Fully maximal and minimal supersingular abelian varieties

Valentijn Karemaker (University of Pennsylvania)

Joint with R. Pries

Arithmetic, Geometry, Cryptography, and Coding Theory, CIRM

June 19, 2017

Supersingular abelian varieties

Let $q = p^r$, $K = \mathbb{F}_q$, $k = \overline{\mathbb{F}}_q$.

Let A be a g-dimensional abelian variety defined over K.

(We will always assume A to be principally polarised.)

Supersingular abelian varieties

Let $q=p^r$, $K=\mathbb{F}_q$, $k=\overline{\mathbb{F}}_q$. Let A be a g-dimensional abelian variety defined over K. (We will always assume A to be principally polarised.)

Let π_A be the relative Frobenius endomorphism of A. The roots $\{\alpha_1, \overline{\alpha}_1, \dots, \alpha_g, \overline{\alpha}_g\}$ of its characteristic polynomial

P(A/K, T) are the Weil numbers of A/K.

These have absolute value \sqrt{q} .

Let $\{z_i = \frac{\alpha_i}{\sqrt{q}}, \overline{z}_i\}_{1 \leq i \leq g}$ be the normalised Weil numbers of A/K.

Supersingular abelian varieties

Let $q=p^r$, $K=\mathbb{F}_q$, $k=\overline{\mathbb{F}}_q$. Let A be a g-dimensional abelian variety defined over K.

(We will always assume A to be principally polarised.)

Let π_A be the relative Frobenius endomorphism of A.

The roots $\{\alpha_1, \overline{\alpha}_1, \dots, \alpha_g, \overline{\alpha}_g\}$ of its characteristic polynomial P(A/K, T) are the *Weil numbers* of A/K.

These have absolute value \sqrt{q} .

Let $\{z_i = \frac{\alpha_i}{\sqrt{q}}, \overline{z}_i\}_{1 \leq i \leq g}$ be the normalised Weil numbers of A/K.

Definition (supersingular)

An elliptic curve E is supersingular if $E[p](k) = \{0\}$.

A is supersingular if $A \times k \sim E^g \times k$ where E is supersingular, or equivalently, if its normalised Weil numbers are roots of unity.

Maximal and minimal abelian varieties

Definition (maximal/minimal)

A/K is maximal (minimal) if all its normalised Weil numbers are -1 (1).

Maximal and minimal abelian varieties

Definition (maximal/minimal)

A/K is maximal (minimal) if all its normalised Weil numbers are -1 (1).

If the Weil numbers of A/\mathbb{F}_q are $\{\alpha_i, \overline{\alpha}_i\}_{1 \leq i \leq g}$, then those of A/\mathbb{F}_{q^m} are $\{\alpha_i^m, \overline{\alpha}_i^m\}_{1 \leq i \leq g}$. Hence:

- If A/\mathbb{F}_q is maximal or minimal, then A is supersingular.
- ullet If A/\mathbb{F}_q is supersingular, then A is minimal over some \mathbb{F}_{q^m} .

Maximal and minimal abelian varieties

Definition (maximal/minimal)

A/K is maximal (minimal) if all its normalised Weil numbers are -1 (1).

If the Weil numbers of A/\mathbb{F}_q are $\{\alpha_i, \overline{\alpha}_i\}_{1 \leq i \leq g}$, then those of A/\mathbb{F}_{q^m} are $\{\alpha_i^m, \overline{\alpha}_i^m\}_{1 \leq i \leq g}$. Hence:

- ullet If A/\mathbb{F}_q is maximal or minimal, then A is supersingular.
- ullet If A/\mathbb{F}_q is supersingular, then A is minimal over some \mathbb{F}_{q^m} .

Question

When does a supersingular A/K become maximal before it becomes minimal?

Period and parity

Definition (period)

The $(\mathbb{F}_q$ -)period of A/\mathbb{F}_q is the smallest natural number m such that A/\mathbb{F}_{q^m} is either maximal $(z_i = -1 \ \forall i)$ or minimal $(z_i = 1 \ \forall i)$.

Definition (parity)

The $(\mathbb{F}_{q}$ -)parity of A/\mathbb{F}_{q} is +1 (-1) if A first becomes maximal (minimal).

Period and parity

Definition (period)

The $(\mathbb{F}_q$ -)period of A/\mathbb{F}_q is the smallest natural number m such that A/\mathbb{F}_{q^m} is either maximal $(z_i = -1 \ \forall i)$ or minimal $(z_i = 1 \ \forall i)$.

Definition (parity)

The $(\mathbb{F}_{q}$ -)parity of A/\mathbb{F}_{q} is +1 (-1) if A first becomes maximal (minimal).

Example. Consider $E/\mathbb{F}_2: y^2+y=x^3$. $E(\mathbb{F}_2)=\{(0,1),(0,0),\mathcal{O}\}$ so $|E(\mathbb{F}_2)|=3$ and $\mathrm{Tr}(\pi_E)=0$. So $P(E/\mathbb{F}_2,T)=T^2+2=(T-\sqrt{-2})(T+\sqrt{-2})$. The normalised Weil numbers of E/\mathbb{F}_2 are $\{i,-i\}$. Hence, the normalised Weil numbers of E/\mathbb{F}_4 are $\{-1,-1\}$. So E has \mathbb{F}_2 -period 2 and \mathbb{F}_2 -parity +1.

A K-twist of A/K is an abelian variety A'/K such that $A \simeq_k A'$. Twists are classified by $[\xi] \in H^1(G_K, \operatorname{Aut}_k(A))$. A and A' may have different Weil numbers!

A K-twist of A/K is an abelian variety A'/K such that $A \simeq_k A'$. Twists are classified by $[\xi] \in H^1(G_K, \operatorname{Aut}_k(A))$. A and A' may have different Weil numbers!

Example. Consider $E/\mathbb{F}_3: y^2=x^3-x$. Its NWN are $\{i,-i\}$. Let $\alpha\in\mathbb{F}_{3^3}$ such that $\alpha^3-\alpha=1$. Then $(x,y)\mapsto (x-\alpha,y)$ yields a twist $E'/\mathbb{F}_3: y^2+1=x^3-x$. Its NWN are $\{\frac{\sqrt{3}+i}{2},\frac{\sqrt{3}-i}{2}\}$.

A K-twist of A/K is an abelian variety A'/K such that $A \simeq_k A'$. Twists are classified by $[\xi] \in H^1(G_K, \operatorname{Aut}_k(A))$. A and A' may have different Weil numbers!

Example. Consider $E/\mathbb{F}_3: y^2=x^3-x$. Its NWN are $\{i,-i\}$. Let $\alpha\in\mathbb{F}_{3^3}$ such that $\alpha^3-\alpha=1$. Then $(x,y)\mapsto (x-\alpha,y)$ yields a twist $E'/\mathbb{F}_3: y^2+1=x^3-x$. Its NWN are $\{\frac{\sqrt{3}+i}{2},\frac{\sqrt{3}-i}{2}\}$.

In general:

$$\begin{array}{ccc}
A & \xrightarrow{\phi} & A' \\
\pi_A \downarrow & & \downarrow \pi_{A'} \\
A & \xrightarrow{\phi} & A'
\end{array}$$

satisfies
$$\phi^{-1} \circ \pi_{A'} \circ \phi = \pi_A \circ g^{-1}$$
 for $g = \xi(Fr_K) \in \operatorname{Aut}_k(A)$ and $\langle Fr_K \rangle \simeq G_K$.

A K-twist of A/K is an abelian variety A'/K such that $A \simeq_k A'$. Twists are classified by $[\xi] \in H^1(G_K, \operatorname{Aut}_k(A))$. A and A' may have different Weil numbers!

Example. Consider $E/\mathbb{F}_3: y^2=x^3-x$. Its NWN are $\{i,-i\}$. Let $\alpha\in\mathbb{F}_{3^3}$ such that $\alpha^3-\alpha=1$. Then $(x,y)\mapsto (x-\alpha,y)$ yields a twist $E'/\mathbb{F}_3: y^2+1=x^3-x$. Its NWN are $\{\frac{\sqrt{3}+i}{2},\frac{\sqrt{3}-i}{2}\}$.

In general:

Example. If A/K is maximal and A'/K minimal, then g = [-1].

Fully maximal, fully minimal, mixed

New question

When do A/K and/or its K-twists have parity +1?

Fully maximal, fully minimal, mixed

New question

When do A/K and/or its K-twists have parity +1?

To answer this question, we classify supersingular A/K using the following *types*:

Fully maximal, fully minimal, mixed

A/K is fully maximal if all its K-twists have parity +1.

A/K is fully minimal if all its K-twists have parity -1.

A/K is *mixed* if both parities occur.

The type of A/K depends on its normalised Weil numbers and its automorphism group.

From Weil numbers to types

Let $K = \mathbb{F}_q = \mathbb{F}_{p^r}$ and let A/K have NWN $\{z_1, \overline{z}_1, \dots, z_g, \overline{z}_g\}$. The type of A/K depends on $\underline{e}(A/K) = \{e_i = \operatorname{ord}_2(|z_i|)\}_{1 \leq i \leq g}$. (A/K) has parity 1 if and only if $e_i = e \geq 2$ (r odd) or $e_i = e \geq 1$ $(r \text{ even}) \forall i$.)

From Weil numbers to types

```
Let K = \mathbb{F}_q = \mathbb{F}_{p^r} and let A/K have NWN \{z_1, \overline{z}_1, \dots, z_g, \overline{z}_g\}. The type of A/K depends on \underline{e}(A/K) = \{e_i = \operatorname{ord}_2(|z_i|)\}_{1 \leq i \leq g}. (A/K) has parity 1 if and only if e_i = e \geq 2 (r \text{ odd}) or e_i = e \geq 1 (r \text{ even}) \forall i.)
```

```
Let A'/K be a twist with NWN \{w_1, \overline{w}_1, \ldots, w_g, \overline{w}_g\}.
Let K_T = \mathbb{F}_{q^T} be the smallest extension such that A \simeq_{K_T} A'.
Then w_i = \lambda_i z_i, where \lambda_i is a (non-primitive) T-th root of unity.
```

From Weil numbers to types

```
Let K = \mathbb{F}_q = \mathbb{F}_{p^r} and let A/K have NWN \{z_1, \overline{z}_1, \dots, z_g, \overline{z}_g\}. The type of A/K depends on \underline{e}(A/K) = \{e_i = \operatorname{ord}_2(|z_i|)\}_{1 \leq i \leq g}. (A/K) has parity 1 if and only if e_i = e \geq 2 (r \text{ odd}) or e_i = e \geq 1 (r \text{ even}) \ \forall i.)
```

Let A'/K be a twist with NWN $\{w_1, \overline{w}_1, \ldots, w_g, \overline{w}_g\}$. Let $K_T = \mathbb{F}_{q^T}$ be the smallest extension such that $A \simeq_{K_T} A'$. Then $w_i = \lambda_i z_i$, where λ_i is a (non-primitive) T-th root of unity.

Proposition

- If $\operatorname{ord}_2(T) < \min\{e_i\}_{1 \le i \le g}$, then $\underline{e}(A'/K) = \underline{e}(A/K)$.
- If A/K has parity 1 and A'/K has parity -1, then T is even.

From types to Weil numbers

Recall $K = \mathbb{F}_q = \mathbb{F}_{p^r}$ and $e_i = \operatorname{ord}_2(|z_i|)$.

Proposition

- If A is fully maximal, then $e_i = e \ge 2$ for all i.
- If A is fully minimal, then the e_i are not all equal.
- If $e_i = e \in \{0,1\}$ for all i and r is even, then A is mixed.

From types to Weil numbers

Recall $K = \mathbb{F}_q = \mathbb{F}_{p^r}$ and $e_i = \operatorname{ord}_2(|z_i|)$.

Proposition

- If A is fully maximal, then $e_i = e \ge 2$ for all i.
- If A is fully minimal, then the e_i are not all equal.
- If $e_i = e \in \{0,1\}$ for all i and r is even, then A is mixed.

The converses hold if $|\operatorname{Aut}_k(A)| = 2$. Hence:

Proposition

If $|\operatorname{Aut}_k(A)| = 2$ and g and r are odd, then A is fully maximal.

From types to Weil numbers

Recall $K = \mathbb{F}_q = \mathbb{F}_{p^r}$ and $e_i = \operatorname{ord}_2(|z_i|)$.

Proposition

- If A is fully maximal, then $e_i = e \ge 2$ for all i.
- If A is fully minimal, then the e_i are not all equal.
- If $e_i = e \in \{0,1\}$ for all i and r is even, then A is mixed.

The converses hold if $|\operatorname{Aut}_k(A)| = 2$. Hence:

Proposition

If $|Aut_k(A)| = 2$ and g and r are odd, then A is fully maximal.

The typical structure of $\operatorname{Aut}_k(A)$ is unknown. We do have:

Proposition

If A is simple and r is even, then A is not fully minimal.

1 What is the expected distribution of the $\{z_i\}_{1 \le i \le g}$ on the complex unit circle, for fixed $K = \mathbb{F}_{p^r}$ and g?

- **①** What is the expected distribution of the $\{z_i\}_{1 \leq i \leq g}$ on the complex unit circle, for fixed $K = \mathbb{F}_{p^r}$ and g?
- ② Is it true that typically $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2\mathbb{Z}$? (We prove this for g=2.)

- **①** What is the expected distribution of the $\{z_i\}_{1 \le i \le g}$ on the complex unit circle, for fixed $K = \mathbb{F}_{p^r}$ and g?
- ② Is it true that typically $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2\mathbb{Z}$? (We prove this for g=2.)
- **3** Which type occurs most often, for fixed $K = \mathbb{F}_{p^r}$ and g? Does this vary among components of the moduli space $A_{g,ss}$?

- **①** What is the expected distribution of the $\{z_i\}_{1 \le i \le g}$ on the complex unit circle, for fixed $K = \mathbb{F}_{p^r}$ and g?
- ② Is it true that typically $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2\mathbb{Z}$? (We prove this for g=2.)
- **3** Which type occurs most often, for fixed $K = \mathbb{F}_{p^r}$ and g? Does this vary among components of the moduli space $\mathcal{A}_{g,ss}$?
- What are the distributions of the types as $r \to \infty$ (and g fixed) or $g \to \infty$ (and r fixed)?

Supersingular elliptic curves

Let $K = \mathbb{F}_q = \mathbb{F}_{p'}$ and let E/K be a supersingular elliptic curve. Then $P(E/K, T) = T^2 - \beta T + q$ for some $\beta \in \mathbb{Z}$ such that $p|\beta$. A supersingular E/K is in one of the following cases.

Case n _E	Conditions on r and p	β	NWN/\mathbb{F}_q	Parity
1a	r even	$2\sqrt{q}$	$\{1,1\}$	-1
1b	r even	$-2\sqrt{q}$	$\{-1, -1\}$	1
2a	r even, $p \not\equiv 1 \mod 3$	\sqrt{q}	$\{-\zeta_3, -\overline{\zeta}_3\}$	1
2b	r even, $p \not\equiv 1 \mod 3$	$-\sqrt{q}$	$\{\zeta_3,\overline{\zeta}_3\}$	-1
3	r even, $p \equiv 3 \pmod{4}$	0	$\{i,-i\}$	1
	or <i>r</i> odd			
4a	r odd, p = 2	$\sqrt{2q}$	$\{\zeta_8,\overline{\zeta}_8\}$	1
4b	r odd, p = 2	$-\sqrt{2q}$	$\{\zeta_8^5,\overline{\zeta}_8^5\}$	1
4c	r odd, p = 3	$\sqrt{3q}$	$\{\zeta_{12},\overline{\zeta}_{12}\}$	1
4d	r odd, p = 3	$-\sqrt{3q}$	$\{\zeta_{12}^7, \overline{\zeta}_{12}^7\}$	1

Supersingular elliptic curves

A supersingular elliptic curve in char. p is defined over \mathbb{F}_p or \mathbb{F}_{p^2} .

Theorem

Let E/K be a supersingular elliptic curve. If E is defined over \mathbb{F}_p , then it is fully maximal. Otherwise, it is mixed.

Supersingular elliptic curves

A supersingular elliptic curve in char. p is defined over \mathbb{F}_p or \mathbb{F}_{p^2} .

Theorem

Let E/K be a supersingular elliptic curve. If E is defined over \mathbb{F}_p , then it is fully maximal. Otherwise, it is mixed.

The theorem follows from the following results:

- If p = 2, the unique supersingular curve $E : y^2 + y = x^3$ is fully maximal.
- Let $p \ge 3$. If $\operatorname{Aut}_k(E) \not\simeq \mathbb{Z}/2\mathbb{Z}$, then E is geometrically isomorphic to either $E: y^2 = x^3 x$ or $E: y^2 = x^3 + 1$. Both are fully maximal.
- Suppose that $p \geq 3$ and $\operatorname{Aut}_k(E) \simeq \mathbb{Z}/2\mathbb{Z}$. If E is defined over \mathbb{F}_p , then it is fully maximal. Otherwise, it is mixed.

Let A/K be a supersingular (unpolarised) abelian surface. Then $P(A/K, T) = T^4 = a_1 T^3 + a_2 T^2 + q a_1 T + q^2 \in \mathbb{Z}[T]$. A is in one of the following cases.

	(a_1, a_2)	Conditions on r and p	NWN/\mathbb{F}_q	Parity
1a	(0,0)	r odd, $p \equiv 3 \mod 4$ or r even, $p \not\equiv 1 \mod 4$	$\{\zeta_8, \zeta_8^7, \zeta_8^3, \zeta_8^5\}$	1
1b	(0,0)	r odd, $p\equiv 1$ mod 4 or r even, $p\equiv 5$ mod 8	$\{\zeta_8,\zeta_8^7,\zeta_8^3,\zeta_8^5\}$	1
2a	(0, q)	$r \text{ odd}, p \not\equiv 1 \text{ mod } 3$	$\{\zeta_6, \zeta_6^5, \zeta_6^2, \zeta_6^4\}$	-1
2b	(0, q)	r odd, $p \equiv 1 \mod 3$	$\{\zeta_{12},\zeta_{12}^{11},\zeta_{12}^{5},\zeta_{12}^{7}\}$	1
3a	(0, -q)	r odd and $p \neq 3$ or r even and $p \not\equiv 1 \mod 3$	$\{\zeta_{12},\zeta_{12}^{11},\zeta_{12}^{5^{-}},\zeta_{12}^{7^{-}}\}$	1
3b	(0, -q)	r odd & $p \equiv 1 \mod 3$ or r even & $p \equiv 4, 7, 10 \mod 12$	$\{\zeta_{12},\zeta_{12}^{11},\zeta_{12}^{5},\zeta_{12}^{5},\zeta_{12}^{6}\}$	1
4a	(\sqrt{q}, q)	r even and $p \not\equiv 1 \mod 5$	$\{\zeta_5, \zeta_5^4, \zeta_5^2, \zeta_5^3\}_{7}$	-1
4b	$(-\sqrt{q}, q)$	r even and $p \not\equiv 1 \mod 5$	$\{\zeta_{10},\zeta_{10}^9,\zeta_{10}^3,\zeta_{10}^7\}$	1
5a	$(\sqrt{5q},3q)$	r odd and $p=5$	$\{\zeta_{10}^3, \zeta_{10}^7, \zeta_5^2, \zeta_5^3\}$	-1
5b	$(-\sqrt{5q}, 3q)$	r odd and $p=5$	$\{\zeta_{10},\zeta_{10}^*,\zeta_{5},\zeta_{5}^*\}$	-1
6a	$(\sqrt{2q},q)$	r odd and $p=2$	$\{\zeta_{24}^{13},\zeta_{24}^{11},\zeta_{24}^{19},\zeta_{24}^{5}\}$	1
6b	$(-\sqrt{2q},q)$	r odd and $p=2$	$\{\zeta_{24},\zeta_{24}^{23},\zeta_{24}^{7},\zeta_{24}^{17}\}$	1
7a	(0, -2q)	r odd	$\{1, 1, -1 - 1\}$	-1
7b	(0, 2q)	r even and $p \equiv 1 \mod 4$	$\{i, -i, i, -i\}$	1
8a	$(2\sqrt{q}, 3q)$	r even and $p \equiv 1 \mod 3$	$\{\zeta_3, \zeta_3^2, \zeta_3, \zeta_3^2\}$	-1
8b	$(-2\sqrt{q}, 3q)$	r even and $p \equiv 1 \mod 3$	$\{\zeta_6, \zeta_6^5, \zeta_6, \zeta_6^5\}$	1

If we assume that $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2\mathbb{Z}$, the table implies:

- If *r* is odd, then *A* is not mixed.

 There are 6 fully maximal and 4 fully minimal cases.
- If r is even, then A is not fully minimal. There are 4 fully maximal and 4 mixed cases.

If we assume that $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2\mathbb{Z}$, the table implies:

- If r is odd, then A is not mixed.
 There are 6 fully maximal and 4 fully minimal cases.
- If r is even, then A is not fully minimal.
 There are 4 fully maximal and 4 mixed cases.

This assumption is not restrictive:

Proposition

If $p \geq 3$, the proportion of \mathbb{F}_{p^r} -points in $\mathcal{A}_{2,ss}$ which represent A with $\mathrm{Aut}_k(A) \not\simeq \mathbb{Z}/2\mathbb{Z}$ tends to zero as $r \to \infty$.

Proposition

If $p \geq 3$, the proportion of \mathbb{F}_{p^r} -points in $\mathcal{A}_{2,ss}$ which represent A with $\mathrm{Aut}_k(A) \not\simeq \mathbb{Z}/2\mathbb{Z}$ tends to zero as $r \to \infty$.

The proof uses the following results:

- (Achter-Howe): $p^r \ll |\mathcal{A}_{2,ss}| \ll p^{r+2}$
- An \mathbb{F}_{p^r} -point A in $\mathcal{A}_{2,ss}$ is either $\mathrm{Jac}(X)$, or $E_1 \times E_2$, or $\mathrm{Res}_{\mathbb{F}_{p^{2r}}/\mathbb{F}_{p^r}}(E)$.
- (Achter-Howe): There are $\ll p^2$ of the latter two.
- So it suffices to bound the first case; $\operatorname{Aut}_k(\operatorname{Jac}(X)) \simeq \operatorname{Aut}_k(X)$ by Torelli.
- (Cardona, Cardona-Nart, Igusa, Ibukiyama-Katsura-Oort, Katsura-Oort, Koblitz): There are $\ll p^3$ supersingular curves X with $\operatorname{Aut}_k(X) \not\simeq \mathbb{Z}/2\mathbb{Z}$.

Supersingular curves of genus 3 in char. 2 are parametrised by

$$X_{a,b}: x + y + a(x^3y + xy^3) + bx^2y^2 = 0.$$

Let $K = \mathbb{F}_q = \mathbb{F}_{2^r}$ be the smallest field containing a, b. Let $h \in \mathbb{F}_{q^2}$ be such that $h^2 + h = \frac{a}{b}$ and $K' = \mathbb{F}_q(h)$.

Supersingular curves of genus 3 in char. 2 are parametrised by

$$X_{a,b}: x + y + a(x^3y + xy^3) + bx^2y^2 = 0.$$

Let $K = \mathbb{F}_q = \mathbb{F}_{2^r}$ be the smallest field containing a, b. Let $h \in \mathbb{F}_{q^2}$ be such that $h^2 + h = \frac{a}{b}$ and $K' = \mathbb{F}_q(h)$.

Define
$$c_1 = ab$$
, $c_2 = \frac{1}{(h+1)^2} \frac{1}{b}$, $c_3 = \frac{1}{h^2} \frac{1}{b}$. Let

$$E_1 : R^2 + R = c_1 S^3,$$

 $E_2 : T^2 + T = c_s (aS)^3,$
 $E_3 : U^2 + U = c_3 (aS)^3.$

Then $\operatorname{Jac}(X_{a,b}) \sim_{K'} E_1 \oplus E_2 \oplus E_3$.

We have $\operatorname{Jac}(X_{a,b}) \sim_{K'} E_1 \oplus E_2 \oplus E_3$, where E_i depends on c_i . Recall that $K = \mathbb{F}_{2^r}$ and $K' = K(h) = \mathbb{F}_{2^s}$ for $s \in \{r, 2r\}$.

Lemma

If c_i is a cube in K', then the NWN of E_i/K' are $\{i^s, (-i)^s\}$. If c_i is not a cube in K', then the NWN of E_i/K' are $\{\zeta_6^{s/2}, \zeta_6^{-s/2}\}$.

This determines the valuations of the NWN of $X_{a,b}$ over K.

We have $\operatorname{Jac}(X_{a,b}) \sim_{K'} E_1 \oplus E_2 \oplus E_3$, where E_i depends on c_i . Recall that $K = \mathbb{F}_{2^r}$ and $K' = K(h) = \mathbb{F}_{2^s}$ for $s \in \{r, 2r\}$.

Lemma

If c_i is a cube in K', then the NWN of E_i/K' are $\{i^s, (-i)^s\}$. If c_i is not a cube in K', then the NWN of E_i/K' are $\{\zeta_6^{s/2}, \zeta_6^{-s/2}\}$.

This determines the valuations of the NWN of $X_{a,b}$ over K.

Lemma

If $a \neq b$, then $\operatorname{Aut}_k(X_{a,b}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$. If a = b, then $\operatorname{Aut}_k(X_{a,b}) \simeq (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}/9\mathbb{Z}$.

Knowing $\operatorname{Aut}_k(X_{a,b})$ allows us to compute the number of twists of $X_{a,b}$ and (the valuations of) their normalised Weil numbers. Comparing these to the normalised Weil numbers of $X_{a,b}$ we obtain the main result:

Theorem

If r is odd, $X_{a,b}$ is fully maximal if $h \in \mathbb{F}_q$ and mixed if $h \not\in \mathbb{F}_q$. If $r \equiv 2 \mod 4$, $X_{a,b}$ is fully minimal if $h \not\in \mathbb{F}_q$ and mixed if $h \in \mathbb{F}_q$. If $r \equiv 0 \mod 4$, then $X_{a,b}$ is fully minimal.

Knowing $\operatorname{Aut}_k(X_{a,b})$ allows us to compute the number of twists of $X_{a,b}$ and (the valuations of) their normalised Weil numbers. Comparing these to the normalised Weil numbers of $X_{a,b}$ we obtain the main result:

Theorem

If r is odd, $X_{a,b}$ is fully maximal if $h \in \mathbb{F}_q$ and mixed if $h \notin \mathbb{F}_q$. If $r \equiv 2 \mod 4$, $X_{a,b}$ is fully minimal if $h \notin \mathbb{F}_q$ and mixed if $h \in \mathbb{F}_q$. If $r \equiv 0 \mod 4$, then $X_{a,b}$ is fully minimal.

Thank you for your attention!