$.

Proof, odd *q* 0000 Proof, even q

◆□▶ ◆@▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Conclusion 000

The case of fixed *q*

Given q, denote by g_q^{min} the number such that for all $g \ge g_q^{min}$ there is a smooth pointless genus g curve over \mathbb{F}_q .

Theorem (R. Becker and D. Glass, 2013) Let a be the least residue of g mod p. Suppose that

$$g \geq (p-a-1)(q-1), ext{ if } a < p-1,$$

or

$$g \ge (p-2a-2)(q-1)$$
, if $0 \le a \le (p-3)/2$.

Then there is a non-singular hyperelliptic pointless curve of genus g defined over \mathbb{F}_q .

Remarks. This result shows that $g_q^{min} \leq O(pq)$ when q is odd. However, under special assumptions they obtain that $g_q^{min} \leq O(q)$.

Proof, odd q 0000 Proof, even q

Conclusion 000

The case of fixed *q*

Given q, denote by g_q^{min} the number such that for all $g \ge g_q^{min}$ there is a smooth pointless genus g curve over \mathbb{F}_q .

Theorem (R. Becker and D. Glass, 2013) Let a be the least residue of g mod p. Suppose that

$$g \geq (p-a-1)(q-1), ext{ if } a < p-1,$$

or

$$g \ge (p-2a-2)(q-1)$$
, if $0 \le a \le (p-3)/2$.

Then there is a non-singular hyperelliptic pointless curve of genus g defined over \mathbb{F}_q .

Remarks. This result shows that $g_q^{min} \leq O(pq)$ when q is odd. However, under special assumptions they obtain that $g_q^{min} \leq O(q)$. Introduction ○○● Preliminaries

Proof, odd *q* 0000 Proof, even q

Conclusion 000

The case of fixed *q*

The result of R. Becker and D. Glass possesses a generalization.

Theorem (I. Pogildiakov, 2017)

Let q be a prime power. Set

$$g_q = egin{cases} \max\{2,(q-3)/2\}, & q ext{ is odd}, \ \max\{2,q-1\}, & q ext{ is even}. \end{cases}$$

Suppose that $g \ge g_q$. Then there is a smooth genus g hyperelliptic curve over \mathbb{F}_q having no \mathbb{F}_q -points.

This implies a **linear bound** on the number g_a^{min} for all q.

Like R. Becker and D. Glass, we use explicit constructions, but

- 1. consider more cases (less assumptions),
- 2. involve more families of polynomials.

Preliminaries

Proof, odd q

Proof, even q

Conclusion 000

The case of fixed *q*

The result of R. Becker and D. Glass possesses a generalization.

Theorem (I. Pogildiakov, 2017)

Let q be a prime power. Set

$$g_q = egin{cases} \max\{2,(q-3)/2\}, & q \text{ is odd}, \ \max\{2,q-1\}, & q \text{ is even}. \end{cases}$$

Suppose that $g \ge g_q$. Then there is a smooth genus g hyperelliptic curve over \mathbb{F}_q having no \mathbb{F}_q -points.

This implies a linear bound on the number g_q^{min} for all q.

Like R. Becker and D. Glass, we use explicit constructions, but

- 1. consider more cases (less assumptions),
- 2. involve more families of polynomials.

Preliminaries

Proof, odd *q* 0000 Proof, even q

Conclusion 000

The case of fixed *q*

The result of R. Becker and D. Glass possesses a generalization.

Theorem (I. Pogildiakov, 2017)

Let q be a prime power. Set

$$g_q = egin{cases} \max\{2,(q-3)/2\}, & q \text{ is odd}, \ \max\{2,q-1\}, & q \text{ is even}. \end{cases}$$

Suppose that $g \ge g_q$. Then there is a smooth genus g hyperelliptic curve over \mathbb{F}_q having no \mathbb{F}_q -points.

This implies a linear bound on the number g_a^{min} for all q.

Like R. Becker and D. Glass, we use explicit constructions, but

- 1. consider more cases (less assumptions),
- 2. involve more families of polynomials.

 $2g+1 \leq \max\{2 \deg h(x), \deg f(x)\} \leq 2g+2.$

As a projective curve, C is the union of two affine patches:

$$y^{2} + h(x)y = f(x)$$
, and $y^{2} + x^{g+1}h(1/x)y = x^{2g+2}f(1/x)$.

The curve $\mathcal C$ is smooth if and only if

h(x) and $h'(x)^2 f(x) + f'(x)^2$ are comprime.

ション ふゆ アメリア メリア しょうくの

Special case: if q is odd, then we can let h(x) = 0.

$$2g+1 \leq \max\{2 \deg h(x), \deg f(x)\} \leq 2g+2.$$

As a projective curve, $\mathcal C$ is the union of two affine patches:

$$y^2 + h(x)y = f(x)$$
, and $y^2 + x^{g+1}h(1/x)y = x^{2g+2}f(1/x)$.

The curve ${\mathcal C}$ is smooth if and only if

h(x) and $h'(x)^2 f(x) + f'(x)^2$ are comprime.

ション ふゆ アメリア メリア しょうくの

Special case: if q is odd, then we can let h(x) = 0.

$$2g+1 \leq \max\{2 \deg h(x), \deg f(x)\} \leq 2g+2.$$

As a projective curve, C is the union of two affine patches:

$$y^{2} + h(x)y = f(x)$$
, and $y^{2} + x^{g+1}h(1/x)y = x^{2g+2}f(1/x)$.

The curve \mathcal{C} is smooth if and only if

h(x) and $h'(x)^2 f(x) + f'(x)^2$ are comprime.

ション ふゆ アメリア メリア しょうくの

Special case: if q is odd, then we can let h(x) = 0.

$$2g+1 \leq \max\{2\deg h(x), \deg f(x)\} \leq 2g+2.$$

As a projective curve, C is the union of two affine patches:

$$y^{2} + h(x)y = f(x)$$
, and $y^{2} + x^{g+1}h(1/x)y = x^{2g+2}f(1/x)$.

The curve \mathcal{C} is smooth if and only if

$$h(x)$$
 and $h'(x)^2 f(x) + f'(x)^2$ are comprime.

Special case: if q is odd, then we can let h(x) = 0.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Preliminaries

Proof, odd *q* 0000 Proof, even *q* 0000

ション ふゆ アメリア メリア しょうくの

Conclusion 000

Hyperelliptic curves over \mathbb{F}_q , odd q.

Let C be a hyperelliptic curve $y^2 = f(x)$ over \mathbb{F}_q , where q is odd. We have the following information:

1. ${\mathcal C}$ is the union of two affine patches

$$y^2 = f(x)$$
 and $y^2 = x^{2g+2}f(1/x)$.

- 2. C is smooth if and only if f(x) is square-free.
- 3. The number of rational points of ${\mathcal C}$ is

$$N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty},$$

where

- $N_1(\mathcal{C})^{aff}$ is the number of affine points in $\mathcal{C}(\mathbb{F}_q)$.
- $N_1(\mathcal{C})^{\infty}$ is the number of points in $\mathcal{C}(\mathbb{F}_q)$ that lie at ∞ .

Intro	du	cti	on
000			

Proof, odd *q* 0000 Proof, even q 0000 Conclusion 000

Counting rational points on C, odd q.

Let us define

$$\begin{split} N^0 &= \#\{\alpha \in \mathbb{F}_q \mid f(\alpha) = 0\},\\ N^r &= \#\{\alpha \in \mathbb{F}_q \mid f(\alpha) \text{ is a q.r.}\}. \end{split}$$

Then $N_1(\mathcal{C})^{aff} = N^0 + 2N^r$. Note, that $N_1(\mathcal{C})^{aff} \leq 2q$.

Points at infinity belong to the affine patch $y^2 = x^{2g+2}f(1/x)$ and correspond to the solutions with x = 0, i.e. $y^2 = LT(f(x))$.

- 1. If deg f(x) = 2g + 1, then $N_1(\mathcal{C})^{\infty} = 1$.
- 2. If $\deg f(x)=2g+2$ and LT(f) is a q.r., then $N_1(\mathcal{C})^\infty=2$.
- 3. If $\deg f(x)=2g+2$ and LT(f) is a q.n.r, then $N_1(\mathcal{C})^\infty=0$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Intro	du	cti	on
000			

Proof, odd *q* 0000 Proof, even q

Conclusion 000

Counting rational points on C, odd q.

Let us define

$$\begin{split} N^0 &= \#\{\alpha \in \mathbb{F}_q \mid f(\alpha) = 0\},\\ N^r &= \#\{\alpha \in \mathbb{F}_q \mid f(\alpha) \text{ is a q.r.}\}. \end{split}$$

Then $N_1(\mathcal{C})^{aff} = N^0 + 2N^r$. Note, that $N_1(\mathcal{C})^{aff} \leq 2q$. Points at infinity belong to the affine patch $y^2 = x^{2g+2}f(1/x)$ and correspond to the solutions with x = 0, i.e. $y^2 = LT(f(x))$.

1. If deg f(x) = 2g + 1, then $N_1(\mathcal{C})^{\infty} = 1$. 2. If deg f(x) = 2g + 2 and LT(f) is a q.r., then $N_1(\mathcal{C})^{\infty} = 2$. 3. If deg f(x) = 2g + 2 and LT(f) is a q.n.r, then $N_1(\mathcal{C})^{\infty} = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Intro	du	cti	on
000			

Proof, odd *q* 0000 Proof, even q 0000 Conclusion 000

Counting rational points on C, odd q.

Let us define

$$\begin{split} N^0 &= \#\{\alpha \in \mathbb{F}_q \mid f(\alpha) = 0\},\\ N^r &= \#\{\alpha \in \mathbb{F}_q \mid f(\alpha) \text{ is a q.r.}\}. \end{split}$$

Then $N_1(\mathcal{C})^{aff} = N^0 + 2N^r$. Note, that $N_1(\mathcal{C})^{aff} \leq 2q$. Points at infinity belong to the affine patch $y^2 = x^{2g+2}f(1/x)$ and correspond to the solutions with x = 0, i.e. $y^2 = LT(f(x))$.

1. If deg f(x) = 2g + 1, then $N_1(\mathcal{C})^{\infty} = 1$. 2. If deg f(x) = 2g + 2 and LT(f) is a q.r., then $N_1(\mathcal{C})^{\infty} = 2$. 3. If deg f(x) = 2g + 2 and LT(f) is a q.n.r, then $N_1(\mathcal{C})^{\infty} = 0$.

Preliminaries

Proof, odd q

Proof, even q

Conclusion 000

\mathbb{F}_{q} -maximal hyperelliptic curves

Let us call f(x) to be a *good polynomial*, if it satisfies the following conditions:

- 1. $\deg f(x) = 2g + 2$ is even,
- 2. f(x) is squarefree,
- 3. LT(f(x)) is a quadratic residue,
- 4. $f(\alpha)$ is a q.r. for all $\alpha \in \mathbb{F}_q \ (\Rightarrow N^0_{f(x)} = 0, \ N^r_{f(x)} = 2q).$

Let C be a curve $y^2 = f(x)$ over \mathbb{F}_q , where f(x) is good. Then C is smooth of genus g having

$$N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty} = N_{f(x)}^0 + 2N_{f(x)}^r + N_1(\mathcal{C})^{\infty} = 2q + 2.$$

Preliminaries

Proof, odd q 0000 Proof, even q

Conclusion 000

\mathbb{F}_q -maximal hyperelliptic curves

Let us call f(x) to be a *good polynomial*, if it satisfies the following conditions:

- 1. $\deg f(x) = 2g + 2$ is even,
- 2. f(x) is squarefree
- 3. LT(f(x)) is a quadratic residue,
- 4. $f(\alpha)$ is a q.r. for all $\alpha \in \mathbb{F}_q \ (\Rightarrow N^0_{f(x)} = 0, \ N^r_{f(x)} = 2q).$

Let C be a curve $y^2 = f(x)$ over \mathbb{F}_q , where f(x) is good. Then C is smooth of genus g having

$$N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty} = N_{f(x)}^0 + 2N_{f(x)}^r + N_1(\mathcal{C})^{\infty} = 2q + 2.$$

Preliminaries

Proof, odd *q* 0000 Proof, even q

Conclusion 000

\mathbb{F}_{q} -maximal hyperelliptic curves

Let us call f(x) to be a *good polynomial*, if it satisfies the following conditions:

- 1. $\deg f(x) = 2g + 2$ is even,
- 2. f(x) is squarefree,
- 3. LT(f(x)) is a quadratic residue,
- 4. $f(\alpha)$ is a q.r. for all $\alpha \in \mathbb{F}_q$ ($\Rightarrow N^0_{f(x)} = 0$, $N^r_{f(x)} = 2q$).

Let C be a curve $y^2 = f(x)$ over \mathbb{F}_q , where f(x) is good. Then C is smooth of genus g having

$$N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty} = N_{f(x)}^0 + 2N_{f(x)}^r + N_1(\mathcal{C})^{\infty} = 2q + 2.$$

Preliminaries

Proof, odd *q* 0000 Proof, even q

Conclusion 000

\mathbb{F}_{q} -maximal hyperelliptic curves

Let us call f(x) to be a *good polynomial*, if it satisfies the following conditions:

- 1. $\deg f(x) = 2g + 2$ is even,
- 2. f(x) is squarefree,
- 3. LT(f(x)) is a quadratic residue,

4. $f(\alpha)$ is a q.r. for all $\alpha \in \mathbb{F}_q$ ($\Rightarrow N_{f(x)}^0 = 0$, $N_{f(x)}^r = 2q$).

Let C be a curve $y^2 = f(x)$ over \mathbb{F}_q , where f(x) is good. Then C is smooth of genus g having

 $N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty} = N_{f(x)}^0 + 2N_{f(x)}^r + N_1(\mathcal{C})^{\infty} = 2q + 2.$

Preliminaries

Proof, odd *q* 0000 Proof, even q

Conclusion 000

\mathbb{F}_{q} -maximal hyperelliptic curves

Let us call f(x) to be a *good polynomial*, if it satisfies the following conditions:

- 1. $\deg f(x) = 2g + 2$ is even,
- 2. f(x) is squarefree,
- 3. LT(f(x)) is a quadratic residue,
- 4. $f(\alpha)$ is a q.r. for all $\alpha \in \mathbb{F}_q$ ($\Rightarrow N^0_{f(x)} = 0$, $N^r_{f(x)} = 2q$).

Let $\mathcal C$ be a curve $y^2 = f(x)$ over $\mathbb F_q$, where f(x) is good. Then $\mathcal C$ is smooth of genus g having

 $N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty} = N_{f(x)}^0 + 2N_{f(x)}^r + N_1(\mathcal{C})^{\infty} = 2q + 2.$

We will call such a curve \mathbb{F}_q -maximal, since $N_1 \leq 2q+2$ for every hyperelliptic curve over \mathbb{F}_q .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Preliminaries

Proof, odd *q* 0000 Proof, even q

・ロット (口) ・ (日) ・ (1) \cdot (1) \cdot

Conclusion 000

 \mathbb{F}_{q} -maximal hyperelliptic curves

Let us call f(x) to be a *good polynomial*, if it satisfies the following conditions:

- 1. $\deg f(x) = 2g + 2$ is even,
- 2. f(x) is squarefree,
- 3. LT(f(x)) is a quadratic residue,
- 4. $f(\alpha)$ is a q.r. for all $\alpha \in \mathbb{F}_q \ (\Rightarrow N^0_{f(x)} = 0, \ N^r_{f(x)} = 2q).$

Let C be a curve $y^2 = f(x)$ over \mathbb{F}_q , where f(x) is good. Then C is smooth of genus g having

$$N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty} = N_{f(x)}^0 + 2N_{f(x)}^r + N_1(\mathcal{C})^{\infty} = 2q + 2.$$

Preliminaries

Proof, odd *q* 0000 Proof, even q

Conclusion 000

 \mathbb{F}_q -maximal hyperelliptic curves

Let us call f(x) to be a *good polynomial*, if it satisfies the following conditions:

- 1. $\deg f(x) = 2g + 2$ is even,
- 2. f(x) is squarefree,
- 3. LT(f(x)) is a quadratic residue,
- 4. $f(\alpha)$ is a q.r. for all $\alpha \in \mathbb{F}_q \ (\Rightarrow N^0_{f(x)} = 0, \ N^r_{f(x)} = 2q).$

Let C be a curve $y^2 = f(x)$ over \mathbb{F}_q , where f(x) is good. Then C is smooth of genus g having

$$N_1(\mathcal{C}) = N_1(\mathcal{C})^{aff} + N_1(\mathcal{C})^{\infty} = N_{f(x)}^0 + 2N_{f(x)}^r + N_1(\mathcal{C})^{\infty} = 2q + 2.$$

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion 000

Construction of a pointless curve over \mathbb{F}_{q} , odd q

Let C be a smooth \mathbb{F}_q -maximal hyperelliptic curve over \mathbb{F}_q . It can be defined by $y^2 = f(x)$, where f(x) is good of degree 2g + 2, where g is the genus of C.

Let C' be its quadratic twist: $\alpha y^2 = f(x)$, α is a q.n.r.

The Weil theorem implies that

$$\begin{split} & \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = q + 1 - \mathit{N}_1(\mathcal{C}) = -q - 1, \\ & \mathit{N}_1(\mathcal{C}') = q + 1 - \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}'}) = q + 1 + \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = 0, \end{split}$$

where *Fr* stands for Frobenius endomorphism.

Thus, C' is smooth pointless hyperelliptic genus g curve over \mathbb{F}_q . The idea of the search of pointless curves:

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion 000

Construction of a pointless curve over \mathbb{F}_q , odd q

Let C be a smooth \mathbb{F}_q -maximal hyperelliptic curve over \mathbb{F}_q . It can be defined by $y^2 = f(x)$, where f(x) is good of degree 2g + 2, where g is the genus of C.

Let \mathcal{C}' be its quadratic twist: $lpha y^2 = f(x)$, lpha is a q.n.r.

The Weil theorem implies that

$$\begin{split} & \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = q + 1 - \mathit{N}_1(\mathcal{C}) = -q - 1, \\ & \mathit{N}_1(\mathcal{C}') = q + 1 - \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}'}) = q + 1 + \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = 0, \end{split}$$

where *Fr* stands for Frobenius endomorphism.

Thus, C' is smooth pointless hyperelliptic genus g curve over \mathbb{F}_q . The idea of the search of pointless curves:

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion

Construction of a pointless curve over \mathbb{F}_{q} , odd q

Let C be a smooth \mathbb{F}_q -maximal hyperelliptic curve over \mathbb{F}_q . It can be defined by $y^2 = f(x)$, where f(x) is good of degree 2g + 2, where g is the genus of C.

Let C' be its quadratic twist: $\alpha y^2 = f(x)$, α is a q.n.r.

The Weil theorem implies that

$$egin{aligned} &\operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = q+1 - \mathit{N}_1(\mathcal{C}) = -q-1, \ &\mathcal{N}_1(\mathcal{C}') = q+1 - \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}'}) = q+1 + \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = 0, \end{aligned}$$

where *Fr* stands for Frobenius endomorphism.

Thus, \mathcal{C}' is smooth pointless hyperelliptic genus g curve over \mathbb{F}_q . The idea of the search of pointless curves:

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion 000

Construction of a pointless curve over \mathbb{F}_q , odd q

Let C be a smooth \mathbb{F}_q -maximal hyperelliptic curve over \mathbb{F}_q . It can be defined by $y^2 = f(x)$, where f(x) is good of degree 2g + 2, where g is the genus of C.

Let C' be its quadratic twist: $\alpha y^2 = f(x)$, α is a q.n.r.

The Weil theorem implies that

$$egin{aligned} &\operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = q+1 - \mathit{N}_1(\mathcal{C}) = -q-1, \ &\mathcal{N}_1(\mathcal{C}') = q+1 - \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}'}) = q+1 + \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = 0, \end{aligned}$$

where *Fr* stands for Frobenius endomorphism.

Thus, C' is smooth pointless hyperelliptic genus g curve over \mathbb{F}_q . The idea of the search of pointless curves:

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion 000

Construction of a pointless curve over \mathbb{F}_{q} , odd q

Let C be a smooth \mathbb{F}_q -maximal hyperelliptic curve over \mathbb{F}_q . It can be defined by $y^2 = f(x)$, where f(x) is good of degree 2g + 2, where g is the genus of C.

Let C' be its quadratic twist: $\alpha y^2 = f(x)$, α is a q.n.r.

The Weil theorem implies that

$$egin{aligned} &\operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = q+1 - \mathit{N}_1(\mathcal{C}) = -q-1, \ &\mathcal{N}_1(\mathcal{C}') = q+1 - \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}'}) = q+1 + \operatorname{Tr}(\mathit{Fr}_{\mathcal{C}}) = 0, \end{aligned}$$

where *Fr* stands for Frobenius endomorphism.

Thus, C' is smooth pointless hyperelliptic genus g curve over \mathbb{F}_q . The idea of the search of pointless curves:

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Linear bound on the genus for odd *q*

Theorem

Given odd q, for all $g \ge (q-3)/2$ (or $g \ge 2$) there is a pointless smooth hyperelliptic curve over \mathbb{F}_q of genus g.

Idea: for each step find a monic polynomial of degree 2g + 2 having good values and then check whether it is square-free or not.

・ロト ・ 四ト ・ 日ト ・ 日 ・

The proof is divided into three parts, depending on a family of good polynomials.

Note:

- 1. We omit technical details of proofs of smoothness.
- 2. We pay attention on the values of polynomials.
- 3. Some times polynomials can be defined over \mathbb{F}_p !

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Linear bound on the genus for odd *q*

Theorem

Given odd q, for all $g \ge (q-3)/2$ (or $g \ge 2$) there is a pointless smooth hyperelliptic curve over \mathbb{F}_q of genus g.

Idea: for each step find a monic polynomial of degree 2g + 2 having good values and then check whether it is square-free or not.

ション ふゆ く 山 マ チャット しょうくしゃ

The proof is divided into three parts, depending on a family of good polynomials.

Note:

- 1. We omit technical details of proofs of smoothness.
- 2. We pay attention on the values of polynomials.
- 3. Some times polynomials can be defined over \mathbb{F}_p !

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Linear bound on the genus for odd *q*

Theorem

Given odd q, for all $g \ge (q-3)/2$ (or $g \ge 2$) there is a pointless smooth hyperelliptic curve over \mathbb{F}_q of genus g.

Idea: for each step find a monic polynomial of degree 2g + 2 having good values and then check whether it is square-free or not.

うして ふゆう ふほう ふほう うらつ

The proof is divided into three parts, depending on a family of good polynomials.

Note:

- 1. We omit technical details of proofs of smoothness.
- 2. We pay attention on the values of polynomials.
- 3. Some times polynomials can be defined over $\mathbb{F}_p!$

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Linear bound on the genus for odd *q*

Theorem

Given odd q, for all $g \ge (q-3)/2$ (or $g \ge 2$) there is a pointless smooth hyperelliptic curve over \mathbb{F}_q of genus g.

Idea: for each step find a monic polynomial of degree 2g + 2 having good values and then check whether it is square-free or not.

うして ふゆう ふほう ふほう うらつ

The proof is divided into three parts, depending on a family of good polynomials.

Note:

- 1. We omit technical details of proofs of smoothness.
- 2. We pay attention on the values of polynomials.
- 3. Some times polynomials can be defined over \mathbb{F}_p !

on	Preliminaries	Proof, odd q	Proof, even q	Conclusion
	00000	0000	0000	000

Let $g \geq (q-1)/2$.

Special condition on *q* and *g* :

- 1. $\mathcal{D}(q,g)>$ 2, or $\mathcal{D}(q,g)=$ 2 and $\mathcal{L}(q,g)>$ 1, or
- 2. $\mathcal{D}(q,g)=$ 2 and $\mathcal{L}(q,g)=$ 1, but one of the following holds:

$$q=p^{2n}$$
 or $q=p^{2n+1}$, $p\equiv 1 \pmod{8}$ or $2g+2\not\equiv -1/2 \pmod{p}$,

where $\mathcal{D}(q,g)=\gcd(2g+2,q-1),$ $\mathcal{L}(q,g)=\lfloor(2g+2)/(q-1)\rfloor.$ The polynomial

 $f(x) = x^{2g+2} - x^{2g+2-l(q-1)} + a^2, \quad a \in \mathbb{F}_q^*, \quad 1 \le l \le \mathcal{L}(q,g).$

1. is monic of even degree,

- 2. has good values over \mathbb{F}_q , since $f(x)=\left(x^{\prime(q-1)}-1
 ight)x^*+a^2,$
- 3. is square-free, when q and g satisfy the condition, which is implied by computation of the discriminant of f(x).

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Let $g \ge (q-1)/2$.

Special condition on q and g:

- 1. $\mathcal{D}(q,g)>$ 2, or $\mathcal{D}(q,g)=$ 2 and $\mathcal{L}(q,g)>$ 1, or
- 2. $\mathcal{D}(q,g)=2$ and $\mathcal{L}(q,g)=1$, but one of the following holds:

$$q=p^{2n}$$
 or $q=p^{2n+1}$, $p\equiv 1 \pmod{8}$ or $2g+2
ot\equiv -1/2 \pmod{p}$,

・ロト ・ 行下・ ・ ヨト ・ ヨト ・ ヨー

where $\mathcal{D}(q,g) = \gcd(2g+2,q-1)$, $\mathcal{L}(q,g) = \lfloor (2g+2)/(q-1) \rfloor$.

The polynomial

 $f(x) = x^{2g+2} - x^{2g+2-l(q-1)} + a^2, \quad a \in \mathbb{F}_q^*, \quad 1 \le l \le \mathcal{L}(q,g).$

1. is monic of even degree,

- 2. has good values over \mathbb{F}_q , since $f(x)=\left(x^{\prime(q-1)}-1
 ight)x^*+a^2,$
- is square-free, when q and g satisfy the condition, which is implied by computation of the discriminant of f(x).

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Let $g \ge (q-1)/2$.

Special condition on q and g:

- 1. $\mathcal{D}(q,g)>$ 2, or $\mathcal{D}(q,g)=$ 2 and $\mathcal{L}(q,g)>$ 1, or
- 2. $\mathcal{D}(q,g)=2$ and $\mathcal{L}(q,g)=1$, but one of the following holds:

$$q=p^{2n}$$
 or $q=p^{2n+1}$, $p\equiv 1 \pmod{8}$ or $2g+2 \not\equiv -1/2 \pmod{p}$,

・ロト ・ 日 ・ モート ・ 田 ・ うへで

where $\mathcal{D}(q,g)=\gcd(2g+2,q-1),$ $\mathcal{L}(q,g)=\lfloor(2g+2)/(q-1)\rfloor.$ The polynomial

$$f(x)=x^{2g+2}-x^{2g+2-l(q-1)}+a^2,\quad a\in \mathbb{F}_q^*,\quad 1\leq l\leq \mathcal{L}(q,g).$$

1. is monic of even degree,

- 2. has good values over \mathbb{F}_q , since $f(x) = \left(x^{l(q-1)}-1
 ight)x^*+a^2$
- is square-free, when q and g satisfy the condition, which is implied by computation of the discriminant of f(x).

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Let $g \ge (q-1)/2$.

Special condition on q and g:

- 1. $\mathcal{D}(q,g)>$ 2, or $\mathcal{D}(q,g)=$ 2 and $\mathcal{L}(q,g)>$ 1, or
- 2. $\mathcal{D}(q,g)=2$ and $\mathcal{L}(q,g)=1$, but one of the following holds:

$$q=p^{2n}$$
 or $q=p^{2n+1}$, $p\equiv 1 \pmod{8}$ or $2g+2 \not\equiv -1/2 \pmod{p}$,

・ロト ・ 日 ・ モート ・ 田 ・ うへで

where $\mathcal{D}(q,g)=\gcd(2g+2,q-1),$ $\mathcal{L}(q,g)=\lfloor(2g+2)/(q-1)\rfloor.$ The polynomial

$$f(x)=x^{2g+2}-x^{2g+2-l(q-1)}+a^2, \quad a\in \mathbb{F}_q^*, \quad 1\leq l\leq \mathcal{L}(q,g).$$

- 1. is monic of even degree,
- 2. has good values over \mathbb{F}_q , since $f(x) = (x^{l(q-1)} 1) x^* + a^2$,
- 3. is square-free, when q and g satisfy the condition, which is implied by computation of the discriminant of f(x).

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Let $g \ge (q-1)/2$.

Special condition on q and g:

- 1. $\mathcal{D}(q,g)>$ 2, or $\mathcal{D}(q,g)=$ 2 and $\mathcal{L}(q,g)>$ 1, or
- 2. $\mathcal{D}(q,g)=2$ and $\mathcal{L}(q,g)=1$, but one of the following holds:

$$q=p^{2n}$$
 or $q=p^{2n+1}$, $p\equiv 1 \pmod{8}$ or $2g+2 \not\equiv -1/2 \pmod{p}$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

where $\mathcal{D}(q,g)=\gcd(2g+2,q-1),$ $\mathcal{L}(q,g)=\lfloor(2g+2)/(q-1)\rfloor.$ The polynomial

$$f(x)=x^{2g+2}-x^{2g+2-l(q-1)}+a^2,\quad a\in \mathbb{F}_q^*,\quad 1\leq l\leq \mathcal{L}(q,g).$$

- 1. is monic of even degree,
- 2. has good values over \mathbb{F}_q , since $f(x) = (x^{l(q-1)} 1) x^* + a^2$,
- 3. is square-free, when q and g satisfy the condition, which is implied by computation of the discriminant of f(x).

Preliminaries

Proof, odd *q*

Proof, even q

Conclusion 000

Sketch of proof: part II

Let $g \ge (q-1)/2$ and the special condition does not hold. Let n = 2g + 2 - (q-1), and $b, \xi \in \mathbb{F}_p^*$, ξ is a q.n.r. The polynomial

$$f(x) = x^{q-1+n} + b^2 x^{2n} - (2b^2\xi + 1)x^n + b^2\xi^2$$

= $(x^{q-1} - 1)x^n + b^2(x^n - \xi)^2$

1. is monic of even degree,

- 2. has good values (since n is even and ξ is not a q.n.r),
- 3. is square-free, if one chooses b, given ξ , in the way that

$$s^2 = b^4 \xi^2 + 4b^2 \xi + 1$$

and $s \neq 0$, $b \neq 0$.

Preliminaries

Proof, odd q

Proof, even q

Conclusion 000

Sketch of proof: part ||

Let $g \ge (q-1)/2$ and the special condition does not hold. Let n = 2g + 2 - (q-1), and $b, \xi \in \mathbb{F}_p^*$, ξ is a q.n.r. The polynomial

$$f(x) = x^{q-1+n} + b^2 x^{2n} - (2b^2\xi + 1)x^n + b^2\xi^2$$

= $(x^{q-1} - 1)x^n + b^2(x^n - \xi)^2$

1. is monic of even degree,

- 2. has good values (since n is even and ξ is not a q.n.r),
- 3. is square-free, if one chooses b, given ξ , in the way that

$$s^2 = b^4 \xi^2 + 4b^2 \xi + 1$$

and $s \neq 0$, $b \neq 0$.

Preliminaries

Proof, odd q

Proof, even q

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusion

Sketch of proof: part ||

Let $g \ge (q-1)/2$ and the special condition does not hold. Let n = 2g + 2 - (q-1), and $b, \xi \in \mathbb{F}_p^*$, ξ is a q.n.r. The polynomial

$$f(x) = x^{q-1+n} + b^2 x^{2n} - (2b^2\xi + 1)x^n + b^2\xi^2$$

= $(x^{q-1} - 1)x^n + b^2(x^n - \xi)^2$

1. is monic of even degree,

2. has good values (since *n* is even and ξ is not a q.n.r), 3. is square-free, if one chooses *b*, given ξ , in the way that

$$s^2 = b^4 \xi^2 + 4b^2 \xi + 1$$

and $s \neq 0$, $b \neq 0$.

Preliminaries

Proof, odd q

Proof, even q

Conclusion

Sketch of proof: part ||

Let $g \ge (q-1)/2$ and the special condition does not hold. Let n = 2g + 2 - (q-1), and $b, \xi \in \mathbb{F}_p^*$, ξ is a q.n.r. The polynomial

$$f(x) = x^{q-1+n} + b^2 x^{2n} - (2b^2\xi + 1)x^n + b^2\xi^2$$

= $(x^{q-1} - 1)x^n + b^2(x^n - \xi)^2$

- 1. is monic of even degree,
- 2. has good values (since n is even and ξ is not a q.n.r),
- 3. is square-free, if one chooses b, given ξ , in the way that

$$s^2 = b^4 \xi^2 + 4b^2 \xi + 1$$

and $s \neq 0$, $b \neq 0$.

Preliminaries

Proof, odd q

Proof, even q 0000

ション ふゆ アメリア ショー シック

Conclusion 000

Sketch of proof: part II

Let $g \ge (q-1)/2$ and the special condition does not hold. Let n = 2g + 2 - (q-1), and $b, \xi \in \mathbb{F}_p^*$, ξ is a q.n.r. The polynomial

$$f(x) = x^{q-1+n} + b^2 x^{2n} - (2b^2\xi + 1)x^n + b^2\xi^2$$

= $(x^{q-1} - 1)x^n + b^2(x^n - \xi)^2$

- 1. is monic of even degree,
- 2. has good values (since *n* is even and ξ is not a q.n.r),
- 3. is square-free, if one chooses b, given ξ , in the way that

$$s^2 = b^4 \xi^2 + 4b^2 \xi + 1$$

and $s \neq 0$, $b \neq 0$.

Preliminaries

Proof, odd q

Proof, even q

Conclusion 000

Sketch of proof: part ||

Let $g \ge (q-1)/2$ and the special condition does not hold. Let n = 2g + 2 - (q-1), and $b, \xi \in \mathbb{F}_p^*$, ξ is a q.n.r. The polynomial

$$f(x) = x^{q-1+n} + b^2 x^{2n} - (2b^2\xi + 1)x^n + b^2\xi^2$$

= $(x^{q-1} - 1)x^n + b^2(x^n - \xi)^2$

- 1. is monic of even degree,
- 2. has good values (since *n* is even and ξ is not a q.n.r),
- 3. is square-free, if one chooses b, given ξ , in the way that

$$s^2 = b^4 \xi^2 + 4b^2 \xi + 1$$

and $s \neq 0$, $b \neq 0$.

Remark. We have treated all cases for $g \ge (q-1)/2$, so that it suffices to prove the theorem for g = (q-3)/2.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Intro	du	cti	on	
000				

Preliminaries

Proof, odd q

Proof, even q

Conclusion 000

Sketch of proof: part III

Let g = (q-3)/2. We can assume that q > 5.

The curve $x^2 + y^2 = \delta^2$ over \mathbb{F}_q has a rational point (x, y) such that $xy \neq 0$.

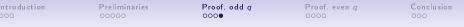
Let α , β , $\gamma \in \mathbb{F}_q$ be residues such that $\alpha + \beta = \gamma$.

The polynomial

$$f(x) = \frac{\alpha}{\gamma} \left(x^{(q-1)/2} + 1 \right)^2 + \frac{\beta}{\gamma} \left(x^{(q-1)/2} - 1 \right)^2$$
$$= x^{q-1} + 2\frac{\alpha - \beta}{\gamma} x^{(q-1)/2} + 1.$$

is monic, of even degree and has good values (we have either $f(a) = 4\alpha/\gamma$, or $f(a) = 4\beta/\gamma$, or f(a) = 1 for all $a \in \mathbb{F}_q$). The condition $\alpha\beta \neq 0$ implies that f(x) is square-free.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目 - のへで



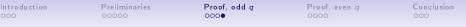
Let g = (q-3)/2. We can assume that q > 5. The curve $x^2 + y^2 = \delta^2$ over \mathbb{F}_q has a rational point (x, y) such that $xy \neq 0$.

Let $lpha,\ eta,\ \gamma\in \mathbb{F}_q$ be residues such that $lpha+eta=\gamma.$ The polynomial

$$f(x) = \frac{\alpha}{\gamma} \left(x^{(q-1)/2} + 1 \right)^2 + \frac{\beta}{\gamma} \left(x^{(q-1)/2} - 1 \right)^2$$
$$= x^{q-1} + 2\frac{\alpha - \beta}{\gamma} x^{(q-1)/2} + 1.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

is monic, of even degree and has good values (we have either $f(a) = 4\alpha/\gamma$, or $f(a) = 4\beta/\gamma$, or f(a) = 1 for all $a \in \mathbb{F}_q$). The condition $\alpha\beta \neq 0$ implies that f(x) is square-free.



Let g = (q-3)/2. We can assume that q > 5. The curve $x^2 + y^2 = \delta^2$ over \mathbb{F}_q has a rational point (x, y) such that $xy \neq 0$.

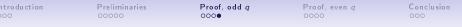
Let α , β , $\gamma \in \mathbb{F}_q$ be residues such that $\alpha + \beta = \gamma$.

The polynomial

$$f(x) = \frac{\alpha}{\gamma} \left(x^{(q-1)/2} + 1 \right)^2 + \frac{\beta}{\gamma} \left(x^{(q-1)/2} - 1 \right)^2$$
$$= x^{q-1} + 2\frac{\alpha - \beta}{\gamma} x^{(q-1)/2} + 1.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

is monic, of even degree and has good values (we have either $f(a) = 4\alpha/\gamma$, or $f(a) = 4\beta/\gamma$, or f(a) = 1 for all $a \in \mathbb{F}_q$). The condition $\alpha\beta \neq 0$ implies that f(x) is square-free.

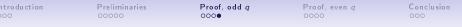


Let g = (q-3)/2. We can assume that q > 5. The curve $x^2 + y^2 = \delta^2$ over \mathbb{F}_q has a rational point (x, y) such that $xy \neq 0$. Let α , β , $\gamma \in \mathbb{F}_q$ be residues such that $\alpha + \beta = \gamma$. The polynomial

$$f(x) = \frac{\alpha}{\gamma} \left(x^{(q-1)/2} + 1 \right)^2 + \frac{\beta}{\gamma} \left(x^{(q-1)/2} - 1 \right)^2$$
$$= x^{q-1} + 2\frac{\alpha - \beta}{\gamma} x^{(q-1)/2} + 1.$$

is monic, of even degree and has good values (we have either $f(a) = 4\alpha/\gamma$, or $f(a) = 4\beta/\gamma$, or f(a) = 1 for all $a \in \mathbb{F}_q$). The condition $\alpha\beta \neq 0$ implies that f(x) is square-free.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

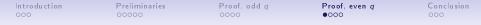


Let g = (q-3)/2. We can assume that q > 5. The curve $x^2 + y^2 = \delta^2$ over \mathbb{F}_q has a rational point (x, y) such that $xy \neq 0$. Let α , β , $\gamma \in \mathbb{F}_q$ be residues such that $\alpha + \beta = \gamma$. The polynomial

$$f(x) = \frac{\alpha}{\gamma} \left(x^{(q-1)/2} + 1 \right)^2 + \frac{\beta}{\gamma} \left(x^{(q-1)/2} - 1 \right)^2$$
$$= x^{q-1} + 2\frac{\alpha - \beta}{\gamma} x^{(q-1)/2} + 1.$$

is monic, of even degree and has good values (we have either $f(a) = 4\alpha/\gamma$, or $f(a) = 4\beta/\gamma$, or f(a) = 1 for all $a \in \mathbb{F}_q$). The condition $\alpha\beta \neq 0$ implies that f(x) is square-free.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@



Hyperelliptic curves over \mathbb{F}_q , q is even

This is a completely different case: for every hyperelliptic curve over \mathbb{F}_{2^n}

$$y^2 + h(x)y = f(x)$$

we can not let h(x) = 0 and it is not trivial to count rational points.

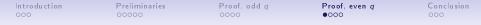
The existence of pointless curves over \mathbb{F}_2 is known.

Theorem (H. Stichtenoth, 2011)

For every $g \ge 2$ there is a non-singular pointless curve over \mathbb{F}_2 .

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Goal: study the case q > 2.



Hyperelliptic curves over \mathbb{F}_q , q is even

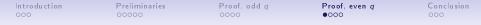
This is a completely different case: for every hyperelliptic curve over \mathbb{F}_{2^n}

$$y^2 + h(x)y = f(x)$$

we can not let h(x) = 0 and it is not trivial to count rational points. The existence of pointless curves over \mathbb{F}_2 is known. Theorem (H. Stichtenoth, 2011)

For every $g \ge 2$ there is a non-singular pointless curve over \mathbb{F}_2 . Goal: study the case q > 2.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ



Hyperelliptic curves over \mathbb{F}_q , q is even

This is a completely different case: for every hyperelliptic curve over \mathbb{F}_{2^n}

$$y^2 + h(x)y = f(x)$$

we can not let h(x) = 0 and it is not trivial to count rational points. The existence of pointless curves over \mathbb{F}_2 is known.

Theorem (H. Stichtenoth, 2011)

For every $g \ge 2$ there is a non-singular pointless curve over \mathbb{F}_2 . Goal: study the case q > 2.

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Linear bound on the genus for even *q*

Theorem

Let $q = 2^n$, q > 2. For every $g \ge q - 1$ there is a pointless smooth curve over \mathbb{F}_q of the form $y^2 + a f(x)y = b h(x)$, where

$$f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d,$$

for some a, b, c, $d \in \mathbb{F}_q^*$.

The goal: find auxiliary a, b, c, and d in \mathbb{F}_q^* . Proof steps:

- 1. The smoothness implies a condition on *c* and *d*.
- Choose b, d by a, c (and by two good elements in F^{*}_q) in order to guaranty the pointlessness.

- 日本 本語 本 本 田 本 田 本 田 本

The condition q > 2 is essential for the last step.

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Linear bound on the genus for even *q*

Theorem

Let $q = 2^n$, q > 2. For every $g \ge q - 1$ there is a pointless smooth curve over \mathbb{F}_q of the form $y^2 + a f(x)y = b h(x)$, where

$$f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d,$$

for some $a, b, c, d \in \mathbb{F}_{q}^{*}$.

The goal: find auxiliary *a*, *b*, *c*, and *d* in \mathbb{F}_q^* .

Proof steps:

- 1. The smoothness implies a condition on *c* and *d*.
- Choose b, d by a, c (and by two good elements in F^{*}_q) in order to guaranty the pointlessness.

うして ふゆう ふほう ふほう うらつ

The condition q > 2 is essential for the last step.

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even q	Conclusion
000	00000	0000	0000	000

Linear bound on the genus for even *q*

Theorem

Let $q = 2^n$, q > 2. For every $g \ge q - 1$ there is a pointless smooth curve over \mathbb{F}_q of the form $y^2 + a f(x)y = b h(x)$, where

$$f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d,$$

for some a, b, c, $d \in \mathbb{F}_q^*$. **The goal**: find auxiliary a, b, c, and d in \mathbb{F}_q^* .

Proof steps:

- 1. The smoothness implies a condition on c and d.
- 2. Choose b, d by a, c (and by two good elements in \mathbb{F}_q^*) in order to guaranty the pointlessness.

うして ふゆう ふほう ふほう うらつ

The condition q > 2 is essential for the last step.

ntroduction	Preliminaries
000	00000

Proof, odd *q* 0000 Proof, even *q* 00●0 Conclusion 000

Sketch of proof: the smoothness

Let C be a hyperellptic curve over \mathbb{F}_q , $q = 2^n$, of the form $y^2 + af(x)y = bh(x)$, where

 $f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d,$

for some $a, b, c, d \in \mathbb{F}_q^*$.

The curve \mathcal{C} is smooth $\Leftrightarrow R(x)$ and Q(x) are comprime, where

$$R(x) = a^2 b f'(x)h(x) + b^2 h'(x)^2, \quad Q(x) = a f(x).$$

One can show that

 $gcd(R(x), Q(x)) = gcd(h(x), f(x)) = gcd(f(x)^2 + c^2 + d, f(x)).$

This implies a condition for the smoothness: $c^2 \neq d$.

Introduction	Preliminaries
000	00000

Proof, odd *q* 0000 Proof, even *q* 00●0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion 000

Sketch of proof: the smoothness

Let C be a hyperellptic curve over \mathbb{F}_q , $q = 2^n$, of the form $y^2 + a f(x)y = b h(x)$, where

 $f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d,$

for some a, b, c, $d \in \mathbb{F}_q^*$. The curve $\mathcal C$ is smooth $\Leftrightarrow R(x)$ and Q(x) are comprime, where

$$R(x) = a^2 b f'(x)h(x) + b^2 h'(x)^2, \quad Q(x) = a f(x).$$

One can show that

 $\gcd(R(x), Q(x)) = \gcd(h(x), f(x)) = \gcd(f(x)^2 + c^2 + d, f(x)).$

This implies a condition for the smoothness: $c^2 \neq d$.

ntroduction Prelin

Preliminaries

Proof, odd *q* 0000 Proof, even *q* 00●0 Conclusion

Sketch of proof: the smoothness

Let $\mathcal C$ be a hyperellptic curve over $\mathbb F_q$, $q=2^n$, of the form $y^2+a\,f(x)y=b\,h(x)$, where

 $f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d,$

for some a, b, c, $d \in \mathbb{F}_q^*$. The curve $\mathcal C$ is smooth $\Leftrightarrow R(x)$ and Q(x) are comprime, where

$$R(x) = a^2 b f'(x)h(x) + b^2 h'(x)^2, \quad Q(x) = a f(x).$$

One can show that

$$gcd(R(x),Q(x)) = gcd(h(x),f(x)) = gcd(f(x)^2 + c^2 + d,f(x)).$$

This implies a condition for the smoothness: $c^2
eq d$.

ntroduction Preliminaries

Proof, odd *q* 0000 Proof, even *q* 00●0 Conclusion

Sketch of proof: the smoothness

Let C be a hyperellptic curve over \mathbb{F}_q , $q = 2^n$, of the form $y^2 + a f(x)y = b h(x)$, where

 $f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d,$

for some a, b, c, $d \in \mathbb{F}_q^*$. The curve $\mathcal C$ is smooth $\Leftrightarrow R(x)$ and Q(x) are comprime, where

$$R(x) = a^2 b f'(x)h(x) + b^2 h'(x)^2, \quad Q(x) = a f(x).$$

One can show that

$$gcd(R(x),Q(x)) = gcd(h(x),f(x)) = gcd(f(x)^2 + c^2 + d,f(x)).$$

This implies a condition for the smoothness: $c^2 \neq d$.

tion	Preliminaries	Proof, odd q	Proof, even q	Conclusion
	00000	0000	0000	000

$\ensuremath{\mathcal{C}}$ is the union of

$$y^{2} + a f(x)y = b g(x), \quad y^{2} + a x^{g+1} f(x)y = b x^{2g+2} g(x),$$
$$f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d.$$
Any rational point corresponds to a solution of

either
$$y^2 + y + bd(ac)^{-2} = 0$$
, or $y^2 + y + ba^{-2} = 0$.

By Hilbert'90, ${\cal C}$ has no rational points iff

$$\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}\cdotrac{d}{c^2}
ight)=1 ext{ and } \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}
ight)=1.$$

Set $b = a^2 \alpha$ and $d = c^2 \beta / \alpha$, where $\alpha, \beta \in \mathbb{F}_q^*$ are distinct of the trace 1 (recall that q > 2!).

・ロト ・得ト ・ヨト ・ヨト

32

ion	Preliminaries	Proof, odd q	Proof, even q	Conclusion
	00000	0000	0000	000

 $\ensuremath{\mathcal{C}}$ is the union of

$$y^{2} + a f(x)y = b g(x), \quad y^{2} + a x^{g+1} f(x)y = b x^{2g+2} g(x),$$

 $f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d.$
Any rational point corresponds to a solution of

either
$$y^2 + y + bd(ac)^{-2} = 0$$
, or $y^2 + y + ba^{-2} = 0$.

By Hilbert'90, ${\cal C}$ has no rational points iff

$$\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}\cdotrac{d}{c^2}
ight)=1 ext{ and } \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}
ight)=1.$$

Set $b = a^2 \alpha$ and $d = c^2 \beta / \alpha$, where $\alpha, \beta \in \mathbb{F}_q^*$ are distinct of the trace 1 (recall that q > 2!).

ヘロト ヘロト ヘヨト ヘヨト

э.

on	Preliminaries	Proof, odd q	Proof, even q	Conclusion
	00000	0000	0000	000

 $\ensuremath{\mathcal{C}}$ is the union of

$$y^{2} + a f(x)y = b g(x), \quad y^{2} + a x^{g+1} f(x)y = b x^{2g+2} g(x),$$

 $f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d.$
Any rational point corresponds to a solution of

either
$$y^2 + y + bd(ac)^{-2} = 0$$
, or $y^2 + y + ba^{-2} = 0$.

By Hilbert'90, ${\cal C}$ has no rational points iff

$$\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}\cdotrac{d}{c^2}
ight)=1 ext{ and } \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}
ight)=1.$$

Set $b = a^2 \alpha$ and $d = c^2 \beta / \alpha$, where $\alpha, \beta \in \mathbb{F}_q^*$ are distinct of the trace 1 (recall that q > 2!).

ヘロト 人間 とうほどう ほどう

3

on	Preliminaries	Proof, odd q	Proof, even q	Conclusion
	00000	0000	0000	000

 $\ensuremath{\mathcal{C}}$ is the union of

$$y^{2} + a f(x)y = b g(x), \quad y^{2} + a x^{g+1} f(x)y = b x^{2g+2} g(x),$$

 $f(x) = x^{g+1} + x^{g+1-(q-1)} + c, \quad h(x) = x^{2g+2} + x^{2g+2-2(q-1)} + d.$
Any rational point corresponds to a solution of

either
$$y^2 + y + bd(ac)^{-2} = 0$$
, or $y^2 + y + ba^{-2} = 0$.

By Hilbert'90, C has no rational points iff

$$\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}\cdotrac{d}{c^2}
ight)=1 ext{ and } \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(rac{b}{a^2}
ight)=1.$$

Set $b = a^2 \alpha$ and $d = c^2 \beta / \alpha$, where $\alpha, \beta \in \mathbb{F}_q^*$ are distinct of the trace 1 (recall that q > 2!).

-

Introduction	Preliminaries	Proof, odd <i>q</i>	Proof, even <i>q</i>	Conclusion
000	00000	0000	0000	•00
		The gap		

- 1. The Weil-Serre bound implies that if $g < (q+1)/\lfloor 2\sqrt{q} \rfloor$, then the answer is NO.
- 2. The result implies that if

$$g \geq (q-3)/2$$
, q is odd, or $g \geq q-1$, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or even q, the number g belongs to the gap

$$\left(\frac{q+1}{\lfloor 2\sqrt{q} \rfloor}, \frac{q-3}{2}\right)$$
 or $\left(\frac{q+1}{\lfloor 2\sqrt{q} \rfloor}, q-1\right)$, resp.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- 1. The Weil-Serre bound implies that if $g < (q+1)/\lfloor 2\sqrt{q} \rfloor$, then the answer is NO.
- 2. The result implies that if

 $g \geq (q-3)/2$, q is odd, or $g \geq q-1$, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or even q, the number g belongs to the gap

$$\left(\frac{q+1}{\lfloor 2\sqrt{q} \rfloor}, \frac{q-3}{2}\right)$$
 or $\left(\frac{q+1}{\lfloor 2\sqrt{q} \rfloor}, q-1\right)$, resp.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

- 1. The Weil-Serre bound implies that if $g < (q+1)/\lfloor 2\sqrt{q} \rfloor$, then the answer is NO.
- 2. The result implies that if

$$g \geq (q-3)/2$$
, q is odd, or $g \geq q-1$, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or even q, the number g belongs to the gap

$$\left(\frac{q+1}{\lfloor 2\sqrt{q} \rfloor}, \frac{q-3}{2}\right)$$
 or $\left(\frac{q+1}{\lfloor 2\sqrt{q} \rfloor}, q-1\right)$, resp.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

- 1. The Weil-Serre bound implies that if $g < (q+1)/\lfloor 2\sqrt{q} \rfloor$, then the answer is NO.
- 2. The result implies that if

$$g \geq (q-3)/2$$
, q is odd, or $g \geq q-1$, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or even q, the number g belongs to the gap

$$\left(\frac{q+1}{\lfloor 2\sqrt{q}\rfloor},\frac{q-3}{2}\right) \text{ or } \left(\frac{q+1}{\lfloor 2\sqrt{q}\rfloor},\,q-1\right), \text{ resp.}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion ○●○

More good polynomials

Let q be odd. Let g(x), h(x) be two monic polynomials of degree n and m, an let $b \in \mathbb{F}_q$. Define

$$F_{g,h}(x) = \frac{g(x)^2 - b^2 h(x)^2}{2} x^{\frac{q-1}{2}} + \frac{g(x)^2 + b^2 h(x)^2}{2}.$$

$$F_{g,h}(\alpha) = \begin{cases} g(\alpha)^2, & \alpha \text{ is a q.r.,} \\ b^2 h(\alpha)^2, & \alpha \text{ is a q.n.r.,} \\ \frac{g(0)^2 + b^2 h(0)^2}{2}, & \alpha = 0. \end{cases}$$

- We can choose *m* compare to *n*, depending on *q* (mod 4).
- We can choose b using the intersection of two quadrics in 𝔽³_q (to make F_{g,h}(0) and LT(F_{g,h}(x)) to be q.rr.), that is an elliptic curve over 𝔽_q!
- Is F_{g,h}(x) square-free? In the greate majority of cases YES (experiments).

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion

More good polynomials

Let q be odd. Let g(x), h(x) be two monic polynomials of degree n and m, an let $b \in \mathbb{F}_q$. Define

$$F_{g,h}(x) = \frac{g(x)^2 - b^2 h(x)^2}{2} x^{\frac{q-1}{2}} + \frac{g(x)^2 + b^2 h(x)^2}{2}.$$

$$F_{g,h}(\alpha) = \begin{cases} g(\alpha)^2, & \alpha \text{ is a q.r.,} \\ b^2 h(\alpha)^2, & \alpha \text{ is a q.n.r.,} \\ \frac{g(0)^2 + b^2 h(0)^2}{2}, & \alpha = 0. \end{cases}$$

- We can choose *m* compare to *n*, depending on *q* (mod 4).
- We can choose b using the intersection of two quadrics in 𝔽³_q (to make F_{g,h}(0) and LT(F_{g,h}(x)) to be q.rr.), that is an elliptic curve over 𝔽¹_q!
- Is F_{g,h}(x) square-free? In the greate majority of cases YES (experiments).

Preliminaries

Proof, odd *q* 0000 Proof, even q

Conclusion

More good polynomials

Let q be odd. Let g(x), h(x) be two monic polynomials of degree n and m, an let $b \in \mathbb{F}_q$. Define

$$F_{g,h}(x) = \frac{g(x)^2 - b^2 h(x)^2}{2} x^{\frac{q-1}{2}} + \frac{g(x)^2 + b^2 h(x)^2}{2}.$$

$$F_{g,h}(\alpha) = \begin{cases} g(\alpha)^2, & \alpha \text{ is a q.r.,} \\ b^2 h(\alpha)^2, & \alpha \text{ is a q.n.r.,} \\ \frac{g(0)^2 + b^2 h(0)^2}{2}, & \alpha = 0. \end{cases}$$

- We can choose *m* compare to *n*, depending on *q* (mod 4).
- We can choose b using the intersection of two quadrics in 𝔽³_q (to make F_{g,h}(0) and LT(F_{g,h}(x)) to be q.rr.), that is an elliptic curve over 𝔽_q!
- Is F_{g,h}(x) square-free? In the greate majority of cases YES (experiments).

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion ○●○

More good polynomials

Let q be odd. Let g(x), h(x) be two monic polynomials of degree n and m, an let $b \in \mathbb{F}_q$. Define

$$F_{g,h}(x) = \frac{g(x)^2 - b^2 h(x)^2}{2} x^{\frac{q-1}{2}} + \frac{g(x)^2 + b^2 h(x)^2}{2}.$$

$$F_{g,h}(\alpha) = \begin{cases} g(\alpha)^2, & \alpha \text{ is a q.r.,} \\ b^2 h(\alpha)^2, & \alpha \text{ is a q.n.r.,} \\ \frac{g(0)^2 + b^2 h(0)^2}{2}, & \alpha = 0. \end{cases}$$

- We can choose *m* compare to *n*, depending on *q* (mod 4).
- We can choose b using the intersection of two quadrics in 𝔽³_q (to make F_{g,h}(0) and LT(F_{g,h}(x)) to be q.rr.), that is an elliptic curve over 𝔽¹_q!
- Is F_{g,h}(x) square-free? In the greate majority of cases YES (experiments).

Preliminaries

Proof, odd *q* 0000 Proof, even q 0000 Conclusion

More good polynomials

Let q be odd. Let g(x), h(x) be two monic polynomials of degree n and m, an let $b \in \mathbb{F}_q$. Define

$$F_{g,h}(x) = \frac{g(x)^2 - b^2 h(x)^2}{2} x^{\frac{q-1}{2}} + \frac{g(x)^2 + b^2 h(x)^2}{2}.$$

$$F_{g,h}(\alpha) = \begin{cases} g(\alpha)^2, & \alpha \text{ is a q.r.,} \\ b^2 h(\alpha)^2, & \alpha \text{ is a q.n.r.,} \\ \frac{g(0)^2 + b^2 h(0)^2}{2}, & \alpha = 0. \end{cases}$$

- We can choose *m* compare to *n*, depending on *q* (mod 4).
- We can choose *b* using the intersection of two quadrics in \mathbb{F}_q^3 (to make $F_{g,h}(0)$ and $LT(F_{g,h}(x))$ to be q.rr.), that is an elliptic curve over $\mathbb{F}_q!$
- Is F_{g,h}(x) square-free? In the greate majority of cases YES (experiments).

Conclusion

Work in progress

Let *q* be odd.

- 1. There is a binary linear code over \mathbb{F}_q defined by parity-check matrix such that:
 - This matrix depends only on the arithmetic of \mathbb{F}_q possessing several properties.
 - Each codeword of weight w corresponds to a pointless smooth curve over \mathbb{F}_q of genus w 1.
 - **Problem**: find the minimum distance, the weight enumerator and so on.
- 2. The generation function $\sum a_n z^n$ of the class of polynomials with good values.
 - a_n , $n \ge q$, are computed.
 - $a_n > 0$, $(q-1)/2 \le n \le q-1$ (more explicit constructions!).
 - a_n, 0 ≤ n ≤ q − 1 depends only on the generation function ∑ b_nzⁿ of the class of square-free polynomials with good values.
 - **Problem**: find the minimal n_0 such that for all $n \ge n_0$ we have $b_n > 0$.