
Linear Codes associated to

Grassmann and Flag Varieties

Sudhir R. Ghorpade

Department of Mathematics
Indian Institute of Technology Bombay

Powai, Mumbai 400076, India
http://www.math.iitb.ac.in/∼srg/

AGCT–2017

CIRM, Luminy, France

June 20, 2017

Sudhir Ghorpade (IIT Bombay) Codes associated to Grassmann and Flag Varieties 1 / 30



Dedicatory

This talk is dedicated to the memory of

Alexey Zykin (13 June 1984 – 23 April 2017).
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Review of Coding Theory

[n, k]q-code: a k-dimensional subspace C of Fn
q.

Hamming weight of c = (c1, . . . , cn) ∈ Fn
q: wt(c) := |{i : ci 6= 0}| .

Hamming weight of a subcode D of C:

wt(D) := |{i : ∃ c = (c1, . . . , cn) ∈ D with ci 6= 0}| .

Minimum distance of a (linear) code C:

d(C) := min{wt(c) : c ∈ C, c 6= 0}.

The rth higher weight of C (1 ≤ r ≤ k):

dr(C) := min{wt(D) : D ⊆ C, dim D = r}.

C is nondegenerate if C 6⊆ coordinate hyperplane of Fn
q, i.e., dk(C) = n.

Dual of C: the [n− k, n]q-code C⊥ := {x ∈ Fn
q : x · c = 0 ∀ c ∈ C}.
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Automorphisms of a Linear Code

The automorphisms of a [n, k]q-code C come in three flavours:
1 Permutation Automorphism Groups:

PAut(C) =
{
σ ∈ Sn :

(
cσ(1), . . . , cσ(n)

)
∈ C ∀ (c1, . . . , cn) ∈ C

}
= {P ∈ PermMatn(Fq) : cP ∈ C ∀ c ∈ C}

2 Monomial Automorphism Groups:

MAut(C) = {M ∈ MonMatn(Fq) : cM ∈ C ∀c ∈ C}

Both PAut(C) and MAut(C) are subgroups of GL(n,Fq).
3 (Semilinear) Automorphism Groups:

ΓAut(C) = {Mµ : M ∈ MonMatn(Fq), µ ∈ Aut(Fq) and cMµ ∈ C ∀c ∈ C}

ΓAut(C) is a subgroup of the group ΓL(n,Fq) of semilinear

transformations of Fn
q.
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What is a good code?

Often, one likes to construct [n, k]q-codes that satisfy one or more of the

following requirements (some of which may conflict with each other):

d = d(C) is large vis-a-vis n, e.g., it’s nice if δ = d/n is close to 1.

k is also large vis-a-vis n, e.g., it’s nice if R = k/n is close to 1.

C admits “good encoding and decoding”

Automorphism group(s) of C are known and have a fairly large size.

The higher weights dr(C) are known for 1 ≤ r ≤ k.

The “spectrum” of C is known.

C is a LDPC code; this is typically the case when d(C⊥) is small and the

minimum weight codewords of C⊥ generate C⊥

. . .
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A Geometric Language for Codes
Projective Systems à la Tsfasman-Vlăduţ

A [n, k]q-projective system is a collection P of n not necessarily distinct points

in Pk−1; this is nondegenerate if it is not contained in a hyperplane.

[n, k]q-code C  [n, k]q-projective system P

Conversely a nondegenerate [n, k]q-projective system gives rise to a

nondegenerate [n, k]q-code, and the resulting correspondence is a bijection,

up to equivalence. Note that

d(C) = n−max{|P ∩ H| : H hyperplane of Pk−1}.

and for r = 1, . . . , k,

dr(C) = n−max{|P ∩ E| : E linear subvariety of codim r in Pk−1}.
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Automorphisms of Projective Systems

Let P be a [n, k]q-projective system.

The automorphism group ΓAut(P) of P is the subgroup of PΓL(k,Fq) of

transformations taking P to itself. Note that PΓL(k,Fq) is the group of all

semilinear isomorphisms of Pk−1
Fq

. Elements of PΓL(k,Fq) are known in

the classical literature as collineations.

If C is the linear [n, k]q-code corresponding to P, then ΓAut(C) is closely

related to ΓAut(P). In fact, ΓAut(C) is a central extension of ΓAut(P) by

F×q , i.e., ΓAut(P) ' ΓAut(C)/F×q , where F×q is the subgroup of scalar

matrices in GL(n,Fq).

The projective linear isomorphisms (known in the classical literature as

projectivities) among ΓAut(P) form a subgroup MAut(P) of PGL(k,Fq)

that corresponds to MAut(C).
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Grassmann Varieties : A Quick Introduction

V : vector space of dimension m over a field F
For 1 ≤ ` ≤ m, we have the Grassmann variety:

G`,m = G`(V) := {`-dimensional subspaces of V}.

Plücker embedding: G`,m ↪→ Pk−1, where k :=

(
m
`

)
.

Explicitly, Pk−1 = P(∧`V) and

W = 〈w1, . . . ,w`〉 ←→ [w1 ∧ · · · ∧ w`] ∈ P(∧`V).

For example, G1,m = Pm−1. In terms of coordinates,

W = 〈w1, . . . ,w`〉 ∈ G`(V)←→ p(W) = (pα(AW))α∈I(`,m) ,

where AW = (aij) is a `× m matrix whose rows are (the coordinates of) a basis

of W and pα(AW) is the αth minor of AW , viz., det
(
aiαj

)
1≤i,jj≤`.
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Introduction to Grassmann Varieties Contd.

Notation: I(`,m) :=
{
α = (α1, . . . , α`) ∈ Z` : 1 ≤ α1 < · · · < α` ≤ m

}
.

Facts:

G`,m is a projective algebraic variety given by the common zeros of

certain quadratic homogeneous polynomials in k variables. As a

projective algebraic variety G`,m is nondegenerate, irreducible,

nonsingular, and rational.

There is a natural transitive action of GLm on G`,m and if P` denotes the

stabilizer of a fixed W0 ∈ G`,m, then P` is a maximal parabolic subgroup of

GLm and G`,m ' GLm/P`.

If F = R or C, then G`,m is a (real or complex) manifold, and its

cohomology spaces and Betti numbers are explicitly known. In fact,

bν = dim H2ν(G`,m;C) is precisely the number of partitions of ν into at

most ` parts, each part ≤ m− `,
Sudhir Ghorpade (IIT Bombay) Codes associated to Grassmann and Flag Varieties 9 / 30



Grassmannian Over Finite Fields

Suppose F = Fq is the finite field with q elements. Then G`,m = G`,m(Fq) is a

finite set and its cardinality is given by the Gaussian binomial coefficient:[
m
`

]
q

:=
(qm − 1)(qm − q) · · · (qm − q`−1)

(q` − 1)(q` − q) · · · (q` − q`−1)
.

This is a polynomial in q of degree δ := `(m− `) and in fact,

|G`,m(Fq)| =
[

m
`

]
q

=

δ∑
ν=0

bνqν = qδ + qδ−1 + 2qδ−2 + · · ·+ 1.

Note that

lim
q→1

[
m
`

]
q

=

(
m
`

)
.
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Grassmann Codes

Thanks to the Plücker embedding,

G`,m(Fq) ↪→ Pk−1  [n, k]q-code C(`,m).

Length n is the Gaussian binomial coefficient:

n =

[
m
`

]
q

:=
(qm − 1)(qm − q) · · · (qm − q`−1)

(q` − 1)(q` − q) · · · (q` − q`−1)
.

and the dimension k is the binomial coefficient:

k =

(
m
`

)
.

Theorem (Ryan (1990, q = 2), Nogin (1996, any q))

d (C(`,m)) = qδ where δ := `(m− `).

It may be noted that δ is the dimension of G`,m as a projective variety.
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Higher Weights of Grassmann Codes

Let µ := max{`,m− `}+ 1.

Theorem (Nogin (1996), G-Lachaud(2000))

For 1 ≤ r ≤ µ, we have

dr (C(`,m)) = qδ + qδ−1 + · · ·+ qδ−r+1.

One has the following counterpart from the other end.

Theorem (Hansen-Johnsen-Ranestad (2007))

On the other hand, for 0 ≤ r ≤ µ,

dk−r (C(`,m)) = n− (1 + q + · · ·+ qr−1).

These results cover several initial and terminal elements of the weight

hierarchy of C(`,m). Yet, a considerable gap remains.
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Narrowing the gap

Examples:

(`,m) = (2, 5). Here k = 10, µ = 4 and we know:

d1, . . . , d4 as well as d6, . . . , d10.

But d5 seems to be unknown.

(`,m) = (2, 6). Here k = 15, µ = 5 and d6, . . . , d9 are not known.

For C(2,m) with m ≥ 2, the values of dr for m ≤ r <
(m−1

2

)
do not seem to

be known.

Theorem (Hansen-Johnsen-Ranestad (2007))

d5(C(2, 5)) = q6 + q5 + 2q4 + q3 = d4 + q4.

Conjecture (Hansen-Johnsen-Ranestad (2007))

dr − dr−1 is always a power of q.
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One step forward

Theorem (G-Patil-Pillai (2009))

Assume that ` = 2 and m ≥ 4 so that

µ = max{2,m− 2}+ 1 = m− 1 and k =

(
m
2

)
.

Then

dµ+1(C(2,m)) = dµ + qδ−2 and dk−µ−1(C(2,m)=n−
(
1 + q + · · ·+ qµ + q2).

Corollary. Complete weight hierarchy of C(2, 5).

Remark. The proof of the above theorem uses a characterization of

decomposable subspaces of ∧`V where V is an m-dimensional vector space,

or in geometric terms, a characterization of linear subvarieties of the

Grassmannian G`,m.

Sudhir Ghorpade (IIT Bombay) Codes associated to Grassmann and Flag Varieties 14 / 30



Complete weight hierarchy of C(2,m)

Consider the (strict) Young tableau Y = Ym corresponding to the partition

(m− 1,m− 2, . . . , 2, 1) of k =
(m

2

)
with

Yij = 2i + j− 3 for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m− i.

Then

n = Cq(Y) =
∑
ν≥0

cν(Y)qν ,

where cν(Y)= # of times ν appears in Y.

Theorem (G-Patil-Pillai)

If T1, . . . ,Th are strict subtableaux of Y of area r = k − s, and

gs(2,m) := max{Cq(T1), . . . ,Cq(Th)},

then

ds (C(2,m)) = n− gs(2,m) for 1 ≤ s ≤ k.
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Schubert Unions and Grassmann Codes

Hansen-Johnsen-Ranestad (2007, 2009) also considered:

Schubert Unions: These are subsets of G`,m of the form

ΩU =
⋃
α∈U

Ωα for U ⊆ I(`,m).

It is easy to see that Schubert unions are linear sections of G`,m.

Schubert Union Conjecture (Hansen-Johnsen-Ranestad)

The higher weights of C(`,m) are are always computed by Schubert unions.

It turns out that there is a one-to-one correspondence between the strict

subtableaux T of Y and Schubert unions ΩU in such a way that

Cq(T) = |ΩU(Fq)|. This leads to:

Theorem (G-Johnsen-Patil-Pillai)

The Schubert Union Conjecture holds in the affirmative when ` = 2.
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Automorphisms of Grassmann Codes

Let `,m be positive integers such that 1 ≤ ` < m. Consider the Grassmann

code C(`,m) corresponding to the projective system

P = G`,m(Fq) ↪→ Pk−1, where k =
(m
`

)
.

Theorem (Chow, 1949; G-Kaipa, 2013)

If m 6= 2`, then

Aut(P) ' PΓL(m,Fq) ↪→ PΓL(k,Fq),

whereas if m = 2`, then

Aut(P) ' PΓL(m,F) o−t Z/2Z,
where the generator of Z/2Z acts on PΓL(m,F) by the “inverse transpose

outer automorphism” −t.

As noted earlier, ΓAut(C) is a central extension of ΓAut(P) by F×q . A more

precise description can be given using group cohomology.
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Automorphisms of Grassmann Codes Contd.

Theorem (G-Kaipa, 2013)

The automorphism group of C = C(`,m) is given by

Aut(C) =

G if m 6= 2`,

G o−t Z/2Z if m = 2`.

where G is a central extension of (PΓL(m,Fq)× µλ) by µλ′ , corresponding to

the class

[α]⊗ 1 + 1⊗ [β] ∈ H2((PΓL(m,Fq)× µλ), µλ′),

where [α] ∈ H2(PΓL(m,Fq), µλ′) and [β] ∈ H2(µλ, µλ′) are classes

representing the µλ′-extensions (ΓL(m,Fq)/µλ) and F×q , where

λ = GCD(q− 1, `), λ′ = (q− 1)/λ, and µλ and µλ′ denote the groups of λ-th

and λ′-th roots of unity in F×q .
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More on Grassmann Codes

The duals of Grassmann codes have a very low minimum distance, and a nice

structure.

Theorem (Beelen-Piñero, 2015)

d
(
C(`,m)⊥

)
= 3. Moreover, C(`,m)⊥ is generated by its minimum weight

codewords.

We mention briefly some other results on Grassmann and related codes.

The spectrum of the Grassmann code C(`,m) is known when ` = 2

[Nogin, 1996] and when (`,m) = (3, 6) [Nogin, 1997], and also when

(`,m) = (3, 7) [Kaipa-Pillai, 2013].

Permutation decoding of Grassmann codes, capable of correcting up to

n/k errors, has recently been described [G-Piñero, 2017].
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Codes associated to (generalized) flag varieties

Fix an m-dimensional vector space V and a sequence

` = (`1, . . . , `s) ∈ Zs with 0 ≤ `1 ≤ · · · ≤ `s < m.

We can consider the variety of (generalized) partial flags:

F`(V) := {(V1, . . . ,Vs) : V1 ⊆ · · · ⊆ Vs, dim Vi = `i, i = 1, . . . , s} .

Thanks to Plücker and Segre,

F`(V) ↪→
s∏

i=1

G`i,m ↪→
s∏

i=1

Pki−1 ↪→ P(k1···ks)−1 = P(

s⊗
i=1

`i∧
V) =: T`(V)

where ki =
(m
`i

)
. As before,

F`(V) (Fq) [n`, k`]q-code C(`; m).

We may call C(`; m) as the flag code or s-step flag code corresponding to `.
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Flag varieties and associated codes

The variety F`(V) of (generalized) partial flags can also be viewed as

F`(V) =

{[
s⊗

i=1

v1 ∧ · · · ∧ v`i

]
: v1, . . . , v`s ∈ V linearly indep.

}
.

F`(V) is a projective variety of dimension

δ(`) :=

s∑
i=1

(`i − `i−1)(m− `i).

Let

T`(V) =

s⊗
i=1

`i∧
V and T∗` (V) =

s⊗
i=1

m−`i∧
V ' T`(V)

∗

The code C(`; m) corresponding to F`(V) can be viewed as the image of

Ev : T∗` (V)→ Fn`
q given by Ev(f ) :=

(
f (P1), . . . , f (P`)

)
where P1, . . . ,P` are fixed representatives in T`(V) of points of F`(V)(Fq).
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Special partial flags: Line-Hyperplane Incidence

Theorem (Rodier, 2003)

If s = 2 and ` = (1,m− 1), then

n` =
(qm − 1)(qm−1 − 1)

(q− 1)2 and k` = m2 − 1.

Moreover,

d(C(`; m)) = q2m−3 − qm−2 = qm−2(qm−1 − 1).

Theorem (Hana, 2010)

qδ(`)
(

q− 1
q

)`s−1

≤ d(C(`; m)) ≤ qδ(`).

Further, if s = 2, `1 < `2 and `1 + `2 ≤ m, then

d(C(`; m)) ≤ q`2(m−`2)−`2
1(q`2 − 1)(q`2 − q) · · · (q`2 − q`1−1).
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The length n` of C(`,m)

n` =

[
m

`1, `2 − `1, . . . , `s+1 − `s

]
=

s∏
i=1

[
m− `i−1

`i − `i−1

]
where, by convention, `0 := 0 and `s+1 := m.

Equivalently, the length n` is given by

n` =
∑
σ∈W`

qinv(σ) =
∑
τ∈M`

qinv(τ)

where W`: permutations σ ∈ Sm satisfying

σ(`i−1 + 1) < σ(`i−1 + 2) < · · · < σ(`i),

for i = 1, . . . , s + 1, and M`: permutations of the multiset

{1`1 , 2`2−`1 , . . . , s`s−`s−1 , (s + 1)m−`s}

and inv denotes the number of inversions.

See, for example, [G-Lachaud, 2002].
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The case of 2-step flags

For 0 ≤ t ≤ m, set I(t,m) := {I = (i1, . . . , it) : 1 ≤ i1 < . . . < it ≤ m}.
Fix a basis {e1, . . . , em} of V. For I = (i1, . . . , it) ∈ I(t,m), put

eI := ei1 ∧ · · · ∧ eit ∈ ∧tV.

For any 0 ≤ t2 ≤ t1 ≤ m and I ∈ I(t1,m) and J ∈ I(t2,m), define

I = (i1, . . . , it1) ≤ J = (j1, . . . , jt2) ⇐⇒ ir ≤ jr for r = 1, . . . , t1

Theorem (G, Singh, Piñero, 2017)

Let s = 2. A basis for the flag code C(`; m) = Ev(T∗` (V)) is given by

{Ev(eI ⊗ eJ) : (I, J) ∈ I(m− `1,m)× I(m− `2,m), I ≤ J}.

Consequently, the dimension of the 2-step flag code C(`; m) is given by

k` =

(
m
`1

)(
m
`2

)
−
(

m
`1 − 1

)(
m

`2 + 1

)
.
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Minimum Distance for 2-step flags

Lemma
Assume that s = 2 and `1 + `2 ≤ m. Then

d(C(`; m)) ≤ q`2(m−`2)−`2
1 |GL`1(Fq)||G`1,`2(Fq)|.

Theorem (G, Singh, Piñero, 2017)

Assume that s = 2 and `1 + `2 ≤ m. Write ` = (`1, `2) and `′ = (`1, `1). If the

minimum distance of the code C(`′; m) is q`1(m−`1)−`2
1 |GL`1(Fq)|, then

d(C(`; m)) = q`2(m−`2)−`2
1 |GL`1(Fq)||G`1,`2(Fq)|.

Corollary

If s = 2, 1 ≤ ` < m, and ` = (1, `), then

d(C(`; m)) = q`(m−`)−1(q` − 1).
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A General Formula for the dimension k` of C(`,m)

Given ` = (`1, . . . , `s), consider the partition

m− `1 ≥ m− `2 ≥ · · · ≥ m− `s ≥ 1

and let λ be the conjugate partition.

For example if m = 8 and ` = (1, 3, 6, 7), then the associated partition is

(7, 5, 2, 1) and the conjugate partition is λ = (4, 3, 2, 2, 2, 1, 1). These partitions

can be viewed as folllows.
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Description of k` Contd.

For each box (i, j) in the (Young diagram of) λ, let h(i,j) be the hook length at

(i, j), that is, the number of boxes in the hook at (i, j). For example the hook at

(2, 2) in the partition λ = (4, 3, 2, 2, 2, 1, 1) is shown by shaded boxes and we

have h(2,2) = 5.

Theorem

The dimension k` of C(`,m) is given by

k` =
∏

(i,j)∈λ

m + j− i
h(i,j)

.

Idea: Use the connection between flag varieties and representations of linear

groups together with classical results from Combinatorial Representation

Theory. However, one should be careful in applying classical results to the

case of finite ground field Fq; in particular, it is better to assume s ≤ q.
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Example (2-Step Flag Code of Rodier): If ` = (1,m− 1), then

λ = conjugate of (m− 1, 1) = (2, 1, 1, . . . , 1︸ ︷︷ ︸
m−2 times

).

Hence by the above formula

k` =
m(m + 1)(m− 1)(m− 2) · · · (m− (m− 2))

m(1)(m− 2)(m− 3) · · · 1
= (m + 1)(m− 1) = m2 − 1,

as is to be expected.

b

b

b

m− 1
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Another Example (Grassmann codes): If ` = (`), then

λ = conjugate of (m− `) = (1, 1, . . . , 1︸ ︷︷ ︸
m−` times

).

Hence by the above formula

k` =
m(m− 1)(m− 2) · · · (m− (m− `) + 1)

(m− `)(m− `− 1) · · · 1

=
m!

`!(m− `)! =

(
m
`

)
as is to be expected.

b

b

b

m− ℓ
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Thank you!
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