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Exponential sums
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Sums of degree 7

k = Fq . Assume chark = p > 14.
ψ : a nontrivial additive character of k
N. Katz (1990, 2004) introduced the sums

S(t ) = ∑
x∈k×

χ2(x)ψ(x7 + t x), t ∈ k,

with the quadratic character (Legendre symbol)

χ2(x) =
(

x

p

)
, x ∈ Fp .

Then

p−1/2S(t ) =
7∑

j=1
α j

with |α j | = 1.
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Yoga of equidistribution

By analogy with families of curves, in favorable situations:

As q and t vary, such families of exponential sums satisfy
a generalized equidistribution law,

coming from the trace of elements of a compact Lie group G

In view of its relation to a fundamental group, the group G is called
the monodromy group of the family
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More precisely, the monodromy group G is such that :

1. If t ∈ T (Fp ),

p−1/2S(t ) = Tr(g t ) for some g t ∈G .

2. The p−1/2S(t ) are equidistributed like the trace of random
elements of G :∣∣∣{t ∈ T (Fp ) | p−1/2S(t ) ≤ x

}∣∣∣
|T (Fp )| = F (x)+O

(
p−1/2) ,

with the cumulative distribution function (CDF)

F (x) = vol
{

g ∈G | Tr(g ) ≤ x
}

The probability density function (PDF) is f (x) = F ′(x)
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Normalizing factor

The quadratic Gauss sum is

g = g (ψ,χ2) = ∑
x∈F×p

( x

7

)
exp

2iπx

p
.

g =
{ p

p i f p ≡ 1( mod 4)
i
p

p i f p ≡ 3( mod 4).

Normalization : let

S̃(t ) =
( p

7

) S(t )

g

Then S̃(t ) is real and belongs to [−2,7]. We shall see that

S̃(t ) = 1+α1 +α2 +α1α2 + 1

α1
+ 1

α2
+ 1

α1α2
,

with α1,α2 on the unit circle.
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Summary

The normalisation leads to real numbers:

S̃(t ) =
(−7

p

)
p−1/2

∑
x∈F×p

(
x

p

)
cos

2π(x7 + t x)

p
if p ≡ 1(mod4),

=
(−7

p

)
p−1/2

∑
x∈F×p

(
x

p

)
sin

2π(x7 + t x)

p
if p ≡ 3(mod4)

What is the monodromy group of these families ?
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Distribution

Let UG2 be the compact semi-simple Lie group of exceptional type
G2, and τ1 the character of the representation of degree 7

Theorem (Katz)
The monodromy group of S̃(t ) is equal to UG2. Hence,

|{t ∈ Fp | p−1/2S̃(t ) ≤ x
}|

p
= vol

{
g ∈ UG2 | τ1(g ) ≤ x

}+O
(
p−1/2) ,

Katz (2017) generalized this to more general families of degree 7
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Question (Katz)
Find an explicit formula for the distribution of τ1
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Histogram
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fp (x) =

∣∣∣{t ∈ Fp | x ≤ S̃(t ) ≤ x + 1
2

}∣∣∣
p

, x =−2, . . . ,6.5

p = 1019
11 / 31



The group UG2
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The algebra g2

g2: complex Lie algebra of matrices

X =



0 2d 2e 2 f 2a 2b 2c
a 0 f −e
b A − f 0 d
c e −d 0
d 0 −c b
e c 0 −a − t A
f −b a 0


, A ∈ sl3(C).

g2 is a simple Lie subalgebra of an orthogonal Lie algebra so(Ψ)
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Cartan subalgebra

Cartan subalgebra h of g2: diagonal matrices of the form

0
θ1

θ2 0
−θ1 −θ2

−θ1

0 −θ2

θ1 +θ2


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The group G2

Ï There is exactly one connected complex algebraic group G2

with Lie algebra g2

Ï G2 is simple , simply connected
Ï T : Maximal 2-dimensional torus of G2, with matrices

t (a1, a2) =



1
a

a2 0
(a1a2)−1

a−1
1

0 a−1
2

a1a2


.
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The group UG2

Compact form of G2 :

UG2 = G2∩SU(H)

with H a non-degenerate positive hermitian form on C7

UG2 is conjugate to a subgroup of SO(7)
T : maximal 2-dimensional torus of UG2, with matrices

u(θ1,θ2) =



1
e iθ1

e iθ2 0
e−i (θ1+θ2)

e−iθ1

0 e−iθ2

e i (θ1+θ2)


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Root system

The root systemΦ⊂ h∗ of (g2,h) is of rank 2. Base:

α1 = (0,1), α2 = (1,−1).

0

α1

α2

α3

α4

α5

α6

Weyl group W of order 12, isomorphic to S3 ×C2 = D6

17 / 31



Fundamental representations

G2 has two fundamental representations:

Ï The standard representation π1 of degree 7, defined by the
natural imbedding G2 −→ GL7

τ1(t ) = Trπ1(t ), t ∈ T.

Ï The adjoint representation π2 of degree 14

τ2(t ) = Trπ2(t ) = ∑
α∈Φ

χα(t ), t ∈ T.

Proposition

If t (a1, a2) ∈ T, then

τ1 ◦ t (a1, a2) = u + v +w +1,

τ2 ◦ t (a1, a2) = uv + v w +wu +2,
where

u = a1 + 1

a1
, v = a2 + 1

a2
, w = a1a2 + 1

a1a2
.
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Weyl integration formula

We want to calculate ∫
g∈UG2,τ1(g )≤x

d g

Theorem (Weyl integration formula for UG2)

If F is a piecewise continuous class function, then∫
UG2

F(g )d g = 1

|W |
∫

[0,1]2
F◦u(2πθ)δ(2πθ)dθ

with θ = (θ1,θ2), dθ = dθ1dθ2, and the Weyl density

δ(θ) = (d1(θ)d2(θ))2

d1(θ) = 2(sinθ1 + sinθ2 − sin(θ1 +θ2))

d2(θ) = 2(sin(θ1 −θ2)− sin(2θ1 +θ2))sin(2θ1 +2θ2))

19 / 31



Steinberg map

The Steinberg map τ : G2
// R2 is given by

τ(g ) = (τ1(g ),τ2(g ))

By composition, we define σ :R2 // R2

σ(θ) =τ◦u(2πθ)

The Jacobian determinant of σ is

Jacσ(θ) = 4π2
√
δ(2πθ)

Moreover the Weyl density δ(θ) = D(σ(θ)), with

D(x, y) = (4y −x2 −2x +7)((y +5(x +1))2 −4(x +2)3)
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Alcove in the Cartan subalgebra

Fundamental alcove A : fundamental domain for the operation of
W on h : intersection of the half-planes

H1 : θ2 > 0, H2 : 1−θ2 −2θ1 > 0, H3 : θ1 −θ2 > 0.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

A is a triangle with vertices

A1 =
(1

3 , 1
3

)
, A2 = (0,0), A3 =

(1
2 ,0

)
.
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Properties of the Steinberg map

Theorem

1. The Steinberg map τ induces an homeomorphism of
T /W ' ClUG2 onto a domain Σ⊂R2.

2. The map
σ=τ◦u : A −−−−→ Σ

(where A is the alcove) is a homeomorphism, and ∂Σ
corresponds to the singular classes.

3. The restriction to Σ of D(x, y) is zero on the boundary and
nowhere else.
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Picture of Σ

O
P

-2 0 2 4 6

0

5

10

The boundary of Σ is the curve

D(x, y) = 0

Vertices:

A1 = (−2,5), A2 = (7,14), A3 = (−1,−2)

Concentration on the left:

Ï Maximum of D at
P = (−1/5,−2/5)

Ï Center of gravity w.r.t. D1/2 at
O = (0,0)
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Distribution of the trace
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Second integral formula

Theorem (Second integration formula for G = UG2)

If ϕ is a piecewise continuous function on Σ, then∫
UG2

ϕ◦τ(g ) d g = 1

4π2

∫
Σ
ϕ(x, y)D(x, y)1/2d x d y.

Recall that D is defined by δ= D(τ1 ◦u,τ2 ◦u)

Note : this generalizes (Serre, 2015) to every semisimple simply
connected group, thanks to a formula of Steinberg (1965)
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Probability density function

Taking for ϕ the characteristic function of the set {x ≤ t }, we get

F (t ) = vol
{

g ∈ UG2 | τ1(g ) ≤ t
}= 1

4π2

∫
(x,y)∈Σ,x≤t

D(x, y)1/2d x d y

which is the CDF of τ1. Hence, the PDF of τ1 is given by

f (x) = F ′(x) = 1

4π2

∫
Σ(x)

D(x, y)1/2d y.

where Σ(x) = {
y | (x, y) ∈Σ}

Question
Express this integral with the help of special functions
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Gauss’ hypergeometric function

Integral representation of Gauss’ hypergeometric function:

2F1(a,b;c; z) = Γ(c)

Γ(b)Γ(c −b)

∫ 1

0
t b−1(1− t )c−b−1(1− t z)−a d t

where a ∈C and Rec > Reb > 0. Analytic function of z in C\ [1,∞[.
The function

H(z) = 2F1

(
−1

2
,

3

2
,3; z

)
is also expressible in terms of:

Ï Legendre function of the first kind P−1
−5/2(z)

Ï Legendre elliptic integrals E(z) and K (z)

Ï Meijer’s G-function, etc.
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Main theorem

Theorem (GL)
Let

z(x) = 16y3

(y +1)(3− y)3 , y =p
x +2,

f1(x) = 1

2π
y6 (3− y)3/2(y +1)1/2 H(z(x)),

f2(x) = 1

128π
y3/2(3− y)6 (y +1)2 H(

1

z(x)
).

Then the probability density function of the character τ1 is given by

f (x) =
{

f1(x) if −2 ≤ x ≤−1,
f2(x) if −1 ≤ x ≤ 7.

This is a real analytic function at every point z 6= 1.
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Graph of PDF
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Probability density function f (x)

xmax =−0.736. . . , f (xmax ) = 0.481. . .

f (−2+ε) ∼ 3
p

3

2π
ε3, f (7−ε) = 1

29 ·34 ·p3 ·π ε
6 +O(ε)8.
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Descriptors of the shape
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0.1
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0.4

0.5

Skewness (asymétrie) M3 = 1 > 0 ⇒ right tail longer, skewed to the
right; mass concentrated on the left.
Kurtosis M4 −3 = 1 > 0 ⇒ leptokurtic curve (high peak).
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Relevance of PDF to histogram
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