
Introduction Preliminaries Proof, odd q Proof, even q Conclusion

On the linear bounds on the genus of pointless

curves

Pogildiakov Ivan

Universit�e de la Polyn�esie fran�caise,

Tahiti, Polyn�esie fran�caise

Arithmetic, Geometry, Cryptography and Coding Theory

Marseille, June 19 - 23, 2017



Introduction Preliminaries Proof, odd q Proof, even q Conclusion

Overview

Introduction

Preliminaries

Proof of the theorem, odd q

Proof of the theorem, even q

Conclusion



Introduction Preliminaries Proof, odd q Proof, even q Conclusion

Motivation

Let C be a smooth genus g curve C over Fq. The number of

rational points on C satis�es the well known Weil-Serre bound :

q + 1− gb2√qc ≤ N1(C) ≤ q + 1 + gb2√qc.

Let q, g be such that q+1− gb2√qc ≤ 0, i.e. g ≥ (q+1)/b2√qc.
Question : Does there exist a curve over Fq of genus g with no

rational points (which is called pointless)?

Main directions :

1. g is �xed (E. W. Howe, K. E. Lauter, J. Top, 2005),

2. q is �xed (R. Becker, D. Glass, 2013).
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The case of �xed q

Given q, denote by gmin
q the number such that for all g ≥ gmin

q

there is a smooth pointless genus g curve over Fq.

Theorem ( R. Becker and D. Glass, 2013)

Let a be the least residue of g mod p. Suppose that

g ≥ (p − a− 1)(q − 1), if a < p − 1,

or

g ≥ (p − 2a− 2)(q − 1), if 0 ≤ a ≤ (p − 3)/2.

Then there is a non-singular hyperelliptic pointless curve of genus g
de�ned over Fq.

Remarks. This result shows that gmin
q ≤ O(pq) when q is odd.

However, under special assumptions they obtain that gmin
q ≤ O(q).
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The case of �xed q

The result of R. Becker and D. Glass possesses a generalization.

Theorem (I. Pogildiakov, 2017)

Let q be a prime power. Set

gq =

{
max{2, (q − 3)/2}, q is odd,

max{2, q − 1}, q is even.

Suppose that g ≥ gq. Then there is a smooth genus g hyperelliptic

curve over Fq having no Fq-points.

This implies a linear bound on the number gmin
q for all q.

Like R. Becker and D. Glass, we use explicit constructions, but

1. consider more cases (less assumptions),

2. involve more families of polynomials.
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Hyperelliptic curves over Fq

Let C be a hyperelliptic curve over Fq of genus g . It can be de�ned

by an a�ne model y2 + h(x)y = f (x), where

2g + 1 ≤ max{2 deg h(x), deg f (x)} ≤ 2g + 2.

As a projective curve, C is the union of two a�ne patches :

y2 + h(x)y = f (x), and y2 + xg+1h(1/x)y = x2g+2f (1/x).

The curve C is smooth if and only if

h(x) and h′(x)2f (x) + f ′(x)2 are comprime.

Special case : if q is odd, then we can let h(x) = 0.
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Hyperelliptic curves over Fq, odd q.

Let C be a hyperelliptic curve y2 = f (x) over Fq, where q is odd.

We have the following information :

1. C is the union of two a�ne patches

y2 = f (x) and y2 = x2g+2f (1/x).

2. C is smooth if and only if f (x) is square-free.

3. The number of rational points of C is

N1(C) = N1(C)aff + N1(C)∞,

where
• N1(C)aff is the number of a�ne points in C(Fq).
• N1(C)∞ is the number of points in C(Fq) that lie at ∞.
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Counting rational points on C, odd q.

Let us de�ne

N0 = #{α ∈ Fq | f (α) = 0},
N r = #{α ∈ Fq | f (α) is a q.r.}.

Then N1(C)aff = N0 + 2N r . Note, that N1(C)aff ≤ 2q.

Points at in�nity belong to the a�ne patch y2 = x2g+2f (1/x) and
correspond to the solutions with x = 0, i.e. y2 = LT (f (x)).

1. If deg f (x) = 2g + 1, then N1(C)∞ = 1.

2. If deg f (x) = 2g + 2 and LT (f ) is a q.r., then N1(C)∞ = 2.

3. If deg f (x) = 2g + 2 and LT (f ) is a q.n.r, then N1(C)∞ = 0.
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Fq-maximal hyperelliptic curves

Let us call f (x) to be a good polynomial, if it satis�es the following

conditions :

1. deg f (x) = 2g + 2 is even,

2. f (x) is squarefree,

3. LT (f (x)) is a quadratic residue,

4. f (α) is a q.r. for all α ∈ Fq (⇒ N0
f (x) = 0, N r

f (x) = 2q).

Let C be a curve y2 = f (x) over Fq, where f (x) is good.
Then C is smooth of genus g having

N1(C) = N1(C)aff +N1(C)∞ = N0
f (x) + 2N r

f (x) +N1(C)∞ = 2q + 2.

We will call such a curve Fq-maximal, since N1 ≤ 2q + 2 for every

hyperelliptic curve over Fq.
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Construction of a pointless curve over Fq, odd q

Let C be a smooth Fq-maximal hyperelliptic curve over Fq. It can

be de�ned by y2 = f (x), where f (x) is good of degree 2g + 2,
where g is the genus of C.
Let C′ be its quadratic twist : αy2 = f (x), α is a q.n.r.

The Weil theorem implies that

Tr(FrC) = q + 1− N1(C) = −q − 1,

N1(C′) = q + 1− Tr(FrC′) = q + 1 + Tr(FrC) = 0,

where Fr stands for Frobenius endomorphism.

Thus, C′ is smooth pointless hyperelliptic genus g curve over Fq.

The idea of the search of pointless curves :

good polynomial f (x) over Fq ⇔
Fq-maximal curve y2 = f (x)⇔

pointless curve over Fq.
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Linear bound on the genus for odd q

Theorem
Given odd q, for all g ≥ (q − 3)/2 (or g ≥ 2) there is a pointless

smooth hyperelliptic curve over Fq of genus g .

Idea : for each step �nd a monic polynomial of degree 2g + 2
having good values and then check whether it is square-free or not.

The proof is divided into three parts, depending on a family of

good polynomials.

Note :

1. We omit technical details of proofs of smoothness.

2. We pay attention on the values of polynomials.

3. Some times polynomials can be de�ned over Fp!
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Sketch of proof : part I

Let g ≥ (q − 1)/2.

Special condition on q and g :

1. D(q, g) > 2, or D(q, g) = 2 and L(q, g) > 1, or

2. D(q, g) = 2 and L(q, g) = 1, but one of the following holds :

q = p2n or q = p2n+1, p ≡ 1 (mod 8) or 2g + 2 6≡ −1/2 (mod p),

where D(q, g) = gcd(2g +2, q− 1), L(q, g) = b(2g + 2)/(q − 1)c.
The polynomial

f (x) = x2g+2 − x2g+2−l(q−1) + a2, a ∈ F∗q, 1 ≤ l ≤ L(q, g).

1. is monic of even degree,

2. has good values over Fq, since f (x) =
(
x l(q−1) − 1

)
x∗ + a2,

3. is square-free, when q and g satisfy the condition, which is

implied by computation of the discriminant of f (x).
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Sketch of proof : part II

Let g ≥ (q − 1)/2 and the special condition does not hold.

Let n = 2g + 2− (q − 1), and b, ξ ∈ F∗p, ξ is a q.n.r.

The polynomial

f (x) = xq−1+n + b2x2n − (2b2ξ + 1)xn + b2ξ2

= (xq−1 − 1)xn + b2(xn − ξ)2

1. is monic of even degree,

2. has good values (since n is even and ξ is not a q.n.r),

3. is square-free, if one chooses b, given ξ, in the way that

s2 = b4ξ2 + 4b2ξ + 1

and s 6= 0, b 6= 0.

Remark. We have treated all cases for g ≥ (q − 1)/2, so that it

su�ces to prove the theorem for g = (q − 3)/2.
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Sketch of proof : part III

Let g = (q − 3)/2. We can assume that q > 5.

The curve x2 + y2 = δ2 over Fq has a rational point (x , y) such
that xy 6= 0.

Let α, β, γ ∈ Fq be residues such that α+ β = γ.

The polynomial

f (x) =
α

γ

(
x (q−1)/2 + 1

)2
+
β

γ

(
x (q−1)/2 − 1

)2
= xq−1 + 2

α− β
γ

x (q−1)/2 + 1.

is monic, of even degree and has good values (we have either

f (a) = 4α/γ, or f (a) = 4β/γ, or f (a) = 1 for all a ∈ Fq).

The condition αβ 6= 0 implies that f (x) is square-free. �
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Hyperelliptic curves over Fq, q is even

This is a completely di�erent case : for every hyperelliptic curve

over F2n

y2 + h(x)y = f (x)

we can not let h(x) = 0 and it is not trivial to count rational points.

The existence of pointless curves over F2 is known.

Theorem (H. Stichtenoth, 2011)

For every g ≥ 2 there is a non-singular pointless curve over F2.

Goal : study the case q > 2.
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Linear bound on the genus for even q

Theorem
Let q = 2n, q > 2. For every g ≥ q − 1 there is a pointless smooth

curve over Fq of the form y2 + a f (x)y = b h(x), where

f (x) = xg+1+xg+1−(q−1)+c , h(x) = x2g+2+x2g+2−2(q−1)+d ,

for some a, b, c , d ∈ F∗q.
The goal : �nd auxiliary a, b, c , and d in F∗q.
Proof steps :

1. The smoothness implies a condition on c and d .

2. Choose b, d by a, c (and by two good elements in F∗q) in order

to guaranty the pointlessness.

The condition q > 2 is essential for the last step.
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Sketch of proof : the smoothness

Let C be a hyperellptic curve over Fq, q = 2n, of the form

y2 + a f (x)y = b h(x), where

f (x) = xg+1+xg+1−(q−1)+c , h(x) = x2g+2+x2g+2−2(q−1)+d ,

for some a, b, c , d ∈ F∗q.
The curve C is smooth ⇔ R(x) and Q(x) are comprime, where

R(x) = a2b f ′(x)h(x) + b2 h′(x)2, Q(x) = a f (x).

One can show that

gcd
(
R(x),Q(x)

)
= gcd

(
h(x), f (x)

)
= gcd

(
f (x)2 + c2 + d , f (x)

)
.

This implies a condition for the smoothness : c2 6= d .
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Sketch of proof : the lack of Fq-points

C is the union of

y2 + a f (x)y = b g(x), y2 + a xg+1f (x)y = b x2g+2g(x),

f (x) = xg+1+xg+1−(q−1)+c , h(x) = x2g+2+x2g+2−2(q−1)+d .

Any rational point corresponds to a solution of

either y2 + y + bd(ac)−2 = 0, or y2 + y + ba−2 = 0.

By Hilbert'90, C has no rational points i�

TrFq/F2

(
b

a2
· d
c2

)
= 1 and TrFq/F2

(
b

a2

)
= 1.

Set b = a2α and d = c2β/α, where α, β ∈ F∗q are distinct of the

trace 1 (recall that q > 2!). �
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Set b = a2α and d = c2β/α, where α, β ∈ F∗q are distinct of the

trace 1 (recall that q > 2!). �
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The gap

Question : Given q, g , does there exist a smooth curve over Fq of

genus g having no rational points?

1. The Weil-Serre bound implies that if g < (q + 1)/b2√qc, then
the answer is NO.

2. The result implies that if

g ≥ (q − 3)/2, q is odd, or g ≥ q − 1, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or

even q, the number g belongs to the gap(
q + 1

b2√qc
,
q − 3

2

)
or

(
q + 1

b2√qc
, q − 1

)
, resp.



Introduction Preliminaries Proof, odd q Proof, even q Conclusion

The gap

Question : Given q, g , does there exist a smooth curve over Fq of

genus g having no rational points?

1. The Weil-Serre bound implies that if g < (q + 1)/b2√qc, then
the answer is NO.

2. The result implies that if

g ≥ (q − 3)/2, q is odd, or g ≥ q − 1, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or

even q, the number g belongs to the gap(
q + 1

b2√qc
,
q − 3

2

)
or

(
q + 1

b2√qc
, q − 1

)
, resp.



Introduction Preliminaries Proof, odd q Proof, even q Conclusion

The gap

Question : Given q, g , does there exist a smooth curve over Fq of

genus g having no rational points?

1. The Weil-Serre bound implies that if g < (q + 1)/b2√qc, then
the answer is NO.

2. The result implies that if

g ≥ (q − 3)/2, q is odd, or g ≥ q − 1, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or

even q, the number g belongs to the gap(
q + 1

b2√qc
,
q − 3

2

)
or

(
q + 1

b2√qc
, q − 1

)
, resp.



Introduction Preliminaries Proof, odd q Proof, even q Conclusion

The gap

Question : Given q, g , does there exist a smooth curve over Fq of

genus g having no rational points?

1. The Weil-Serre bound implies that if g < (q + 1)/b2√qc, then
the answer is NO.

2. The result implies that if

g ≥ (q − 3)/2, q is odd, or g ≥ q − 1, q is even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or

even q, the number g belongs to the gap(
q + 1

b2√qc
,
q − 3

2

)
or

(
q + 1

b2√qc
, q − 1

)
, resp.



Introduction Preliminaries Proof, odd q Proof, even q Conclusion

More good polynomials

Let q be odd. Let g(x), h(x) be two monic polynomials of degree n and
m, an let b ∈ Fq.
De�ne

Fg ,h(x) =
g(x)2 − b2h(x)2

2
x

q−1
2 +

g(x)2 + b2h(x)2

2
.

It has almost good value set :

Fg ,h(α) =


g(α)2, α is a q.r.,

b2h(α)2, α is a q.n.r.,
g(0)2+b2h(0)2

2 , α = 0.

• We can choose m compare to n, depending on q (mod 4).

• We can choose b using the intersection of two quadrics in F3
q (to

make Fg ,h(0) and LT (Fg ,h(x)) to be q.rr.), that is � an elliptic
curve over Fq!

• Is Fg ,h(x) square-free? In the greate majority of cases - YES
(experiments).
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Work in progress
Let q be odd.

1. There is a binary linear code over Fq de�ned by parity-check
matrix such that :

• This matrix depends only on the arithmetic of Fq possessing
several properties.

• Each codeword of weight w corresponds to a pointless smooth
curve over Fq of genus w − 1.

• Problem : �nd the minimum distance, the weight enumerator
and so on.

2. The generation function
∑

anz
n of the class of polynomials

with good values.
• an, n ≥ q, are computed.
• an > 0, (q − 1)/2 ≤ n ≤ q − 1 (more explicit constructions!).
• an, 0 ≤ n ≤ q − 1 depends only on the generation function∑

bnz
n of the class of square-free polynomials with good

values.
• Problem : �nd the minimal n0 such that for all n ≥ n0 we

have bn > 0.
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