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The zeta function problem

The zeta function of an algebraic variety

For X a variety over a finite field Fq of characteristic p, consider

ζ(X ,T ) := exp

( ∞∑
n=1

#X (Fqn)
T n

n

)
∈ ZJT K ∩Q(T ).

We consider the algorithmic problem of recovering ζ(X ,T ) from an
explicit description of X .

This problem is in principle solvable: use some geometric argument to
bound the degree of the rational function, then enumerate X (Fqn) for
enough values of n. However, in all but a few cases (e.g., curves of low
genus over small Fq) one needs a better approach in practice.
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The zeta function problem

Use cases

This might be easier than testing for isomorphisms (Voloch’s talk).

In cryptography, one often wants to know #J(C ) for C a low-genus
curve over a large Fq, especially in the case q = p. We mostly ignore
this case.

In coding theory, one may want #X (Fq) in order to control a
Riemann–Roch space.

One can also use ζ(X ,T ) to control other numerical invariants. E.g.,
for X a smooth projective surface, ζ(X ,T ) reflects the Picard number
(Voloch–Zarzar, AGCT 2005) and the order of the Brauer group.

...
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The zeta function problem

More use cases: number fields

If one starts with a variety over a number field K , it admits L-functions
built out of the zeta functions of its reductions. Computing these for all
primes of norm up to some bound has several applications.

The distribution of the factors reflects interesting geometry
(Sato–Tate conjecture, Lang–Trotter conjecture, etc.)

Computing special values of L-functions may shed light on
Birch–Swinnerton-Dyer and related conjectures.

One may want to match these L-functions up with automorphic ones,
as in the Langlands correspondence.

...
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The zeta function problem

Some taxonomy of cases

Say we want ζ(X ,T ) for some quasi-projective X over Fq.

For dim(X ) large, this is NP-complete and hence (?) intractable.

For dim(X ) fixed, no polynomial-time algorithm in log p, logp q,
deg(X ) is known.

For p large, little is known. Schoof–Pila is polynomial-time for curves
of genus g , but only practical if g ≤ 2 or some extra structure is
available (e.g., real multiplication).

For p fixed, a polynomial-time algorithm can be derived from Dwork’s
p-adic analytic proof that ζ(X ,T ) ∈ Q(T ) (Lauder–Wan; Harvey).
This is not practical, but is closely related to methods of p-adic
cohomlogy which do work well in practice.
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The zeta function problem

Methods based on p-adic cohomology

Hereafter, we focus on algorithms derived from spectral interpretations

ζ(X ,T ) :=

2 dim(X )∏
i=0

det(1− FT ,H i (X ))(−1)
i+1

where H i (X ) are some computable finite-dimensional Qp-vector spaces.
(By contrast, `-adic étale cohomology gives a spectral interpretation which
is generally not easily computable.)

The spaces H i (X ) are related to crystalline cohomology and de Rham
cohomology (i.e., differential forms). In practice, we assume that X lifts
“nicely” to some number field K ; then H i (X ) is computed in terms of
generators and relations over K , using exact linear algebra.

By contrast, the linear operator F on H i (X ) is intrinsically p-adic analytic;
in particular, the matrix via which it acts on some basis cannot be
represented exactly. One computes it to sufficient p-adic accuracy by
carefully truncating some series representation.
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Review of AGCT 2005

Background: computations on curves

In 2001, I described a practical algorithm for computing zeta functions of
(some) hyperelliptic curves. This has been implemented (in Magma,
Sage, Pari) and generalized to various extents, notably to (essentially)
arbitrary curves (Tuitman).

My talk at AGCT 2005 was about a first attempt to compute examples for
higher-dimensional varieties, especially smooth quartic (K3) surfaces in P3.
The immediate motivation was to generate examples of a construction of
Voloch–Zarzar of algebraic geometry codes derived from surfaces (also
presented at AGCT 2005).

These computations became a summer research project with two MIT
undergraduates (Tim Abbott and David Roe). Our resulting paper appears
in the AGCT 2005 proceedings.
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Review of AGCT 2005

More on the computation: de Rham cohomology

Let X be a smooth hypersurface in Pn
Fq

cut out by the homogeneous

polynomial P(x0, . . . , xn). For U = Pn
Fq
− X , we have

ζ(X ,T )ζ(U,T ) = ζ(Pn,T ) =
1

(1− T )(1− qT ) · · · (1− qnT )

so computing ζ(X ,T ) and ζ(U,T ) are equivalent tasks. Note that

U = Spec(degree 0 part of Fq[x0, . . . , xn, f
−1])

is an affine variety. For example, algebraic de Rham cohomology of U,
defined as hypercohomology of the complex of sheaves

0→ O d→ Ω1 → · · · → Ωn → 0,

equals ordinary cohomology of the complex of global sections.
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Review of AGCT 2005

More on de Rham cohomology

Because de Rham cohomology behaves strangely in characteristic p, we
instead work with the hypersurface X̃ cut out by a lift P̃ of P. This lift
can be taken over a number field K with an ideal of norm q. The algebraic
de Rham cohomology of the complement Ũ (in degree n, the rest being
negligible) can be computed using the Griffiths–Dwork reduction process.

Represent each differential as a degree 0 quotient

AΩ

Pm
, Ω =

n∑
i=0

(−1)i dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm.

For m > n, we can reduce the pole order in cohomology using the relations

(∂iA)Ω

Pm
≡ m

A(∂iP)Ω

Pm+1
, ∂i =

∂

∂xi
.

(A theorem of Macaulay guarantees that these relations suffice.)
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Review of AGCT 2005

The action of Frobenius on de Rham cohomology

The action of Frobenius on cohomology is induced by the substitution
σ : xi 7→ xqi , using the expansion

P−m 7→
∞∑
i=0

(
−m
i

)
(Pσ − Pq)i

Pq(m+i)
.

In 2005, we computed the matrix of action by expanding the numerators,
then using commutative algebra in Magma. In this way, we were able to
compute ζ(X ,T ) for some examples with n = 3, deg(X ) = 4, q ≤ 17.
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Review of AGCT 2005

Taking advantage of sparsity: controlled reduction

In order to proceed further, we need a crucial improvement introduced by
Harvey in the context of hyperelliptic curves. First, rewrite the expansion
as

P−m 7→
∞∑
i=0

i∑
j=0

(−1)j−i
(
−m
i

)(
i

j

)
(Pσ)j

Pq(m+j)

so the numerators all become sparse polynomials.

Second, combine the Griffiths–Dwork relations to get some new relations
that preserve sparsity.

At a mild cost in the other parameters, the dependence on p is improved
from pn to p1. This already makes it possible to compute much bigger
examples, e.g., n = 3, deg(X ) = 4, q ≤ 50000.
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Beyond projective space: toric varieties

Toric varieties

If one is interested in “naturally occurring” classes of varieties, one does
not get many of these from smooth projective hypersurfaces. (Already for
curves, most genera do not occur.)

However, the Griffiths–Dwork method is easily adapted to a hypersurface
X in a general toric variety, at least if we replace smoothness by a slightly
stronger (but still generic) condition: X is nondegenerate1 if its
intersection with each toric stratum is transversal.

For curves, something similar is done by Castryck–Denef–Vercauteren; I
proposed a higher-dimensional version some years ago. What makes the
key difference for practicality is again controlled reduction.
(Sperber–Voight have a different approach based on Dwork cohomology.)

1The term schön is also used.
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Beyond projective space: toric varieties

Executive summary of toric varieties

Write down a toric hypersurface defined by a Laurent polynomial

P =
∑
i∈Zn

Pix
i ∈ Fq[x±1 , . . . , x

±
n ].

Its Newton polytope is the convex hull in Rn of the support of P; this
defines a projective toric variety. Nondegeneracy means this hypersurface
and the cross-section by any bounding hyperplane (in any dimension) are
all smooth in their respective tori.

Bonus feature: if the support of P lies in a sublattice of Zn, we can use
that instead. This amounts to quotienting by a finite abelian group to get
an easier calculation; the “interesting” part of cohomology persists in the
quotient, but extra work may be needed to recover a “trivial” cofactor.
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Some numerical examples

Example: a random dense quartic

Consider the surface X in P3
Fp

for p = 49999 given by

−9x4 − 10x3y − 9x2y2 + 2xy3 − 7y4 + 6x3z + 9x2yz − 2xy2z + 3y3z

+8x2z2 + 6y2z2 + 2xz3 + 7yz3 + 9z4 + 8x3w + x2yw − 8xy2w − 7y3w

+9x2zw − 9xyzw + 3y2zw − xz2w − 3yz2w + z3w − x2w2 − 4xyw2

−3xzw2 + 8yzw2 − 6z2w2 + 4xw3 + 3yw3 + 4zw3 − 5w4 = 0.

In 1h5m5s, we obtain

ζ(X ,T ) = (1− T )−1(1− pT )−1(1− p2T )−1Q(T )−1

pQ(p−1T ) = (1− T )(49999 + 63115T + 14796T 2 + 42361T 3

+ 49443T 4 + 11718T 5 + 42046T 6 + 51501T 7 + 20534T 8

+ 27146T 9 + 38370T 10 + 27146T 11 + 20534T 12 + 51501T 13

+ 42046T 14 + 11718T 15 + 49443T 16 + 42361T 17 + 14796T 18

+ 63115T 19 + 49999T 20).
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Some numerical examples

Example: a quartic surface in the Dwork pencil

Consider the surface X in P3
Fp

for p = 49999 given by

x40 + · · ·+ x43 + x0x1x2x3 = 0.

In 4.3s, we compute that

ζ(X ,T ) =
1

(1− T )(1− pT )R1(pT )3R2(pT )6(1− p2T )Q(T )

where the “interesting” factor Q(T ) equals (1−pT )(1 + 95902T +p2T 2).

In this case, the monomials generate a sublattice of index 42 in Z3. The
polynomials R1 and R2 arise from the action of Frobenius on the
Néron–Severi lattice; by a p-adic formula of de la Ossa–Kadir,

R1(T ) = (1± T )(1± T ), R2(T ) = 1− T 2.
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Some numerical examples

Example: a quintic threefold in the Dwork pencil

Consider the threefold X in P4
Fp

for p = 1000003 given by

x50 + · · ·+ x54 + x0x1x2x3x4 = 0.

In 657s, we compute that

ζ(X ,T ) =
R1(pT )20R2(pT )30Q(T )

(1− T )(1− pT )(1− p2T )(1− p3T )

where R1,R2 are the numerators of the zeta functions of certain curves
(given by a formula of Rodriguez Villegas–Candelas–de la Ossa) and

Q(T ) = 1 + 74132440T + 748796652370pT 2 + 74132440p3T 3 + p6T 4.

The factor Q(T ) also shows up in the zeta function of the mirror quintic...
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Some numerical examples

Example: another family of K3 surfaces

Consider the surface X in the weighted projective space P(8, 5, 4, 3)Fp for
p = 49999 given by taking the closure of the affine surface

yz5 + xz4 + y4 + z4 + x2 + 1 = 0.

In 120s, we compute that

ζ(X ,T ) =
1

(1− T )R(pT )(1− p2T )Q(T )

where (I think) R(T ) = (1− T )6(1 + T )4(1 + T 2)(1 + T 4) and

pQ(p−1T ) = p−14662T−31559T 2−5620T 3−31559T 4−14662T 5+pT 6.

This example is from Miles Reid’s list of 95 families of nondegenerate toric
surfaces which are K3 surfaces.
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Some numerical examples

Example: a hypergeometric motive

Consider the appropriate completion of the toric surface over Fp with
p = 71 given by

x3y + y4 + z4 − 12xyz + 1 = 0.

In 0.14s, we compute that the “interesting” factor of ζ(X ,T ) is

1− 75T − 55pT 2 + 134p2T 3 − 55p3T 4 − 75p4T 5 + p6T 6.

This example (from arXiv:1612.09249) can be confirmed using Magma:

EulerFactor(HypergeometricData([1/12,1/6,5/12,7/12,

10/12,11/12],[0,0,0,1/3,1/2,2/3]),2^10 * 3^6, 71);

however, we can handle much larger p (e.g., p = 49999), for which
Magma can only compute the coefficient of T .

K.S. Kedlaya Zeta functions of toric hypersurfaces Luminy, June 21, 2017 22 / 25



Some numerical examples

Example: a hypergeometric motive

Consider the appropriate completion of the toric surface over Fp with
p = 71 given by

x3y + y4 + z4 − 12xyz + 1 = 0.

In 0.14s, we compute that the “interesting” factor of ζ(X ,T ) is

1− 75T − 55pT 2 + 134p2T 3 − 55p3T 4 − 75p4T 5 + p6T 6.

This example (from arXiv:1612.09249) can be confirmed using Magma:

EulerFactor(HypergeometricData([1/12,1/6,5/12,7/12,

10/12,11/12],[0,0,0,1/3,1/2,2/3]),2^10 * 3^6, 71);

however, we can handle much larger p (e.g., p = 49999), for which
Magma can only compute the coefficient of T .

K.S. Kedlaya Zeta functions of toric hypersurfaces Luminy, June 21, 2017 22 / 25



Some numerical examples

Example: a hypergeometric motive

Consider the appropriate completion of the toric surface over Fp with
p = 71 given by

x3y + y4 + z4 − 12xyz + 1 = 0.

In 0.14s, we compute that the “interesting” factor of ζ(X ,T ) is

1− 75T − 55pT 2 + 134p2T 3 − 55p3T 4 − 75p4T 5 + p6T 6.

This example (from arXiv:1612.09249) can be confirmed using Magma:

EulerFactor(HypergeometricData([1/12,1/6,5/12,7/12,

10/12,11/12],[0,0,0,1/3,1/2,2/3]),2^10 * 3^6, 71);

however, we can handle much larger p (e.g., p = 49999), for which
Magma can only compute the coefficient of T .

K.S. Kedlaya Zeta functions of toric hypersurfaces Luminy, June 21, 2017 22 / 25



Some numerical examples

Example: another Calabi–Yau threefold

Let X be the closure in the weighted projective space
P(10, 11, 16, 19, 21)Fp for p = 49999 of the affine threefold

y7 + x2zw + xyzw + y2zw + z3w + w3 + xz + yz = 0.

In 401s, we compute that the “interesting” factor of ζ(X ,T ) is

1 + 6423186T + 2211095838pT 2 − 127485903944p2T 3

+2211095838p4T 4 + 6423186p6T 5 + p9T 6.

By analogy with the Reid list, one can classify Calabi–Yau threefolds
arising as nondegenerate toric hypersurfaces; there are 7555 such families.
See http://hep.itp.tuwien.ac.at/~kreuzer/CY/.
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Next steps

Next steps

Use average polynomial-time methods and/or Harvey’s method for
reducing the p-dependence to p1/2 (after Chudnovsky2,
Bostan–Gaudry–Schost).

Use the Cayley trick to treat nondegenerate complete intersections in
toric varieties. This gives many additional classes of Calabi–Yau
threefolds.

Use this to examine jumping of Picard ranks for K3 surfaces
(Costa–Tschinkel, Costa–Elsenhans–Jahnel).

Use this to examine Sato–Tate distributions for surfaces and
threefolds.

Finish writing the paper already...
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