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Motivation

Let C be a smooth genus g curve C over Fy. The number of
rational points on C satisfies the well known Weil-Serre bound:

g+1-gl2y/q] < N:i(C) < g+1+g[2V/q].
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Motivation

Let C be a smooth genus g curve C over Fy. The number of
rational points on C satisfies the well known Weil-Serre bound:

g+1-g[2v/q] <M(C)<qg+1+gl2/q]

Let g, g be such that g+1—g[2,/q] <0, i.e. g > (¢+1)/|2,/q].
Question: Does there exist a curve over Fg of genus g with no
rational points (which is called pointless)?
Main directions:

1. gis fixed (E. W. Howe, K. E. Lauter, J. Top, 2005),

2. qis fixed (R. Becker, D. Glass, 2013).
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Introduction
(o] le}

The case of fixed g

min

Given g, denote by gc’,""” the number such that for all g > gg
there is a smooth pointless genus g curve over [Fy.

Theorem ( R. Becker and D. Glass, 2013)
Let a be the least residue of g mod p. Suppose that
g=(p—a—1)(g—-1), ifa<p-—1,

g>(p—2a—2)(g—1),if0<a<(p—3)/2.

Then there is a non-singular hyperelliptic pointless curve of genus g
defined over F.
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n

Given g, denote by gc’,"i” the number such that for all g > gc’,""
there is a smooth pointless genus g curve over [Fy.

Theorem ( R. Becker and D. Glass, 2013)
Let a be the least residue of g mod p. Suppose that

g=(p—a—1)(g—-1), ifa<p-—1,
or
g=2(p—-2a-2)(q-1),if0<a<(p-3)/2

Then there is a non-singular hyperelliptic pointless curve of genus g
defined over F.

Remarks. This result shows that gé”"” < O(pq) when q is odd.
However, under special assumptions they obtain that gg”" < 0(q).
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The result of R. Becker and D. Glass possesses a generalization.

Theorem (l. Pogildiakov, 2017)
Let g be a prime power. Set

_Jmax{2,(g —3)/2}, qisodd,
7 max{2,q — 1}, q is even.

Suppose that g > g4. Then there is a smooth genus g hyperelliptic
curve over Fq having no IFy-points.

This implies a linear bound on the number g[,""” for all q.
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The case of fixed g

The result of R. Becker and D. Glass possesses a generalization.

Theorem (l. Pogildiakov, 2017)
Let g be a prime power. Set

_Jmax{2,(g —3)/2}, qisodd,
7 max{2,q — 1}, q is even.

Suppose that g > g4. Then there is a smooth genus g hyperelliptic
curve over Fq having no IFy-points.

This implies a linear bound on the number g[,""” for all q.
Like R. Becker and D. Glass, we use explicit constructions, but
1. consider more cases (less assumptions),

2. involve more families of polynomials.
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Hyperelliptic curves over IF,

Let C be a hyperelliptic curve over IF; of genus g. It can be defined
by an affine model y? + h(x)y = f(x), where

2g +1 < max{2deg h(x),deg f(x)} < 2g + 2.
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Hyperelliptic curves over IF,

Let C be a hyperelliptic curve over IF; of genus g. It can be defined
by an affine model y? + h(x)y = f(x), where

2g +1 < max{2deg h(x),deg f(x)} < 2g + 2.
As a projective curve, C is the union of two affine patches:
y? + h(x)y = f(x), and y* + x€T1h(1/x)y = x*6T2£(1/x).
The curve C is smooth if and only if
h(x) and H'(x)?f(x) + f'(x)? are comprime.

Special case: if g is odd, then we can let h(x) = 0.
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Hyperelliptic curves over Fg, odd g.

Let C be a hyperelliptic curve y? = f(x) over Fg, where q is odd.
We have the following information:

1. C is the union of two affine patches
y? = f(x) and y? = x*6T2f(1/x).

2. C is smooth if and only if f(x) is square-free.

3. The number of rational points of C is
N1 (C) = Ny (C)* + Ny (C)™,

where

e N;(C)*" is the number of affine points in C(F,).
e N;(C)> is the number of points in C(Fy) that lie at co.
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Counting rational points on C, odd g.

Let us define

N° = #{a € F, | f(a) = 0},
N =#{aeFq|f(a)isaq.r}.

Then N1(C)*F = NO + 2N". Note, that N1(C)*" < 2q.
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Let us define

N° = #{a € F, | f(a) = 0},
N =#{aeFq|f(a)isaq.r}.

Then N1(C)*F = NO + 2N". Note, that N1(C)*" < 2q.
Points at infinity belong to the affine patch y? = x?6+2f(1/x) and
correspond to the solutions with x = 0, i.e. y? = LT(f(x)).
1. If deg f(x) =2g + 1, then Ni(C)> = 1.
2. If degf(x) =2g +2and LT(f) is a q.r., then Ny(C)> = 2.
3. If deg f(x) =2g + 2 and LT(f) is a g.n.r, then N1(C)> = 0.
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Let us call f(x) to be a good polynomial, if it satisfies the following
conditions:
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[F4-maximal hyperelliptic curves

Let us call f(x) to be a good polynomial, if it satisfies the following
conditions:

1. degf(x) =2g + 2 is even,

2. f(x) is squarefree,

3. LT(f(x)) is a quadratic residue,

4. f(a)isaq.r. forallaeFy (= N?(X) =0, Ny = 2q).

Let C be a curve y? = f(x) over F,, where f(x) is good.
Then C is smooth of genus g having

N1(C) = Ni(C)* + N1(C)™ = Nf(yy +2N7(y + Ni(C)* = 29 +2.
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[F4-maximal hyperelliptic curves

Let us call f(x) to be a good polynomial, if it satisfies the following
conditions:

1. degf(x) =2g + 2 is even,

2. f(x) is squarefree,

3. LT(f(x)) is a quadratic residue,

4. f(a)isaq.r. forallaeFy (= N?(X) =0, Ny = 2q).

Let C be a curve y? = f(x) over F,, where f(x) is good.
Then C is smooth of genus g having

We will call such a curve Fg-maximal, since Ny < 2q + 2 for every
hyperelliptic curve over F.
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Construction of a pointless curve over [Fy, odd g

Let C be a smooth Fg-maximal hyperelliptic curve over Fg. It can
be defined by y? = f(x), where f(x) is good of degree 2g + 2,
where g is the genus of C.
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Construction of a pointless curve over [Fy, odd g

Let C be a smooth Fg-maximal hyperelliptic curve over Fg. It can
be defined by y? = f(x), where f(x) is good of degree 2g + 2,
where g is the genus of C.

Let C’ be its quadratic twist: ay? = f(x), a is a q.n.r.
The Weil theorem implies that
Tr(Fre) =q+1—M(C)=—q—1,
Nl(C’) =qg+1- Tl“(Frc/) =qg+1+ Tl“(Frc) =0,

where Fr stands for Frobenius endomorphism.



Preliminaries
[eele]e] ]

Construction of a pointless curve over [Fy, odd g

Let C be a smooth Fg-maximal hyperelliptic curve over Fg. It can
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Construction of a pointless curve over [Fy, odd g

Let C be a smooth Fg-maximal hyperelliptic curve over Fg. It can
be defined by y? = f(x), where f(x) is good of degree 2g + 2,
where g is the genus of C.

Let C’ be its quadratic twist: ay? = f(x), a is a q.n.r.
The Weil theorem implies that
Tr(Fre) =q+1—M(C)=—q—1,
Ny (C)=q+1—Tr(Frer) = q+ 1+ Tr(Fre) =0,
where Fr stands for Frobenius endomorphism.
Thus, C’ is smooth pointless hyperelliptic genus g curve over Fg.

The idea of the search of pointless curves:
good polynomial f(x) over Fg &
F,-maximal curve y? = f(x) &

pointless curve over .
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Linear bound on the genus for odd g

Theorem
Given odd q, for all g > (q — 3)/2 (or g > 2) there is a pointless
smooth hyperelliptic curve over Fq of genus g.
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Given odd q, for all g > (q — 3)/2 (or g > 2) there is a pointless
smooth hyperelliptic curve over Fq of genus g.

Idea: for each step find a monic polynomial of degree 2g + 2
having good values and then check whether it is square-free or not.
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The proof is divided into three parts, depending on a family of
good polynomials.
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Linear bound on the genus for odd g

Theorem
Given odd q, for all g > (q — 3)/2 (or g > 2) there is a pointless
smooth hyperelliptic curve over Fq of genus g.

Idea: for each step find a monic polynomial of degree 2g + 2
having good values and then check whether it is square-free or not.

The proof is divided into three parts, depending on a family of
good polynomials.

Note:
1. We omit technical details of proofs of smoothness.
2. We pay attention on the values of polynomials.

3. Some times polynomials can be defined over F!



Sketch of proof: part |
Let g > (g —1)/2.

Special condition on g and g:

1. D(q,8) > 2, or D(q,g) =2 and L(q,g) > 1, or

2. D(q,g) =2 and L(q,g) = 1, but one of the following holds:

g=p*"orqg=p>"", p=1 (mod 8)or2g+2%# —1/2 (mod p),
where D(q, g) = ged(2g+2,9—-1), L(q,8) = [(28 +2)/(g —1)].
The polynomial

f(X) — x28+2 _ X2g+2fl(qfl) + 22

)

acF;, 1<1<L(q,g).

«O>» «Fr « >

«E)»

DA
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Sketch of proof: part |

Let g > (g —1)/2.
Special condition on g and g:
1. D(q,g) > 2, 0or D(q,g) =2 and L(q,g) > 1, or
2. D(q,g) =2 and L(q,g) = 1, but one of the following holds:

g=p*"orq=p>*", p=1 (mod 8)or2g+2# —1/2 (mod p),

where D(q, g) = ged(26 +2,9—-1), L(q.8) = [(2g +2)/(q — 1)].
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Let g > (g —1)/2.
Special condition on g and g:
1. D(q,g) > 2, 0or D(q,g) =2 and L(q,g) > 1, or
2. D(q,g) =2 and L(q,g) = 1, but one of the following holds:

g=p*"orq=p>*", p=1 (mod 8)or2g+2# —1/2 (mod p),
where D(q,g) = gcd(2g +2,9—1), L(q,8) = [(28 +2)/(q — 1)].
The polynomial

f(x) = x%+2 —x227 a1 L 2 e, 1<1<L(q,g)

1. is monic of even degree,
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Sketch of proof: part |

Let g > (g —1)/2.
Special condition on g and g:
1. D(q,g) > 2, 0or D(q,g) =2 and L(q,g) > 1, or
2. D(q,g) =2 and L(q,g) = 1, but one of the following holds:

g=p*"orq=p>*", p=1 (mod 8)or2g+2# —1/2 (mod p),

where D(q,g) = gcd(2g +2,9—1), L(q,8) = [(28 +2)/(q — 1)].
The polynomial

f(x) =x?612 — x2%&+2-a-1) L 22 e F 1<1<L(q,g)

q7

1. is monic of even degree,
2. has good values over Fg, since f(x) = (x/(971) — 1) x* + 22,
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Sketch of proof: part |

Let g > (g —1)/2.
Special condition on g and g:
1. D(q,g) > 2, 0or D(q,g) =2 and L(q,g) > 1, or
2. D(q,g) =2 and L(q,g) = 1, but one of the following holds:

g=p*"orq=p>*", p=1 (mod 8)or2g+2# —1/2 (mod p),
where D(q,g) = gcd(2g +2,9—1), L(q,8) = [(28 +2)/(q — 1)].
The polynomial

f(x) = x%72 _ x2%+2-1a-1) L 2 5¢ Fy, 1<1<L(q,8)

1. is monic of even degree,

2. has good values over Fg, since f(x) = (x/(971) — 1) x* + 22,

3. is square-free, when g and g satisfy the condition, which is
implied by computation of the discriminant of f(x).
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Sketch of proof: part Il

Let g > (¢ — 1)/2 and the special condition does not hold.
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Sketch of proof: part Il

Let g > (¢ — 1)/2 and the special condition does not hold.
Let n=2g+2—(g—1),and b, { € F},, {isaq.nr.
The polynomial
f(x) = xT 17 4 p2x?" — (2b%¢ + 1)x" + b2¢2
= (x97L — 1)x" 4+ B2(x" — €)?
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The polynomial
f(x) = xT 17 4 p2x?" — (2b%¢ + 1)x" + b2¢2
= (x97L — 1)x" 4+ B2(x" — €)?

1. is monic of even degree,
2. has good values (since n is even and & is not a g.n.r),
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Sketch of proof: part Il

Let g > (¢ — 1)/2 and the special condition does not hold.
Let n=2g+2—(g—1),and b, { € F},, {isaq.nr.
The polynomial
f(x) = xT 17 4 p2x?" — (2b%¢ + 1)x" + b2¢2
= (x97L — 1)x" 4+ B2(x" — €)?
1. is monic of even degree,

2. has good values (since n is even and & is not a g.n.r),
3. is square-free, if one chooses b, given &, in the way that

s> = b2+ 4k +1
and s #0, b #0.
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Sketch of proof: part Il

Let g > (¢ — 1)/2 and the special condition does not hold.
Let n=2g+2—(g—1),and b, { € F},, {isaq.nr.
The polynomial
F(x) = x971H7 4 P2Xx3" — (26°¢ 4+ 1)x" + b°€7
— (Xq—l _ l)Xn + b2(Xn _ 5)2

1. is monic of even degree,

2. has good values (since n is even and & is not a g.n.r),

3. is square-free, if one chooses b, given &, in the way that

s> = b2+ 4k +1
and s #0, b #0.

Remark. We have treated all cases for g > (g — 1)/2, so that it
suffices to prove the theorem for g = (g — 3)/2.
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Sketch of proof: part Il

Let g = (¢ — 3)/2. We can assume that g > 5.
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Sketch of proof: part Il

Let g = (¢ — 3)/2. We can assume that g > 5.

The curve x? + y? = §2 over IF, has a rational point (x, y) such
that xy # 0.
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Sketch of proof: part Il

Let g = (¢ — 3)/2. We can assume that g > 5.

The curve x? + y? = §2 over IF, has a rational point (x, y) such
that xy # 0.
Let o, B, v € Fg be residues such that a 4 3 = 7.
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Sketch of proof: part Il

Let g = (¢ — 3)/2. We can assume that g > 5.

The curve x? + y? = §2 over IF, has a rational point (x, y) such
that xy # 0.

Let o, B, v € Fg be residues such that a 4 3 = 7.
The polynomial

= (o2 4 1) 4 2 (o2 )

S B Ll U VI
v

is monic, of even degree and has good values (we have either
f(a) = 4/, or £(a) = 43/~, or f(a) = 1 for all a € F,).
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Sketch of proof: part Il

Let g = (¢ — 3)/2. We can assume that g > 5.

The curve x? + y? = §2 over IF, has a rational point (x, y) such
that xy # 0.

Let o, B, v € Fg be residues such that a 4 3 = 7.
The polynomial

= (o2 4 1) 4 2 (o2 )

S B Ll U VI
v

is monic, of even degree and has good values (we have either
f(a) = 4/, or £(a) = 43/~, or f(a) = 1 for all a € F,).

The condition af # 0 implies that f(x) is square-free.
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Hyperelliptic curves over Fg, g is even

This is a completely different case: for every hyperelliptic curve
over [Fon

y? + h(x)y = f(x)

we can not let h(x) = 0 and it is not trivial to count rational points.
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Hyperelliptic curves over Fg, g is even

This is a completely different case: for every hyperelliptic curve
over [Fon

y? + h(x)y = f(x)
we can not let h(x) = 0 and it is not trivial to count rational points.
The existence of pointless curves over [, is known.
Theorem (H. Stichtenoth, 2011)

For every g > 2 there is a non-singular pointless curve over IF5.
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Hyperelliptic curves over Fg, g is even

This is a completely different case: for every hyperelliptic curve
over [Fon

y? + h(x)y = f(x)
we can not let h(x) = 0 and it is not trivial to count rational points.
The existence of pointless curves over [, is known.
Theorem (H. Stichtenoth, 2011)
For every g > 2 there is a non-singular pointless curve over IF5.

Goal: study the case g > 2.
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Linear bound on the genus for even g

Theorem

Let q =2", q > 2. For every g > q — 1 there is a pointless smooth
curve over F, of the form y? + af(x)y = b h(x), where

f(x) — x&8+1 _i_Xnglf(qfl) +c, h(X) — x2&+2 +X2g+272(q71) +d,

for some a, b, ¢, d € IFZ.
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Linear bound on the genus for even g

Theorem
Let q =2", q > 2. For every g > q — 1 there is a pointless smooth
curve over F, of the form y? + af(x)y = b h(x), where

f(X) — Xg+1 _i_Xnglf(qfl) +c, h(X) _ X2g+2 +X2g+272(q71) +d,

for some a, b, ¢, d € IFZ.
The goal: find auxiliary a, b, ¢, and d in Fy,.
Proof steps:

1. The smoothness implies a condition on ¢ and d.

2. Choose b, d by a, ¢ (and by two good elements in IFZ) in order
to guaranty the pointlessness.

The condition g > 2 is essential for the last step.
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Sketch of proof: the smoothness

Let C be a hyperellptic curve over Fq, g = 2", of the form
y?+af(x)y = bh(x), where

f(X) — Xg+1 +Xg+1—(q—1) +c, h(X) _ X2g+2 +X2g+2—2(q—1) +d,

for some a, b, c, d € IF:;.



Proof, even g
[e]e] e}

Sketch of proof: the smoothness

Let C be a hyperellptic curve over Fq, g = 2", of the form
y?+af(x)y = bh(x), where

f(X) — x&+1 _|_Xg+1—(q—1) +c, h(X) — x28+2 +X2g+2—2(q—1) +d,
for some a, b, c, d € IF’:I.

The curve C is smooth < R(x) and Q(x) are comprime, where

R(x) = a®b f'(x)h(x) + > H'(x)?, Q(x) = af(x).
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Sketch of proof: the smoothness

Let C be a hyperellptic curve over Fq, g = 2", of the form
y?+af(x)y = bh(x), where

f(X) — Xg+1 _|_Xg+1—(q—1) +c, h(X) _ X2g+2 +X2g+2—2(q—1) +d,

for some a, b, c, d € IF’:I.

The curve C is smooth < R(x) and Q(x) are comprime, where
R(x) = a®b f'(x)h(x) + > H'(x)?, Q(x) = af(x).

One can show that

ged (R(x), Q(x)) = ged (h(x), f(x)) = ged(f(x)* + ¢* + d, f(x)).

This implies a condition for the smoothness: c¢? # d.
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Sketch of proof: the lack of F,-points
C is the union of
y2+af(x)y = bg(x), y>+ax¥Tlf(x)y = bx%612g(x),

f(x) = X814 x&gti=(a-1) 4 ¢, h(x)= x2612 4 y2e+2-2(q-1) 4 g
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C is the union of

2 +af(x)y = bg(x), y*+axETf(x)y = bx*$2g(x),
f(X) — x&+1 +Xg+1—(q—1) +c, h(X) — x28+2 +X2g+2—2(q—1) +d.
Any rational point corresponds to a solution of

either y* +y + bd(ac) 2 =0, or y> +y + ba 2 = 0.
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Sketch of proof: the lack of F,-points
C is the union of
v +af(x)y =bg(x), y*+ax¥tf(x)y = bx*"2g(x),
f(x) = x84 xgt1=(a-1) | ¢, h(x)= X262 | y2e+2-2(q-1) | 4
Any rational point corresponds to a solution of
either y? 4+ y + bd(ac)™2 =0, or y> +y + ba 2 = 0.

By Hilbert’90, C has no rational points iff

b d b
Tr]Fq/IFz <32 . C2> =1 and TI'[Fq/F2 <32> =1.



Proof, even g
oooe

Sketch of proof: the lack of F,-points

C is the union of
yi+af(x)y = bg(x), y*+axEMf(x)y = bx**2g(x),
f(x) = x&11 4 xgt1=(a-1) 4 ¢ h(x) = x%&+2 4+ x28t2-2a-1) 4 g,
Any rational point corresponds to a solution of
either y? 4+ y + bd(ac)™2 =0, or y> +y + ba 2 = 0.

By Hilbert’90, C has no rational points iff

b d b
Tr]Fq/IFz <a2 . C2> =1 and TI'[Fq/F2 <32> =1.

Set b = a’a and d = 2/, where o, B € [y are distinct of the
trace 1 (recall that g > 2!). O
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The gap

Question: Given g, g, does there exist a smooth curve over F of
genus g having no rational points?
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The gap

Question: Given g, g, does there exist a smooth curve over F of
genus g having no rational points?

1. The Weil-Serre bound implies that if g < (q+1)/[2,/q], then
the answer is NO.

2. The result implies that if
g>(9g—3)/2,qisodd, or g > qg—1, qis even,

then the answer is YES.

It remains to resolve the question in the case when, given odd or
even g, the number g belongs to the gap

<£j%’q;3>°r<£:%’Q—1>,mw.
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More good polynomials

Let g be odd. Let g(x), h(x) be two monic polynomials of degree n and
m, an let b € F,.
Define

g(x)? — bh(x)? o g(x)* + b*h(x)?

Fonl) == T
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More good polynomials

Let g be odd. Let g(x), h(x) be two monic polynomials of degree n and
m, an let b € F,.

Define
2 _ p2h 2 2 b%h 2
F o) = EUP PR s | g + BPhOx
2 2
It has almost good value set:
g(a)?, aisaq.r.,
Fe.n(a) = { b?h(a)?, aisaq.n.r.,

g(0)2+2b2h(0)27 a=0.
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e We can choose m compare to n, depending on g (mod 4).
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More good polynomials

Let g be odd. Let g(x), h(x) be two monic polynomials of degree n and
m, an let b € F,.

Define
2 _ p2h 2 2 b%h 2
F o) = EUP PR s | g + BPhOx
2 2
It has almost good value set:
g(a)?, aisaq.r.,
Fe.n(a) = { b?h(a)?, aisaq.n.r.,

g(0)2+2b2h(0)27 a=0.

e We can choose m compare to n, depending on g (mod 4).

e We can choose b using the intersection of two quadrics in F} (to

make F; 4(0) and LT (Fgz (x)) to be q.rr.), that is — an elliptic
curve over [yl

e Is Fg n(x) square-free? In the greate majority of cases - YES
(experiments).
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Work in progress
Let g be odd.

1. There is a binary linear code over F, defined by parity-check
matrix such that:
e This matrix depends only on the arithmetic of I, possessing
several properties.
e Each codeword of weight w corresponds to a pointless smooth
curve over [y of genus w — 1.
e Problem: find the minimum distance, the weight enumerator
and so on.
2. The generation function ) a,z" of the class of polynomials
with good values.
e a,, n> q, are computed.
e a,>0,(g—1)/2 < n<q—1 (more explicit constructions!).
e a,, 0<n<gqg-—1depends only on the generation function
>~ bpz" of the class of square-free polynomials with good
values.
e Problem: find the minimal ng such that for all n > ng we
have b, > 0.
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