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Let A/Q be an abelian variety of dim A = 1.
This means A is an elliptic curve, i.e. it is the geometric locus of

v =x>4+ax+b
for some

a,beZ,—16 (42> +27b%) # 0, with [0:1: 0] € A(Q).

Then
Pap(X) = X? —a,X + p € Z[X],

where

ap = p+1—[Ax(Fp)|.

The Weil bound:  |ap| < 2,/p.
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Lang-Trotter Conjecture on Frobenius traces, 1976

Let A/Q elliptic curve and let t € Z.
Assume Endg(A) ~ Z or t # 0.
Then

o either #{p:ap, =t} < o0

e or 3 C(A, t) > 0 such that

ma(x,t) = #{p < x:ap, =t} ~ C(A t) og x
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CM case i.e. Endg(A) % Z
e upper bound
VX

t
Ta(x, t) < log x

(sieve methods & connections to prime values of quadratic polynomials)

Non-CM case i.e. Endg(A) ~ Z
® unconditional upper bound

X

t -
mAx; 1) < (log x)%—¢

by V.K. Murty, 1997
e GRH upper bound

Ta(x, t) < x5
by M.R. Murty - V.K. Murty - N. Saradha, 1988
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(B. Mazur, J-P. Serre, N. Elkies, E. Fouvry - M.R. Murty, M. Kaneko)

e average results confirming the conjectural asymptotic

(E Fouvry - M.R. Murty, C. David - F. Pappalardi, S. Baier, W. Banks - |. Shparlinski, N. Jones etc)

e numerical computations confirming the conjectural asymptotic

(S. Lang - H. Trotter, research experience for undergraduates by K. James and by ACC)
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Basic ideas for proving upper bounds

(i) If A has CM, then 3 f = fa+ € Z[X] quadratic such that
ap=t#0 = p=f(n)for some n € Z.
Use sieve methods.
(i) In general,

ap =t = ap = t(modn)

= (W) C {MeGLy(Z/nZ) : tr M = t(mod n)}.

Use effective Chebotarev density theorem
with n = n(x) as parameter.
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Abelian varieties

Let A/Q be a principally polarized abelian variety of dimension g.

Let o A
pa : Gal(Q/Q) — GSpy,(Z),

Pam : Gal(Q/Q) — GSpay(Z/mi),

pae: Gal(@/Q) — GSpy,(Ze)
be the representations of Gal(Q/Q) on the division points of A/Q:

Alm] == {P € A(Q) : mP = 0,)}.
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For each good prime p, the p-Weil polynomial of A is uniquely
determined by

Pap(X) =det(X hbg — pae(Frobp)) V¢ #p.

We have

Pap(X) = X?6+a1 pX?6 1. +ag pXE+pag 1 pXE 1. +pEtag X +pE

with integer coefficients.

The Weil bound: la1,p| < 2g/p-
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Theorem 1 { J-P. Serre, 1981 forg =1
ACC - R. Davis - A. Silverberg - K. Stange & J-P. Serre  for g > 2
Let A/Q pp abelian variety, dmA =g > 1.
Let t € Z.
Consider
malx,t) =#{p<x:a1p=t}.
Define
1
o=
282+ g+1
1 3 ifg=1,
3 if 8 = ]_, ) .
ﬂ = . - v i= 8 If g = 2,
w3 1822 L
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Assume Im p4 is open in Gszg(Z).
Then

(i1) unconditionally,

X
7TA(X, t) L Ae W;

(i2) under GRH,
Ta(x, t) <ac xi—3te.

(ii) if t # £2g, then (i1) and (i2) hold with « replaced by £;
(i) if t =0, then (i1) and (i2) hold with « replaced by .
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Corollary
Setting and notation of Theorem 1.

For any € > 0 we have:

(i) unconditionally,

#{p < x:|arp| > (log p)*~°} ~ m(x);

(ii) under GRH,

#{p<x:lapl = pFf ~ ().
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Further arithmetic investigation of a; ,

Context:

e G. H. Hardy & S. Ramanujan, 1920:
v(p — 1) has normal order log log p.
e P. Erdos & M. Kac, 1940:

v(p — 1) has a normal distribution.
Here:

v(n) = Z 1;
Lln

f(p) has normal order log log p if:
#{p<x:(l—¢)loglogp < f(p) < (1+¢)loglogp} ~ m(x).
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Theorem 2 ( ACC - R. Davis - A. Silverberg - K. Stange )
Let A/Q pp abelian variety, dmA =g > 1.
Assume Im p4 is open in GSp2g(Z).

Assume GRH.
Then, for any 7 € R,

b # {p <x:pfNaarp,#0,v(a1p) <loglogp+ 7/loglog p}

e ()

1 T 2 d
= — e 2 dt.
\/271' [oo

In particular, v(a1,5) has normal order log log p.
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Let A/Q pp abelian variety, dmA =g > 1.
Let t € Z.

e Assume t # 0.

e Assume Im py4 is open in Gszg(Z).

e Assume that V | C [—1, 1] we have

H#APp<x:ptNa o2t €
lim { 2evp }=/¢(t) dt
)

X—00 w(x)

for some ¢ : [—1,1] — [0, 00).
Then o
0
7TA(X> t) ~ ;) : Cchebotarev(Aa t) T
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where Cchebotarev(A, t) is described explicitly, as follows:

Im pa open in Gszg(Z) = 3 my smallest integer such that

pa(Gal(Q/Q)) = (GspQg(Z) o GSpgg(Z/mZ))_1 (Im pa,m) -

Define
Mp s 1= MA H pve(t),

£mg



We conjecture that

Cchebotarev (A, t)

mat {M €1mpam,, : tr M = t(mod ma ;) }|

B | ImﬁA,mAyt) |

0OF [{M € GSpyg (Z/¢ (7)) : tr M = t(mod £7() 1)}
| GSpog (Z/£ve()+17)| '

Ymp
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Behind the scenes

(1) The large image assumption encompasses the generic case:

true for any A with Endg(A) ~ Z for g = 1,2,6 or odd

J-P. Serre 1972, 1985-1986

It gives us access to the relevant Galois groups:

mostly GSp,, groups.

(2) To prove Theorems 1 and 2, we use effective Chebotarev:
» for finite Galois extensions: J.C. Lagarias - A.M. Odlyzko, 1975
» for infinite ¢-adic extensions: J-P. Serre, 1981

GRH allows for best error terms in x.
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(3) To prove Theorem 1, we also need
“exercises in Lie groups”

i.e. dimension calculations of conjugacy classes in GSp;

Serre's contributions give optimal such bounds

(4) To prove Theorem 2, we follow a general

Central Limit probabilistic strategy of P. Billingsley (1970)
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(5) For arbitrary t, our heuristic gives

®(0) i M {M €1mpam: trM = t(mod m)}| /x
g m—oo | Im A m| log x’

Tax(t) ~

The nonzero assumption on t ensures that the limit equals the
infinite product Cepebotarev(A, t).
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(6) We prove that
H{M € GSpy (Z/VZ) : tr M = t(mod £)}| 1 o ( 1 )

=+
| GSpg (Z/LZ))| ¢

This ensures that

C{M € GSpy(Z/lZ) : tr M = t(mod ()}
11 | GSpag (Z/1Z))|

l

converges

and that

Cchebotarev(A, t) < oQ.
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(7) The existence of my is ensured by the large image
assumption.

The calculation of my is highly non-trivial:

> recipe by Serre, 1972, for g = 1 and largest Galois, i.e.
|GL2(Z) : Im pal =2

Recent example of infinite such family by H.B. Daniels.

» open for g > 2.
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(L. Clozel, M. Harris, N. Shepherd-Barron, R. Taylor, 2008-2010)
For g =1, ®(x) = 21 — x2, giving rise to

o(0) = 2.

™

For g = 2, ®(x) can also be calculated explicitly, giving rise to

256
*(0) = 75

(F. Fité, K.S. Kedlaya, V. Rotger, A.V. Sutherland, 2012)
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(9) In general, ® is provably continuous and nonzero at 0:
N. Katz and J-P. Serre, 2015

10) Computations related to a; , were performed using examples
P
previously studied by

L. Dieulefait (2003) for g = 2 and Y. Zarhin (2000) for any g.

Thank you!



	General problem
	Lang-Trotter
	Abelian varieties
	Frobenius traces

