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Supersingular abelian varieties

Let q = pr , K = Fq, k = Fq.
Let A be a g -dimensional abelian variety defined over K .
(We will always assume A to be principally polarised.)

Let πA be the relative Frobenius endomorphism of A.
The roots {α1, α1, . . . , αg , αg} of its characteristic polynomial
P(A/K ,T ) are the Weil numbers of A/K .
These have absolute value

√
q.

Let {zi = αi√
q , z i}1≤i≤g be the normalised Weil numbers of A/K .

Definition (supersingular)

An elliptic curve E is supersingular if E [p](k) = {0}.
A is supersingular if A× k ∼ E g × k where E is supersingular,
or equivalently, if its normalised Weil numbers are roots of unity.
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Maximal and minimal abelian varieties

Definition (maximal/minimal)

A/K is maximal (minimal) if all its normalised Weil numbers
are −1 (1).

If the Weil numbers of A/Fq are {αi , αi}1≤i≤g , then those of
A/Fqm are {αm

i , α
m
i }1≤i≤g . Hence:

If A/Fq is maximal or minimal, then A is supersingular.

If A/Fq is supersingular, then A is minimal over some Fqm .

Question

When does a supersingular A/K become maximal before it
becomes minimal?
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Period and parity

Definition (period)

The (Fq-)period of A/Fq is the smallest natural number m such
that A/Fqm is either maximal (zi = −1 ∀i) or minimal (zi = 1 ∀i).

Definition (parity)

The (Fq-)parity of A/Fq is +1 (−1) if A first becomes maximal
(minimal).

Example. Consider E/F2 : y2 + y = x3.
E (F2) = {(0, 1), (0, 0),O} so |E (F2)| = 3 and Tr(πE ) = 0.
So P(E/F2,T ) = T 2 + 2 = (T −

√
−2)(T +

√
−2).

The normalised Weil numbers of E/F2 are {i ,−i}.
Hence, the normalised Weil numbers of E/F4 are {−1,−1}.
So E has F2-period 2 and F2-parity +1.
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Twists

A K -twist of A/K is an abelian variety A′/K such that A 'k A′.
Twists are classified by [ξ] ∈ H1(GK ,Autk(A)).
A and A′ may have different Weil numbers!

Example. Consider E/F3 : y2 = x3 − x . Its NWN are {i ,−i}.
Let α ∈ F33 such that α3 − α = 1. Then (x , y) 7→ (x − α, y) yields

a twist E ′/F3 : y2 + 1 = x3 − x . Its NWN are {
√

3+i
2 ,

√
3−i
2 }.

In general:

A
φ
//

πA
��

A′

πA′
��

A
φ
// A′

satisfies
φ−1 ◦ πA′ ◦ φ = πA ◦ g−1

for g = ξ(FrK ) ∈ Autk(A)
and 〈FrK 〉 ' GK .

Example. If A/K is maximal and A′/K minimal, then g = [−1].
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Fully maximal, fully minimal, mixed

New question

When do A/K and/or its K -twists have parity +1?

To answer this question, we classify supersingular A/K using the
following types:

Fully maximal, fully minimal, mixed

A/K is fully maximal if all its K -twists have parity +1.
A/K is fully minimal if all its K -twists have parity −1.
A/K is mixed if both parities occur.

The type of A/K depends on its normalised Weil numbers and its
automorphism group.
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From Weil numbers to types

Let K = Fq = Fpr and let A/K have NWN {z1, z1, . . . , zg , zg}.
The type of A/K depends on e(A/K ) = {ei = ord2(|zi |)}1≤i≤g .
(A/K has parity 1 if and only if ei = e ≥ 2 (r odd) or ei = e ≥ 1 (r even) ∀i .)

Let A′/K be a twist with NWN {w1,w1, . . . ,wg ,wg}.
Let KT = FqT be the smallest extension such that A 'KT

A′.
Then wi = λizi , where λi is a (non-primitive) T -th root of unity.

Proposition

If ord2(T ) < min{ei}1≤i≤g , then e(A′/K ) = e(A/K ).

If A/K has parity 1 and A′/K has parity −1, then T is even.
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From types to Weil numbers

Recall K = Fq = Fpr and ei = ord2(|zi |).

Proposition

If A is fully maximal, then ei = e ≥ 2 for all i .

If A is fully minimal, then the ei are not all equal.

If ei = e ∈ {0, 1} for all i and r is even, then A is mixed.

The converses hold if |Autk(A)| = 2. Hence:

Proposition

If |Autk(A)| = 2 and g and r are odd, then A is fully maximal.

The typical structure of Autk(A) is unknown. We do have:

Proposition

If A is simple and r is even, then A is not fully minimal.
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Open questions

1 What is the expected distribution of the {zi}1≤i≤g on the
complex unit circle, for fixed K = Fpr and g?

2 Is it true that typically Autk(A) ' Z/2Z?
(We prove this for g = 2.)

3 Which type occurs most often, for fixed K = Fpr and g?
Does this vary among components of the moduli space Ag ,ss?

4 What are the distributions of the types as r →∞ (and g
fixed) or g →∞ (and r fixed)?
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Supersingular elliptic curves

Let K = Fq = Fpr and let E/K be a supersingular elliptic curve.
Then P(E/K ,T ) = T 2 − βT + q for some β ∈ Z such that p|β.
A supersingular E/K is in one of the following cases.

Case nE Conditions on r and p β NWN/Fq Parity

1a r even 2
√
q {1, 1} -1

1b r even −2
√
q {−1,−1} 1

2a r even, p 6≡ 1 mod 3
√
q {−ζ3,−ζ3} 1

2b r even, p 6≡ 1 mod 3 −√q {ζ3, ζ3} -1
3 r even, p ≡ 3 (mod 4)

or r odd
0 {i ,−i} 1

4a r odd, p = 2
√

2q {ζ8, ζ8} 1

4b r odd, p = 2 −
√

2q {ζ5
8 , ζ

5
8} 1

4c r odd, p = 3
√

3q {ζ12, ζ12} 1

4d r odd, p = 3 −
√

3q {ζ7
12, ζ

7
12} 1
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Supersingular elliptic curves

A supersingular elliptic curve in char. p is defined over Fp or Fp2 .

Theorem

Let E/K be a supersingular elliptic curve. If E is defined over Fp,
then it is fully maximal. Otherwise, it is mixed.

The theorem follows from the following results:

If p = 2, the unique supersingular curve E : y2 + y = x3

is fully maximal.

Let p ≥ 3. If Autk(E ) 6' Z/2Z, then E is geometrically
isomorphic to either E : y2 = x3 − x or E : y2 = x3 + 1.
Both are fully maximal.

Suppose that p ≥ 3 and Autk(E ) ' Z/2Z. If E is defined
over Fp, then it is fully maximal. Otherwise, it is mixed.
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Supersingular abelian surfaces

Let A/K be a supersingular (unpolarised) abelian surface.
Then P(A/K ,T ) = T 4 = a1T

3 + a2T
2 + qa1T + q2 ∈ Z[T ].

A is in one of the following cases.

(a1, a2) Conditions on r and p NWN/Fq Parity

1a (0, 0) r odd, p ≡ 3 mod 4 or r even, p 6≡ 1 mod 4 {ζ8, ζ
7
8 , ζ

3
8 , ζ

5
8} 1

1b (0, 0) r odd, p ≡ 1 mod 4 or r even, p ≡ 5 mod 8 {ζ8, ζ
7
8 , ζ

3
8 , ζ

5
8} 1

2a (0, q) r odd, p 6≡ 1 mod 3 {ζ6, ζ
5
6 , ζ

2
6 , ζ

4
6} −1

2b (0, q) r odd, p ≡ 1 mod 3 {ζ12, ζ
11
12 , ζ

5
12, ζ

7
12} 1

3a (0,−q) r odd and p 6= 3 or r even and p 6≡ 1 mod 3 {ζ12, ζ
11
12 , ζ

5
12, ζ

7
12} 1

3b (0,−q) r odd & p ≡ 1 mod 3 or r even & p ≡ 4, 7, 10 mod 12 {ζ12, ζ
11
12 , ζ

5
12, ζ

7
12} 1

4a (
√
q, q) r even and p 6≡ 1 mod 5 {ζ5, ζ

4
5 , ζ

2
5 , ζ

3
5} −1

4b (−√q, q) r even and p 6≡ 1 mod 5 {ζ10, ζ
9
10, ζ

3
10, ζ

7
10} 1

5a (
√

5q, 3q) r odd and p = 5 {ζ3
10, ζ

7
10, ζ

2
5 , ζ

3
5} −1

5b (−
√

5q, 3q) r odd and p = 5 {ζ10, ζ
9
10, ζ5, ζ

4
5} −1

6a (
√

2q, q) r odd and p = 2 {ζ13
24 , ζ

11
24 , ζ

19
24 , ζ

5
24} 1

6b (−
√

2q, q) r odd and p = 2 {ζ24, ζ
23
24 , ζ

7
24, ζ

17
24} 1

7a (0,−2q) r odd {1, 1,−1− 1} −1
7b (0, 2q) r even and p ≡ 1 mod 4 {i,−i, i,−i} 1

8a (2
√
q, 3q) r even and p ≡ 1 mod 3 {ζ3, ζ

2
3 , ζ3, ζ

2
3} −1

8b (−2
√
q, 3q) r even and p ≡ 1 mod 3 {ζ6, ζ

5
6 , ζ6, ζ

5
6} 1
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Supersingular abelian surfaces

If we assume that Autk(A) ' Z/2Z, the table implies:

If r is odd, then A is not mixed.
There are 6 fully maximal and 4 fully minimal cases.

If r is even, then A is not fully minimal.
There are 4 fully maximal and 4 mixed cases.

This assumption is not restrictive:

Proposition

If p ≥ 3, the proportion of Fpr -points in A2,ss which represent A
with Autk(A) 6' Z/2Z tends to zero as r →∞.
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Supersingular abelian surfaces

Proposition

If p ≥ 3, the proportion of Fpr -points in A2,ss which represent A
with Autk(A) 6' Z/2Z tends to zero as r →∞.

The proof uses the following results:

(Achter-Howe): pr � |A2,ss | � pr+2

An Fpr -point A in A2,ss is either Jac(X ), or E1 × E2, or
ResFp2r /Fpr

(E ).

(Achter-Howe): There are � p2 of the latter two.

So it suffices to bound the first case;
Autk(Jac(X )) ' Autk(X ) by Torelli.

(Cardona, Cardona-Nart, Igusa, Ibukiyama-Katsura-Oort,
Katsura-Oort, Koblitz): There are � p3 supersingular curves
X with Autk(X ) 6' Z/2Z.
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Supersingular curves of genus 3 in characteristic 2

Supersingular curves of genus 3 in char. 2 are parametrised by

Xa,b : x + y + a(x3y + xy3) + bx2y2 = 0.

Let K = Fq = F2r be the smallest field containing a, b.
Let h ∈ Fq2 be such that h2 + h = a

b and K ′ = Fq(h).

Define c1 = ab, c2 = 1
(h+1)2

1
b , c3 = 1

h2
1
b . Let

E1 :R2 + R = c1S
3,

E2 :T 2 + T = cs(aS)3,

E3 :U2 + U = c3(aS)3.

Then Jac(Xa,b) ∼K ′ E1 ⊕ E2 ⊕ E3.
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E2 :T 2 + T = cs(aS)3,

E3 :U2 + U = c3(aS)3.

Then Jac(Xa,b) ∼K ′ E1 ⊕ E2 ⊕ E3.
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Supersingular curves of genus 3 in characteristic 2

We have Jac(Xa,b) ∼K ′ E1 ⊕ E2 ⊕ E3, where Ei depends on ci .
Recall that K = F2r and K ′ = K (h) = F2s for s ∈ {r , 2r}.

Lemma

If ci is a cube in K ′, then the NWN of Ei/K
′ are {i s , (−i)s}.

If ci is not a cube in K ′, then the NWN of Ei/K
′ are {ζs/2

6 , ζ
−s/2
6 }.

This determines the valuations of the NWN of Xa,b over K .

Lemma

If a 6= b, then Autk(Xa,b) ' Z/2Z× Z/2Z× Z/12Z.
If a = b, then Autk(Xa,b) ' (Z/2Z× Z/2Z) o Z/9Z.
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Supersingular curves of genus 3 in characteristic 2

Knowing Autk(Xa,b) allows us to compute the number of twists of
Xa,b and (the valuations of) their normalised Weil numbers.
Comparing these to the normalised Weil numbers of Xa,b we obtain
the main result:

Theorem

If r is odd, Xa,b is fully maximal if h ∈ Fq and mixed if h 6∈ Fq.
If r ≡ 2 mod 4, Xa,b is fully minimal if h 6∈ Fq and mixed if h ∈ Fq.
If r ≡ 0 mod 4, then Xa,b is fully minimal.

Thank you for your attention!
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