Primes of bad reduction of curves of genus 3 with CM

Elisa Lorenzo García

Université Rennes 1 Joint work with P. Kılıçer, K. Lauter, R. Newton, E. Ozman and M. Streng

19-06-2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The result

Theorem

Let C/M be a curve of **genus** 3 over a number field M. Suppose that the Jacobian Jac(C) has **complex multiplication (CM)** by an order \mathcal{O} inside a CM field K of degree 6 and that the CM type of C is **primitive**.

Let \mathfrak{p} be a prime of M lying over a rational prime \mathfrak{p} such that C does not have potential good reduction modulo \mathfrak{p} .

Then the following upper bound holds on p. For every $\mu \in \mathcal{O}$ with μ^2 totally real and $K = \mathbb{Q}(\mu)$, we have

$$p < rac{1}{8}B^{10}$$

where $B = -\frac{1}{2} \operatorname{Tr}_{K/\mathbb{Q}}(\mu^2)$.

The motivation

Construction of CM-curves.

For constructing elliptic curves with CM by an order ${\cal O}$ in an imaginary quadratic field we can use the complex multiplication method. That is, by numerically computing the Hilbert class polynomial

$$H_{\mathcal{O}}(x) = \prod_{E ext{ has CM by } \mathcal{O}} (x - j(E)) \in \mathbb{Z}[x].$$

For curves of genus 2 and higher, these polynomial have rational coefficients, so in order to imitate the method, we need to bound the coefficients.

This was done for the case of genus 2 by Goren-Lauter and Lauter-Viray.

A corollary

A **hyperelliptic curve of genus** 3 is a curve defined by an equation of the form

$$C: y^2 = f(x)$$

such that f is a separable polynomial of degree 8. Shioda gives a set of absolute invariants $j = u/\Delta^{l}$. The discriminant Δ has degree 56.

A Picard curve of genus 3 is a smooth plane curve of the form

$$C: y^3 = f(x)$$

such that f is a monic separable polynomial of degree 4. We have the a set of absolute invariants $j = u/\Delta^{I}$. The discriminant Δ has degree 12.

A corollary

Theorem

Let C/M be a hyperelliptic or Picard curve of genus 3 over a number field M. Suppose that C has CM by an order \mathcal{O} inside a CM field K of degree 6 and that the CM type of C is primitive. Let $I \in \mathbb{Z}_{>0}$ and let $j = u/\Delta^I$ be a quotient of invariants of hyperelliptic (respectively Picard) curves, such that the numerator u has degree 56l (respectively 12l). Let \mathfrak{p} be a prime over a prime number p such that $\operatorname{ord}_{\mathfrak{p}}(j(C)) < 0$. Then

$$p < \frac{1}{8}B^{10}$$

where B is as in previous Theorem.

The proof: the idea

Let $p \mid p$ be a prime such that *C* does not have potential good reduction modulo p.

Possibly after extending the base field again, we have

$$\overline{J} \cong E imes A$$

as principally polarized abelian varieties. Let us write $\operatorname{End}(E) = \mathcal{R}$ and $\mathcal{B} = \mathcal{R} \otimes \mathbb{Q}$. There is an isogeny $s : E^2 \to A$ ([BCLLMNO15]). Then, there is a natural embedding

 $\iota: \mathcal{O} \stackrel{\iota_0}{\hookrightarrow} \mathsf{End}(E \times A) \stackrel{\iota_1}{\hookrightarrow} \mathsf{End}(E^3) \otimes \mathbb{Q} \cong \mathcal{M}_3(\mathcal{B}) \subseteq \mathcal{M}_3(\mathcal{B}_{p,\infty})$

We will see that if p is big enough such embedding cannot exist and then p cannot be a prime of bad reduction.

The proof: sketch

Let us write $K = \mathbb{Q}(\mu^2)$ with $\mu \in K_+$ a totally negative element such that $K_+ = \mathbb{Q}(\mu)$.

Step 1 is to show that for sufficiently large primes p, the entries of $\iota(\mu^2)$ lie in a field $\mathcal{B}_1 \subset \mathcal{B}$ of degree ≤ 2 over \mathbb{Q} .

Step 2 is to show that in the situation of Step 1, the field \mathcal{B}_1 embeds into K and the CM type is induced from \mathcal{B}_1 , which contradicts primitivity of the CM type.

The isogeny

Let $\iota_0 : \mathcal{O} \hookrightarrow \operatorname{End}(E \times A)$ be the injective ring homomorphism coming from reduction of J at \mathfrak{p} and write

$$\iota_0(\mu) =: \left(\begin{array}{c|c} x & y \\ \hline z & w \end{array} \right),$$

We define a homomorphism

$$s = \left(\boxed{z \ wz} \right) : E \times E \longrightarrow A.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

The map s is an isogeny and it defines an embedding $\iota : \mathcal{O} \hookrightarrow \mathcal{M}_3(B_{p,\infty}).$

$$\begin{cases} \iota(-\mu) = \iota(\overline{\mu}) = \iota(\mu)^{\dagger} := \lambda \iota(\mu)^{\vee} \lambda^{-1} \\ \mu^{6} + B\mu^{4} + B'\mu^{2} + B'' = 0 \end{cases} \implies \iota(\mu) = \begin{pmatrix} x & a & b \\ 1 & 0 & c/n \\ 0 & 1 & d/n \end{pmatrix},$$

where $x, a, b, c, d, n \in \mathcal{R}$ satisfying "some relations".

$$\begin{cases} \iota(-\mu) = \iota(\overline{\mu}) = \iota(\mu)^{\dagger} := \lambda \iota(\mu)^{\vee} \lambda^{-1} \\ \mu^{6} + B\mu^{4} + B'\mu^{2} + B'' = 0 \end{cases} \implies \iota(\mu) = \begin{pmatrix} x & a & b \\ 1 & 0 & c/n \\ 0 & 1 & d/n \end{pmatrix},$$

where $x, a, b, c, d, n \in \mathcal{R}$ satisfying "some relations".

$$B \ge \sum$$
 "positive things"

$$\begin{cases} \iota(-\mu) = \iota(\overline{\mu}) = \iota(\mu)^{\dagger} := \lambda \iota(\mu)^{\vee} \lambda^{-1} \\ \mu^{6} + B\mu^{4} + B'\mu^{2} + B'' = 0 \end{cases} \implies \iota(\mu) = \begin{pmatrix} x & a & b \\ 1 & 0 & c/n \\ 0 & 1 & d/n \end{pmatrix},$$

where $x, a, b, c, d, n \in \mathcal{R}$ satisfying "some relations".

$$B \ge \sum$$
 "positive things"

Lemma (Goren, Lauter)

Let \mathcal{R} be an order in the quaternion algebra $B_{p,\infty}$ and $x, y \in \mathcal{R}$. If N(x)N(y) < p/4, then x and y commute.

$$\begin{cases} \iota(-\mu) = \iota(\overline{\mu}) = \iota(\mu)^{\dagger} := \lambda \iota(\mu)^{\vee} \lambda^{-1} \\ \mu^{6} + B\mu^{4} + B'\mu^{2} + B'' = 0 \end{cases} \implies \iota(\mu) = \begin{pmatrix} x & a & b \\ 1 & 0 & c/n \\ 0 & 1 & d/n \end{pmatrix},$$

where $x, a, b, c, d, n \in \mathcal{R}$ satisfying "some relations".

$$B \ge \sum$$
 "positive things"

Lemma (Goren, Lauter)

Let \mathcal{R} be an order in the quaternion algebra $B_{p,\infty}$ and $x, y \in \mathcal{R}$. If N(x)N(y) < p/4, then x and y commute.

Proposition

If $p > \frac{1}{8}B^{10}$, then the image $\iota(\mathcal{O})$ is inside the ring of 3×3 matrices over a field $\mathcal{B}_1 \subset \mathcal{B}$ of degree ≤ 2 .

Let $\sqrt{-\delta} \in \mathcal{O}$ with $\delta \in \mathbb{Z}_{>0}$ and $p \nmid 2\delta$. Let $\mathcal{O}_{\mathfrak{p}}$ be the valuation ring of \mathfrak{p} and let $\mathfrak{K} = \mathcal{O}_M/\mathfrak{p}$ be the residue field. Let $\mathcal{J}/\mathcal{O}_{\mathfrak{p}}$ be a Néron model for J/M and let $\overline{J}/\mathfrak{K}$ be the special fibre of \mathcal{J} . Let $\tilde{e} : \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}}) \to \mathcal{J}$, $e : \operatorname{Spec}(M) \to J$ and $e_0 : \operatorname{Spec}(\mathfrak{K}) \to \overline{J}$ be the identity sections of \mathcal{J} , J and \overline{J} respectively.

Lemma

The $\mathcal{O}_{\mathfrak{p}}$ -module $T^{\tilde{e}}_{\mathcal{J}/\mathcal{O}_{\mathfrak{p}}}(\mathcal{O}_{\mathfrak{p}})$ is free of rank 3. Furthermore, there are natural isomorphisms

$$T^e_{J/M}(M)\cong T^{ ilde e}_{\mathcal J/\mathcal O_\mathfrak p}(\mathcal O_\mathfrak p)\otimes_{\mathcal O_\mathfrak p} M$$

and

$$T^{e_0}_{\overline{J}/\mathfrak{K}}(\mathfrak{K})\cong T^{ ilde{e}}_{\mathcal{J}/\mathcal{O}_\mathfrak{p}}(\mathcal{O}_\mathfrak{p})\otimes_{\mathcal{O}_\mathfrak{p}}\mathfrak{K}$$

as vector spaces over M and \Re respectively. Moreover, these isomorphisms respect the action of T(f) for $f \in \operatorname{End}_{M}(J) = \operatorname{End}_{\mathcal{O}_{\mathfrak{p}}}(\mathcal{J}).$

Since the CM type is primitive, there exists a matrix P such that

$$P\iota(\sqrt{-\delta})P^{-1} = \pm egin{pmatrix} \sqrt{-\delta} & 0 & 0 \ 0 & \sqrt{-\delta} & 0 \ 0 & 0 & -\sqrt{-\delta} \end{pmatrix}$$

.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Now since $P\iota(\mu^2)P^{-1}$ commutes with it, it can be written as

$$egin{pmatrix} * & * & 0 \ * & * & 0 \ 0 & 0 & * \end{pmatrix},$$

which is a contradition with μ^2 being a root of a degree 3 irreducible polynomial.

Thank you!