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Counting number fields of a given degree

Theorem (Hermite): For all 𝑋 ∈ 𝐑 there are only finitely many number fields 𝐾 such that Δ𝐾 ≤ 𝑋.

Thus the quantity

𝑁𝑑 𝑋 = # number fields 𝐾 such that 𝐾:𝐐 = 𝑑 and Δ𝐾 ≤ 𝑋 / ≅

is well-defined.

Natural question: what are the asymptotics as 𝑋 → ∞?



Counting number fields of a given degree

Conjecture (“folklore”, Linnik, Narkiewicz, Bhargava, …): If 𝑑 ≥ 2 then for some 𝑐𝑑 > 0 we have 

𝑁𝑑 𝑋 = 𝑐𝑑𝑋 + 𝑜 𝑋 .

Known cases: 𝑁2 𝑋 =
1

𝜁 2
𝑋 + 𝑜 𝑋 =

6

𝜋2
𝑋 + 𝑜(𝑋) (Gauss, 1801)

𝑁3 𝑋 =
1

3𝜁(3)
𝑋 + 𝑜(𝑋) (Davenport−Heilbronn, 1971)

𝑁4 𝑋 = 𝑐very ugly𝑋 + 𝑜(𝑋) (Baily, Cohen−Diaz y Diaz−Olivier, Wong, Bhargava,

2005)

𝑁5 𝑋 = 𝑐ugly𝑋 + 𝑜(𝑋) (Bhargava, 2010)

Best known result for 𝑑 > 5: 𝑁𝑑 𝑋 = 𝑂 𝑋exp 𝐶 log 𝑑 (Ellenberg-Venkatesh, 2007)

Several refined statements available for 𝑁𝑑(𝑋, 𝐺) where 𝐺 = Gal 𝐾, 𝐐 ⊆ 𝑆𝑑.



Counting number fields of a given degree

In 𝑑 = 2 number fields are of the form

𝐾 = 𝐐( 𝑎)

for some squarefree integer 𝑎 and

Δ𝐾 = ቊ
𝑎 if 𝑎 ≡ 1 mod 4,
4𝑎 if not.

So roughly 𝑁2 𝑋 counts squarefree integers 𝑎 for which 𝑎 ≤ 𝑋. Heuristic: 

𝑁2 𝑋

𝑋
~ෑ

𝑝

(1 − 𝑝−2) =
1

𝜁(2)
.

Not hard to make argument precise (inclusion-exclusion sieve), yielding 𝑁2 𝑋 =
1

𝜁(2)
𝑋 + 𝑶( 𝑿).



Counting number fields of a given degree
In the much harder case 𝑑 = 3 the Davenport-Heilbronn proof does not come along with 𝑂( 𝑋):

𝑁3 𝑋 =
1

3𝜁 3
𝑋 + ?

Fung, Williams, 1990: Experiments show significantly fewer cubic fields 𝐾 with Δ𝐾 ≤ 𝑋.

“If it weren’t a theorem, you might doubt it was true!” (quote Ellenberg)

Roberts, 2000: Heuristic predicting a large negative second term:

𝑁3 𝑋 =
1

3𝜁(3)
𝑋 +

4 1 + 3 𝜁 1/3

5Γ 2/3 3𝜁(5/3)
𝑋5/6 + 𝑜 𝑋5/6 ≈ 0.277𝑋 − 0.403𝑋5/6 + 𝑜(𝑋5/6)

based on Shintani zeta function 𝜉3(𝑠) which counts cubic rings (and has poles at 𝑠 = 1 and 𝑠 = 5/6).  

Now a theorem by Taniguchi, Thorne, 2013 and Bhargava, Shankar, Tsimerman, 2013.



Counting number fields of a given degree

In case 𝑑 = 4 we ask the same question:

𝑁4 𝑋 = 𝑐very ugly𝑋 + ? 

No theorems or precise conjectures publicly available, but the quartic Shintani zeta function 𝜉4 𝑠
was shown to have poles at 𝑠 = 1, 𝑠 = 5/6 and 𝑠 = 3/4 by Yukie, 1993.

From an analysis of Res5/6(𝜉4) it is believed that this should imply a second term

∼ 𝑋5/6

The role of 𝑠 = 3/4 might be explained by tertiary terms of the form  ∼ 𝑋3/4 and/or ∼ 𝑋3/4 log 𝑋, 
but this evidence appears to be less convincing.

For 𝑑 > 4: no serious attempts yet.



𝑁𝑑 𝑋 = # field extensions 𝐾 of 𝐅𝑞 𝑡 such that 𝐾: 𝐅𝑞(𝑡) = 𝑑 and Δ𝐾 ≤ 𝑋 / ≅

The function field case

We rewrite:

𝑁𝑑 𝑋 = # field extensions 𝐾 of 𝐅𝑞 𝑡 such that 𝐾: 𝐅𝑞(𝑡) = 𝑑 and 𝑞deg Δ𝐾 ≤ 𝑋 / ≅

We switch to extensions of 𝐅𝑞(𝑡):

Assumption: char 𝐅𝑞 > 𝑑 to avoid inseperable extensions, wild ramification, ...

Assuming 𝐾 ∩ 𝐅𝑞
alg.cl.

= 𝐅𝑞, plus a sloppy use of Riemann-Hurwitz, we replace this by

# smooth proj. genus 𝑔 curves 𝐶/𝐅𝑞 together with a morphism 𝐶
𝑑:1

𝐏1 and 𝑞2𝑔 ≤ 𝑋 / ≅𝐏1

which could affect the leading constants, but should leave the asymptotics unharmed.



The function field case

𝑇𝑑 𝑞2𝑔 = # genus 𝑔 curves 𝐶/𝐅𝑞 together with a morphism 𝜙: 𝐶
𝑑:1

𝐏1 / ≅𝐏1

Instead of 𝑁𝑑(𝑋) we will consider

which again should exhibit the same asymptotics.

Because of our transformations and future sloppinesses, we will not put effort in specifying leading
constants. 

𝜙



The function field case

In 𝑑 = 2 we count hyperelliptic curves 𝑦2 = 𝑓 𝑡 with 𝑓 𝑡 squarefree of degree 2𝑔 + 1 or 2𝑔 + 2.

This corresponds to the fields 𝐾 = 𝐅𝑞( 𝑓 𝑡 ).

Thus 𝑇2 𝑞2𝑔 roughly counts squarefree polynomials of a given degree. The same proof as in the
number field case gives

𝑇2 𝑞2𝑔 = c2,𝑞𝑞
2𝑔 + 𝑂 𝑞𝑔

for some constant 𝑐2,𝑞 > 0.

This can be made much more precise.



The function field case

In 𝑑 = 3 we are counting trigonal curves.

Theorem (Datkovsky-Wright, 1988): 𝑇3 𝑞2𝑔 = 𝑐3,𝑞𝑞
2𝑔 + 𝑜(𝑞2𝑔) for some constant 𝑐3,𝑞 > 0. 

(In fact they deal with any global field of characteristic at least 5.)

What about the secondary term?

Theorem (Zhao, 2013): 𝑇3 𝑞2𝑔 = 𝑐3,𝑞𝑞
2𝑔 − 𝑑3,𝑞𝑞

5𝑔/3 + 𝑜(𝑞5𝑔/3) for some constant 𝑑3,𝑞 > 0.

His proof gives a remarkable geometric interpretation for the second term in 𝑋5/6 = 𝑞5𝑔/3! 



Overview of the remainder of this talk

We will:

• define the Maroni invariants of an algebraic curve,

• explain the idea behind Zhao’s proof,

• define the Schreyer invariants of an algebraic curve,

• discuss a similar heuristic for the quartic case,

• wonder about number theoretic versions of these invariants.



Maroni invariants (= scrollar invariants)
A rational normal scroll of type 𝑒1, 𝑒2, … , 𝑒𝑟 is an 𝑟-
dimensional variety in

𝐏𝑁 = 𝐏𝑒1+𝑒2+⋯+𝑒𝑟+𝑟−1

swept out by simultaneously parameterizing rational normal
curves 𝐏1 ↪ 𝐏𝑁:

𝑠, 𝑡 ↦ (𝑠𝑒1: 𝑠𝑒1−1𝑡: 𝑠𝑒1−2𝑡2: … : 𝑡𝑒1: 0: 0: … : 0:… : 0: 0:… : 0),

𝑠, 𝑡 ↦ 0: 0:… : 0: 𝑠𝑒2: 𝑠𝑒2−1𝑡: 𝑠𝑒2−2𝑡2: … : 𝑡𝑒2: … : 0: 0:… : 0 ,

⋮

𝑠, 𝑡 ↦ (0: 0:… : 0: 0: 0: … : 0:… : 𝑠𝑒𝑟: 𝑠𝑒𝑟−1𝑡: 𝑠𝑒𝑟−2𝑡2: … : 𝑡𝑒𝑟),

each time taking the linear span of the image points. 

v

v

v

𝐏𝑁

⋮

degree 𝑒1

degree 𝑒2

degree 𝑒𝑟



Consider a curve 𝐶 over a field 𝑘 along with a 
morphism 𝜙: 𝐶 → 𝐏1 of degree 𝑑.

Assume that 𝐶 is canonically embedded in 𝐏𝑔−1.

Take the linear spans of the fibers 𝜙−1 𝑃 as 𝑃
runs through all points of 𝐏1.

𝜙

𝑃

𝐏𝑔−1

𝐏1

𝐶

Theorem (Eisenbud-Harris, 1987): The variety swept
out by these linear spans is a rational normal scroll.

The degrees 𝑒1, 𝑒2, … , 𝑒𝑟 corresponding to this scroll are called the
multiset of Maroni invariants of 𝐶 with respect to 𝜙.

Maroni invariants

We assume that {fibers of 𝜙} is complete, then 𝑟 = 𝑑 − 1.



Sum formula:

𝑒1 + 𝑒2 +⋯+ 𝑒𝑑−1 = 𝑔 − 𝑑 + 1

This follows from the definition of a rational normal scroll.

Maroni bound:

𝑒𝑖 ≤
2𝑔−2

𝑑
.

This follows essentially from the Riemann-Roch theorem.

Maroni invariants



If 𝑑 = 3 then we have two invariants, say 𝑒1 ≤ 𝑒2 which satisfy

𝑒1 + 𝑒2 = 𝑔 − 2

and the Maroni bound
𝑔 − 4

3
≤ 𝑒1 ≤ 𝑒2 ≤

2𝑔 − 2

3

Zhao’s observation

Inside the rational normal scroll our curve is in the linear system |3𝐻 − 𝑔 − 4 𝑅|, which on an
appropriate chart corresponds to the polynomials 𝑓(𝑥, 𝑦) supported on

(0,0)

(0,3) (2𝑒1 − 𝑒2 + 2,3)

(2𝑒2 − 𝑒1 + 2,0)(0,0)

(0,3) (3𝑒2 − (𝑔 − 4), 3)

(3𝑒1 − (𝑔 − 4), 0)

=



Then modulo some further self-admitted sloppinesses 𝑇3 𝑞2𝑔 is proportional to

which gives the desired error term, which is directly related to the Maroni bound!



𝑒2=
𝑔
2

2𝑔−2
3

𝑞2𝑔+7− 𝑒2−𝑒1+5 −3 = 

𝑒2=
𝑔
2

2𝑔−2
3

𝑞2𝑔+7− 𝑒2− 𝑔−2−𝑒2 +5 −3 ≈ 

𝑒2=
𝑔
2

2𝑔
3

𝑞3𝑔−2𝑒2 = 

𝑟=
5𝑔
3

2𝑔

𝑞𝑟 ≈ 𝑞2𝑔 − 𝑞5𝑔/3

Zhao’s observation

So by counting lattice points one sees that dim 3𝐻 − 𝑔 − 4 𝑅 = 2𝑔 + 7.
Well-known that dimAut scroll = 𝑒2 − 𝑒1 + 5 + 𝛿𝑒1,𝑒2.

Assume that proportion of smooth irreducible members is “constant enough” for our purposes.

(0,0)

(0,3) (2𝑒1 − 𝑒2 + 2,3)

(2𝑒2 − 𝑒1 + 2,0)



If 𝑑 = 4 then we have three Maroni invariants, say 𝑒1 ≤ 𝑒2 ≤ 𝑒3 which satisfy

𝑒1 + 𝑒2 + 𝑒3 = 𝑔 − 3

and the Maroni bound

0 ≤ 𝑒1 ≤ 𝑒2 ≤ 𝑒3 ≤
2𝑔 − 2

4

Tetragonal curves

But according to the Shintani zeta function we expect an exponent 5/6: this does not seem
compatible?



Schreyer invariants (= Casnati-Ekedahl invariants) 𝐏𝑔−1

𝐶
Consider a curve 𝐶 over a field 𝑘 along with a 
morphism 𝜙: 𝐶 → 𝐏1 of degree 𝑑 ≥ 4.

Assume that 𝐶 is non-hyperelliptic, non-trigonal, 
and canonically embedded in 𝐏𝑔−1. 

Well-known: 𝐶 arises* as the intersection of

(𝑔 − 2) 𝑔 − 3

2

quadratic hypersurfaces of 𝐏𝑔−1, or if you
want, effective divisors in the class 2𝐻.

* except if 𝑪 is isomorphic to a smooth plane quintic



Schreyer invariants 𝐏𝑔−1

𝜙
𝐏1

𝐶

Theorem (Schreyer, 1986): Inside the scroll
associated to 𝜙 the curve 𝐶 arises as the
intersection of

𝑑 𝑑−3

2

effective divisors in classes of the form

2𝐻 − 𝑏𝑖𝑅

for invariants 𝑏𝑖 ∈ 𝐙 that are unique* up to order.

𝐻

𝑅

Consider a curve 𝐶 over a field 𝑘 along with a 
morphism 𝜙: 𝐶 → 𝐏1 of degree 𝑑 ≥ 4.

Assume that 𝐶 is non-hyperelliptic, non-trigonal, 
and canonically embedded in 𝐏𝑔−1. 



Schreyer invariants

We call the numbers

𝑏1, 𝑏2, … , 𝑏𝑑 𝑑−3
2

the Schreyer invariants of 𝐶 with respect to the map 𝜙. They satify

𝑏1 + 𝑏2 +⋯+ 𝑏𝑑 𝑑−3
2

= 𝑑 − 3 (𝑔 − 𝑑 − 1)

They were introduced as a tool in the study of syzygies of algebraic curves (Green’s conjecture).

A generalized treatment was given by Casnati-Ekedahl, 1996.



If 𝑑 = 4 then we have three Maroni invariants, say 𝑒1 ≤ 𝑒2 ≤ 𝑒3 which satisfy

𝑒1 + 𝑒2 + 𝑒3 = 𝑔 − 3

and the Maroni bound

0 ≤ 𝑒1 ≤ 𝑒2 ≤ 𝑒3 ≤
2𝑔 − 2

4

Back to tetragonal curves

We also have two Schreyer invariants, say 𝑏1 ≤ 𝑏2 which satisfy

𝑏1 + 𝑏2 = 𝑔 − 5

Inside our three-dimensional scroll 𝐶 is a complete intersection of two divisors 𝑌 and 𝑍, which
belong to |2𝐻 − 𝑏1𝑅| and |2𝐻 − 𝑏2𝑅|, respectively.  



On an appropriate chart the members of |2𝐻 − 𝑏𝑖𝑅| are defined by polynomials supported on

Back to tetragonal curves

(0,0,0)

(0,2,0)

(0,0,2) (2𝑒1 − 𝑏𝑖 , 0,2)

(2𝑒2 − 𝑏𝑖 , 2,0)

(2𝑒3 − 𝑏𝑖 , 0,0)

So by counting lattice points one sees that dim 2𝐻 − 𝑏𝑖𝑅 = 4𝑔 − 7 − 6𝑏𝑖.

Well-known that dimAut scroll = 2(𝑒3 − 𝑒1) + 8 + 𝛿𝑒1,𝑒2 + 𝛿𝑒2,𝑒3 + 𝛿𝑒1,𝑒3.



We have two polynomials 𝑓𝑌(𝑥, 𝑦, 𝑧) and 𝑓𝑍(𝑥, 𝑦, 𝑧) supported on:

Back to tetragonal curves

(0,0,0)

(0,2,0)

(0,0,2) (2𝑒1 − 𝑏2, 0,2)

(2𝑒2 − 𝑏2, 2,0)

(2𝑒3 − 𝑏2, 0,0)

Therefore from the above pair we expect a contribution proportional to:

𝑞4𝑔−7−6𝑏1+4𝑔−7−6𝑏2− 𝑏2−𝑏1+1 −8−2(𝑒3−𝑒1) = 𝑞8𝑔−6 𝑏1+𝑏2 −𝑏2+𝑏1−15 = 𝑞2𝑔+15−𝑏2+𝑏1

= 𝑞2𝑔+15−𝑏2+𝑔−5−𝑏2 ≈ 𝑞3𝑔−2𝑏1−2(𝑒3−𝑒1)

(0,0,0)

(0,2,0)

(0,0,2) (2𝑒1 − 𝑏1, 0,2)

(2𝑒2 − 𝑏1, 2,0)

(2𝑒3
− 𝑏1, 0,0)

To 𝑓𝑌 𝑥, 𝑦, 𝑧 we can add 𝑔 𝑥 𝑓𝑍 𝑥, 𝑦, 𝑧 for deg 𝑔 𝑥 ≤ 𝑏2 − 𝑏1, without changing the curve.



This must be fed to a double sum running over all triples 𝑒1, 𝑒2, 𝑒3 and all corresponding pairs 𝑏1, 𝑏2.
Let us look at the “main” case where 𝑒1 = 𝑒2 = 𝑒3 = 𝑒.  

Back to tetragonal curves

We see that 𝑏𝑖 ≤ 2𝑒 = 2 𝑒1 + 𝑒2 + 𝑒3 /3 = 2 𝑔 − 3 /3 ≤ 2𝑔/3 − 2. 

Assume that the proportion of smooth complete intersections is “constant enough” inside this range, 
plus some self-admitted sloppiness, we get a contribution proportional to



𝑏2=𝑔/2

2𝑔/3

𝑞3𝑔−𝑏2

But this we recognize from the trigonal count! It gives terms in 𝑞2𝑔 and 𝑞5𝑔/3 as wanted.

(0,0,0)

(0,2,0)

(0,0,2) (2𝑒 − 𝑏𝑖 , 0,2)

(2𝑒 − 𝑏𝑖 , 2,0)

(2𝑒 − 𝑏𝑖 , 0,0)



The other cases work similarly. 

Everything combines nicely (but very heuristically) to the desired secondary term, suggesting that
indeed

𝑇4 𝑞2𝑔 = 𝑐4,𝑞𝑞
2𝑔 − 𝑑4,𝑞𝑞

5𝑔/3 + 𝑜(𝑞5𝑔/3)

for some constants 𝑐4,𝑞 , 𝑑4,𝑞 > 0.

Back to tetragonal curves

Here the exponent in 𝑞5𝑔/3 = 𝑋5/6 is explained by a bound of Maroni type on Schreyer’s invariants. 

Is this a coincidence?



Recillas’ trigonal construction

Consider a curve 𝐶 over 𝐅𝑞 along with a morphism

𝜙: 𝐶 → 𝐏1 of degree 4.

Assume that 𝐶 is canonically embedded in 𝐏𝑔−1.

Take the linear spans of the fibers 𝜙−1 𝑃 as 𝑃
runs through all points of 𝐏1, these are 𝐏2’s.

In each such 𝐏2, take the three “dual” points.
𝜙

𝑃

𝐏𝑔−1

𝐏1

𝐶

Theorem (Recillas 1974): If 𝜙: 𝐶 → 𝐏1 has no 
ramification of type 4𝑃 or 2𝑃 + 2𝑄 then these dual
points cut out a smooth trigonal curve of genus 𝑔 + 1.

This is now known as Recillas’ trigonal construction.



Recillas’ trigonal construction

By explicit computation we refound the following
striking fact:

Theorem (Casnati, 1995): Under the same
assumptions, the Maroni invariants of Recillas’ 
trigonal construction applied to 𝐶 are 𝑏1 + 2 and 
𝑏2 + 2, where 𝑏1, 𝑏2 are the Schreyer invariants of 𝐶.

This gives a very satisfactory explanation for the
Maroni type bound on the 𝑏𝑖’s! 𝜙

𝐏𝑔−1

𝐏1



Back to number fields

Is there a similar theory working behind the scenes in the case of number fields 𝐾?

It seems so!

Older (unpublished) idea due to Yongqiang: based on the alternative definition

𝜙∗𝑂𝐶 = 𝑂𝐶 ⊕𝑂𝐶 −𝑒1 − 2 ⊕𝑂𝐶 −𝑒2 − 2 ⊕⋯⊕𝑂𝐶(−𝑒𝑑−1 − 2)

it is natural to define the Maroni invariants of 𝑲 as

log 𝑣1 , log 𝑣2 , …, log 𝑣𝑑−1

where 1, 𝑣1, 𝑣2, … , 𝑣𝑑−1 is a Minkowski-reduced basis of the lattice 𝜎(𝑂𝐾), with 𝜎 the canonical
embedding.



Back to number fields
Compare

Theorem (Minkowski’s second theorem): 𝑣1 ⋅ 𝑣2 ⋯ 𝑣𝑑−1 ∼𝑑 vol 𝐑𝑑/𝜎 𝑂𝐾 = Δ𝐾 .

with
𝑒1 + 𝑒2 +⋯+ 𝑒𝑑−1 = 𝑔 − 𝑑 + 1.

and

Theorem (Peikert-Rosen, 2007): 𝑣𝑖 = 𝑂𝑑(Δ𝐾
1/𝑑

)

with the Maroni bound

𝑒𝑖 ≤
2𝑔 − 2

𝑑
.

(Similar bound appears in Bhargava-Shankar-Taniguchi-Thorne-Tsimerman-Zhao, 2017)



Back to number fields

What about the Schreyer invariants of 𝑲?

Fact: Recillas’ trigonal construction is the geometric counterpart of the cubic resolvent

𝑥 − 𝛼1𝛼2 − 𝛼3𝛼4 𝑥 − 𝛼1𝛼3 − 𝛼2𝛼4 (𝑥 − 𝛼1𝛼4 − 𝛼2𝛼3)

which is a Galois resolvent for the group 𝐷4 ⊆ 𝑆4.

Thus: natural to define the Schreyer invariants of a quartic field as the Maroni invariants of its cubic
resolvent (ignoring potential reducibility concerns). 

What about higher degree fields? Is this part of a richer theory?



Back to number fields

Experiments computing Maroni invariants of Galois resolvents strongly suggest so, although we 
cannot yet pin down how it works exactly.

subgroup 𝐺 ⊆ 𝑆3 generators index generic genus Maroni invariants
of 𝐺-resolvent

trivial id 6 3𝑔 + 1 𝑒1, 𝑒1, 𝑒2, 𝑒2, 𝑔

𝐶2 (12) 3 𝑔 𝑒1, 𝑒2

𝐴3 ≅ 𝐶3 (123) 2 𝑔 + 1 𝑔

Experiments in degree three:

Genus of input curve: 𝑔 Maroni invariants of input curve: 𝑒1, 𝑒2 (sum: 𝑔 − 2)

curve
itself



Back to number fields

subgroup 𝐺 ⊆ 𝑆4 generators index generic genus Maroni invariants
of 𝐺-resolvent

𝐶4 (1234) 6 3𝑔 + 4 𝑔 − 𝑒1 − 1, 𝑔 − 𝑒2 − 1,
𝑔 − 𝑒3 − 1, 𝑔 − 𝑏1 − 3,

𝑔 − 𝑏2 − 3

𝑉4 12 , (34) 6 2𝑔 + 1 𝑒1, 𝑒2, 𝑒3, 𝑏1 + 2, 𝑏2 + 2

𝑆3 12 , (123) 4 𝑔 𝑒1, 𝑒2, 𝑒3

𝐷4 1234 , (12)(34) 3 𝑔 + 1 𝑏1 + 2, 𝑏2 + 2

𝐴4 even perm. 2 𝑔 + 2 𝑔 + 1

Experiments in degree four:

Genus of input curve: 𝑔 Maroni invariants of input curve: 𝑒1, 𝑒2, 𝑒3 (sum: 𝑔 − 3)
Schreyer invariants of input curve: 𝑏1, 𝑏2 (sum: 𝑔 − 5)

curve
itself

cubic
res.



Back to number fields

subgroup 𝐺 ⊆ 𝑆5 generators index generic genus Maroni invariants
of 𝐺-resolvent

𝑆4 perm. fixing 5 5 𝑔 𝑒1, 𝑒2, 𝑒3, 𝑒4

𝐹20 1234 , (12345) 6 3𝑔 + 7 𝑔 − 𝑏1 − 2, 𝑔 − 𝑏2 − 2,
𝑔 − 𝑏3 − 2, 𝑔 − 𝑏4 − 2,

𝑔 − 𝑏5 − 2

𝐴5 even perm. 2 𝑔 + 3 𝑔 + 2

Experiments in degree five:

Genus of input curve: 𝑔 Maroni invariants of input curve: 𝑒1, 𝑒2, 𝑒3, 𝑒4 (sum: 𝑔 − 4)
Schreyer invariants of input curve: 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5 (sum: 2𝑔 − 12)

curve
itself

Cayley 
res.



Back to number fields

subgroup 𝐺 ⊆ 𝑆5 generators index generic genus Maroni invariants
of 𝐺-resolvent

𝑆5 perm. fixing 6 6 𝑔 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5

𝑆3 ≀ 𝐶2 12 , 123
45 , 456
14 25 (36)

10 3𝑔 + 6 𝑏1 + 2,… , 𝑏9 + 2

𝐴6 even perm. 2 𝑔 + 4 𝑔 + 3

Experiments in degree six:

Genus of input curve: 𝑔 Maroni invariants of input curve: 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 (sum: 𝑔 − 5)
Schreyer invariants of input curve: 𝑏1, 𝑏2, … , 𝑏9 (sum: 3𝑔 − 21)

curve
itself



Questions?
Thanks for your attention!


