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Some History

The study of the distribution of values of L-functions is a classical topic:

• Bohr, Jessen, Wintner, etc. intiated a study of the distribution of the
values of log ζ(s) and (ζ ′/ζ)(s), when Re s = σ > 1

2 is fixed and
Im s = τ ∈ R varies.

• This was later generalized to L(f , s) and ζK (s) by Matsumoto.

• Ihara and the Euler–Kronecker constant : starting from the study of
L′(1, χ)/L(1, χ) he obtained a whole range of beautiful results on the
value distribution of L′/L and log L (many of them with Matsumoto).
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Flavour of Ihara’s results (2008)

Given a global field K , i.e. a finite extension of Q or of Fq(t), and a family of
characters χ of K Ihara considered the distribution of L′(s, χ)/L(s, χ) in the
following cases:

(A) K is Q, a imaginary quadratic extension of Q or a function field over Fq,
χ are (normalized) Dirichlet characters on K ;

(B) K is a number field with at least two archimedean primes, and χ are
normalized unramified Grössencharacters;

(C) K = Q and χ = χt , t ∈ R defined by χt(p) = p−it .

He obtains equidistribution results of the type

Avg′χ Φ

(
L′(s, χ)

L(s, χ)

)
=

∫
C
Mσ(w)Φ(w)|dw |,

for σ = Re s > 1 for number fields, and for σ > 3/4 for function fields, under
significant restrictions on the test function Φ.
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Improvements with Matsumoto (∼2010)
• Case (A) : still valid for both families L(s, χ) = L′(s, χ)/L(s, χ) and

log L(s, χ), for Φ of at most polynomial growth and σ > 1/2, assuming
GRH for number fields:

Avgχ Φ (L(s, χ)) =

∫
C
Mσ(w)Φ(w)|dw |.

• Case (A,K = Q) and (C): unconditional results for Φ bounded
continuous function and Re s > 1

2 .

Extensions

• Mourtada and Murty (2015) : some equidistribution result conditional
on GRH for averages over quadratic characters.

• Matsumoto and Umegaki (2016): similar results for differences of
logarithms of two symmetric power L-functions under the GRH.
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The density function Mσ

• The above results give rise to the density functions Mσ(z) and related
functions M̃s(z1, z2) (which is the inverse Fourier transform of Mσ, when
z2 = z̄1, s = σ ∈ R).
Under optimal circumstances we have

Mσ(z) = Avgχ δz (L(s, χ)) , M̃σ(z1, z2) = Avgχ ψz1,z2 (L(s, χ)) ,

where L(s, χ) is either L′(s, χ)/L(s, χ) or log L(s, χ), δz is the Dirac
delta function, and ψz1,z2(w) = exp

(
i
2 (z1w̄ + z2w)

)
.

• Properties of M̃
- it has an Euler product expansion,
- it admits an analytic continuation to the left of Re s > 1/2,
- its zeroes and the “Plancherel volume”

∫
C |M̃σ(z , z̄)|2|dz | are interesting

objects to investigate.
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Why is it interesting for us here?

• It complements the asymptotic theory of global fields of Ihara, Tsfasman
and Vladuts, giving information on {ζKi}, where Ki runs through abelian
families of global fields (it explains the behaviour of Euler–Kronecker
constants in cyclotomic fields for instance)

• It may provide information on ζX0(N) =
∏

f∈B2(N)

L(f , s), as N → +∞.

• It is challenging to understand what the notion of M-function should be.

• It may lead us to a better (higher dimensional) asymptotic theory.
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Notation

• Let Bk(N) denote the set of primitive cusp forms of weight k and level
N, let f ∈ Bk(N),

• L(f , s) =
∞∑
n=0

ηf (n)n−s =
∏
p

(
1− αf (p)p−s

)−1 (1− βf (p)p−s
)−1

,

where 
|αf (p)| = 1, βf (p) = αf (p)−1 if (p,N) = 1,
αf (p) = ±p− 1

2 , βf (p) = 0 if p ‖ N,
αf (p) = βf (p) = 0 if p2 | N.

• Iet χ be a Dirichlet character of conductor m coprime with N,

• define L(f ⊗ χ, s) to be either (L′/L)(f ⊗ χ, s) or log L(f ⊗ χ, s),

• g(f ⊗ χ, s, z) = exp
(
iz
2 L(f ⊗ χ, s)

)
,

• Write g(f , s, z) =
∑
n≥1

lz(n)n−s with lz(n) =
∑
x≥1

cNz,x(n)ηf (x), where

cNz,x(n) depend only on the level N. Put cz,x(n) = c1
z,x(n).
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Our results (f is fixed, χ varies) at the M̃-side

Theorem 1
Assume that m is a prime number and let Γm denote the group of Dirichlet
characters modulo m. Let 0 < ε < 1

2 and T ,R > 0. Let s = σ + it belong to
the domain σ ≥ ε+ 1

2 , |t| ≤ T , let z and z ′ be inside the disk
DR = {z | |z | ≤ R}. Then, assuming the Generalized Riemann Hypothesis
(GRH) for L(f ⊗ χ, s), we have

lim
m→∞

1
|Γm|

∑
χ∈Γm

g(f ⊗ χ, s, z)g(f ⊗ χ, s, z ′) =
∑
n≥1

lz(n)lz′(n)n−2σ

=: M̃σ(−z̄ , z ′).



Our results (f is fixed, χ varies) at the M-side

Theorem 2
Let Re s = σ > 1

2 and let m run over prime numbers. Let Φ be either a
continuous function on C with at most exponential growth, or the
characteristic function of a bounded subset of C or of a complement of a
bounded subset of C. Define Mσ as the inverse Fourier transform of
M̃σ(z , z̄). Then under GRH for L(f ⊗ χ, s) we have

lim
m→∞

1
|Γm|

∑
χ∈Γm

Φ(L(f ⊗ χ, s)) =

∫
C
Mσ(w)Φ(w)|dw |.



Our results (f varies) at the M̃-side

Theorem 3
Assume that N is a prime number and that k is fixed. Let 0 < ε < 1

2 and
T ,R > 0. Let s = σ + it belong to the domain σ ≥ ε+ 1

2 , |t| ≤ T , and z and
z ′ to the disc DR of radius R. Then, assuming GRH for L(f , s), we have

lim
N→+∞

∑
f∈Bk (N)

ω(f )g(f , s, z)g(f , s, z ′) =
∑

n,m∈N
n−s̄m−s

∑
x≥1

cz,x(n)cz′,x(m),

where ω(f ) are the harmonic weights.



Remarks about the proofs

• Theorem 1 follows mostly from the work of Ihara and Matsumoto, where
they define admissible families for which such results hold. To check that
our families are admissible is straightforward thanks to numerous works
on L-functions of cusp forms.

• Theorem 2 is very tricky, but the main tool is an extension of the
classical Jessen-Wintner theorem (to be discussed later).

• The proof of Theroem 3 is analogous to Ihara’s proofs, except that we
use the Petersson formula instead of the orthogonality of characters, and
is much more technical.
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Outlines of the proof of theorem 2 in the L′/L-case

The function M̃s,p

• Let Re s = σ > 0. Define the functions on Tp = C1 = {t ∈ C | |t| = 1}
by

gs,p(t) =
−(log p)α(p)p−st

1− α(p)p−st
+
−(log p)β(p)p−st

1− β(p)p−st
,

• We introduce the local factors M̃s,p(z1, z2) via

M̃s,p(z1, z2) =
+∞∑
r=0

lz1(pr )lz2(pr )p−2rs .

The series is absolutely and uniformly conv. on compacts in Re s > 0
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Outlines of the proof of theorem 2 in the L′/L-case

The function M̃s,P

Put M̃s,P(z1, z2) =
∏
p∈P

M̃s,p(z1, z2). We also define M̃σ,p(z) = M̃σ,p(z , z̄),

and M̃σ,P(z) = M̃σ,P(z , z̄). Then

• The function M̃s,P(z1, z2) is entire in z1, z2.

• We have

M̃s,p(z1, z2) =

∫
C1

exp

(
i

2
(z1gs,p(t−1) + z2gs,p(t))

)
d×t,

thus M̃σ,p(z1, z2) =

∫
C1
ψz1,z2(gσ,p(t))d×t,

and M̃σ,p(z) =

∫
C1

exp(i Re(gσ,p(t)z̄))d×t.

• The “trivial” bound |M̃σ,p(z)| ≤ 1 holds.
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Outlines of the proof of theorem 2 in the L′/L-case

The function Mσ,P

• There exists a unique positive measure Mσ,P of compact support and
mass 1 on C ' R2 such that

Mσ,P(Φ) =

∫
TP

Φ(gs,P(tP))d×tP , for any cont. function Φ on C,

with TP =
∏
p∈P

C1 and gs,P(tP) =
∑
p∈P

gs,p(tp).

• FMσ,P = M̃σ,P(z).

• There exists a set of primes Pf of positive density such that, for all
p ∈ Pf , M̃σ,p(z)�p,σ (1 + |z |)− 1

2 .

• Let P be a set of primes. If |P ∩ Pf | > 4, then Mσ,P admits a
continuous density (still denoted by Mσ,P) which is an L1 function. The
function Mσ,P satisfies Mσ,P(z) = Mσ,P(z̄) ≥ 0.

• Mσ,P is of class Cr once |P ∩ Pf | > 2(r + 2).
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Outlines of the proof of theorem 2 in the L′/L-case

From now on we assume that Re s = σ > 1
2 , without mentioning it in each

statement.

The function M̃s

We define

M̃s(z1, z2) =
∞∑
n=1

lz1(n)lz2(n)n−2s ,

• The function M̃s(z1, z2) is entire in z1, z2.

• We have the Euler product expansion

M̃s(z1, z2) =
∏
p

M̃s,p(z1, z2),

which converges absolutely and uniformly on Re s ≥ 1
2 + ε and |z1|,

|z2| ≤ R, for any ε,R > 0.
• M̃σ(z) = O((1 + |z |)−N) for all N > 0.
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Outlines of the proof of theorem 2 in the L′/L-case

The function Mσ

• The sequence (Mσ,Px (z))x�0 converges uniformly (as continuous
functions) to Mσ(z) := FM̃σ(−z).

• We have
1 Mσ(z) = Mσ(z̄) ≥ 0;

2

∫
C
Mσ(z)|dz | = 1;

3 Mσ(z) ∈ C∞ and the partial derivatives of Mσ,Px converge uniformly to
those of Mσ;

4 If σ > 1, the support of Mσ is compact.

• For any λ > 0, Mσ(z) = Oσ,λ(e−λ|z|
2
), as |z | → ∞. The same is true

for all its partial derivatives.
• The functions Mσ(z) and M̃σ(z) belong to the Schwartz space.
•

M̃σ(z1, z2) =

∫
C
Mσ(w)ψz1,z2(w)|dw |.
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Open questions

1 Can our Theorems be proven in a greater generality? (for automorphic
cusp forms, unconditionally...)

2 Carry out a more in-depth study of the functions M and M̃.

3 Can one obtain Theorem 3 with weaker assumptions on N? Can we let k
tend to infinity, while N is fixed? Can we let k + N →∞?

4 Is it possible to establish value distribution results in the case harmonic
averages over the set of primitive forms?

5 Can one remove the harmonic weights in Theorem 3?

6 What is a function field version of Theorem 3?

7 Write an adelic version of Ihara’s and Matsumoto’s results, as well as of
our results in the setting of modular forms.

8 What are the arithmetic implications of our results?
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