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Counting number fields of a given degree

Theorem (Hermite): For all X € R there are only finitely many number fields K such that |Ag| < X.

Thus the quantity
N, (X) = # { number fields K such that [K: Q] =d and |Agx| < X } / =

is well-defined.

Natural question: what are the asymptotics as X — oo?



Counting number fields of a given degree

Conjecture (“folklore”, Linnik, Narkiewicz, Bhargava, ...): If d = 2 then for some c; > 0 we have
Ni(X) = czX + o(X).

Known cases: N, (X) = Z —X+o0(X) = —X + 0o(X) (Gauss, 1801)

()

N;(X) = —=—=X+ o0o(X) (Davenport-Heilbronn, 1971)

C()

N4(X) = CyeryuglyX + 0(X) (Baily, Cohen-Diaz y Diaz-Olivier, Wong, Bhargava,
2005)

Ns(X) = cygyX + 0o(X) (Bhargava, 2010)

Best known result ford > 5: N;(X) = 0 (XEXP(CV log d)) (Ellenberg-Venkatesh, 2007)

Several refined statements available for N; (X, G) where G = Gal(K,Q) € S,.



Counting number fields of a given degree

In d = 2 number fields are of the form

K =QWa)

for some squarefree integer a and

A =)@ ifa =1 mod 4,
K 4a if not.

So roughly N, (X) counts squarefree integers a for which |a| < X. Heuristic:
N, (X) _ 1
~[ Ja-r=
x L (@

Not hard to make argument precise (inclusion-exclusion sieve), yielding N, (X) = EX + 0(\/_)




Counting number fields of a given degree

In the much harder case d = 3 the Davenport-Heilbronn proof does not come along with 0(\/7):

1
N3(X) :%X + ?

Fung, Williams, 1990: Experiments show significantly fewer cubic fields K with |Ag| < X.

“If it weren’t a theorem, you might doubt it was true!” (quote Ellenberg)

Roberts, 2000: Heuristic predicting a large negative second term:

1 4(1 ++/3)¢(1/3)
N3 (X) = T(S)X + 5(1“(2/3)3)((5/3) X5/6 + 0(X%/¢) = 0.277X — 0.403X>/6 + 0(X5/°)

based on Shintani zeta function £5(s) which counts cubic rings (and has polesats = 1 and s = 5/6).

Now a theorem by Taniguchi, Thorne, 2013 and Bhargava, Shankar, Tsimerman, 2013.



Counting number fields of a given degree

In case d = 4 we ask the same question:
N, (X) = CveryuglyX + ?

No theorems or precise conjectures publicly available, but the quartic Shintani zeta function £,(s)
was shown to have polesats = 1,s = 5/6 and s = 3/4 by Yukie, 1993.

From an analysis of Ress /5($4) it is believed that this should imply a second term

_ X5/6

The role of s = 3/4 might be explained by tertiary terms of the form ~ X3/4 and/or ~ X3/*log X,
but this evidence appears to be less convincing.

For d > 4: no serious attempts yet.



The function field case

We switch to extensions of F, ():

N4 (X) = #{ field extensions K of F,(t) such that |[K: F,(t)| = d and |Ag| < X } /=

Assumption: char F; > d to avoid inseperable extensions, wild ramification, ...

We rewrite:

N4 (X) = #{ field extensions K of F,(t) such that L€ F, (t)] =dand g8k < X } / =

Assuming K N F;lg'd' = F,, plus a sloppy use of Riemann-Hurwitz, we replace this by
d:1
# { smooth proj. genus g curves C/F, together with a morphism € — P! and g9 < X} = b1

which could affect the leading constants, but should leave the asymptotics unharmed.



The function field case

Instead of N;(X) we will consider
d:1
T,(q%9) = # { genus g curves C/F, together with a morphism ¢: C — p! } / Sp1

which again should exhibit the same asymptotics.

Because of our transformations and future sloppinesses, we will not put effort in specifying leading
constants.



The function field case

In d = 2 we count hyperelliptic curves y? = f(t) with f(t) squarefree of degree 2g + 1 or 2g + 2.

This corresponds to the fields K = F,(y/ f (t)).

Thus T, (q?9) roughly counts squarefree polynomials of a given degree. The same proof as in the
number field case gives

T,(q%9) = c349%9 + 0(q9)

for some constant ¢, , > 0.

This can be made much more precise.



The function field case

In d = 3 we are counting trigonal curves.

Theorem (Datkovsky-Wright, 1988): T3(q%9) = c3 499 4 0(q?9) for some constant c3 4 > 0.

(In fact they deal with any global field of characteristic at least 5.)

What about the secondary term?
Theorem (Zhao, 2013): T5(q%9) = ¢34q9%9 — d3,q°9/3 + 0(q>9/3) for some constant d5 , > 0.

His proof gives a remarkable geometric interpretation for the second term in X>/6 = q5g/3!



Overview of the remainder of this talk

We will:
e define the Maroni invariants of an algebraic curve,
* explain the idea behind Zhao’s proof,
e define the Schreyer invariants of an algebraic curve,
e discuss a similar heuristic for the quartic case,

e wonder about number theoretic versions of these invariants.



Maroni invariants (= scrollar invariants)

PN
A rational normal scroll of type (eq, €5, ..., €,) isan r- .
dimensional variety in
degree e;
PN — Pel+ez+---+er+r—1 —
o —
swept oult by su{nultaneously parameterizing rational normal degree e,
curves P+ & P —
(s,t) » (str:se1 i ge172¢2: 1 ¢%1:0:0:...:0:...:0:0: ...: 0),
(s,t) » (0:0:...:0:s2:s%2 1t g€272¢2: . t€2: :0:0:..:0), \ \ e
degree e,
e

(s,t) » (0:0:...:0:0: 0: ...: 0: ...: s®r: s~ gor™2¢2: 1 ter),

each time taking the linear span of the image points.



Maroni invariants

Consider a curve C over a field k along with a
morphism ¢: C = P! of degree d.

Assume that C is canonically embedded in P91,

Take the linear spans of the fibers ¢ "1{P} as P
runs through all points of P.

Theorem (Eisenbud-Harris, 1987): The variety swept
out by these linear spans is a rational normal scroll.

The degrees eq, e, ..., e,- corresponding to this scroll are called the
multiset of Maroni invariants of C with respect to ¢.

We assume that {fibers of ¢} is complete, thenr = d — 1.



Maroni invariants

Sum formula:
el+ez+"‘+ed_1 =g—d+1

This follows from the definition of a rational normal scroll.

Maroni bound:

This follows essentially from the Riemann-Roch theorem.



Zhao's observation
If d = 3 then we have two invariants, say e; < e, which satisfy
e te,=9g—2

and the Maroni bound
g—4 29 — 2

Inside the rational normal scroll our curve is in the linear system |3H — (g — 4)R|, which on an
appropriate chart corresponds to the polynomials f(x, y) supported on

(0,3) (362 o (g _ 4)' 3) (013) (261 —eyt 2'3)

(0,0) (3e;—(g —4),0) (0,0) (2e; — e +2,0)



(0,3) (2e4 —ey, +2,3)

Zhao’s observation

(0,0) (2e, —eq + 2,0)

So by counting lattice points one sees that dim|3H — (g — 4)R| = 2g + 7.
Well-known that dim Aut(scroll) = e; —e; + 5+ ¢, e, -

Assume that proportion of smooth irreducible members is “constant enough” for our purposes.

Then modulo some further self-admitted sloppinesses T5(g29) is proportional to

z q2g+7 (eo—eq+5)—3 _ 2 q2g+7 (eo—(g—2—e3)+5)—-3 z qu 2e, — z CI ~ q 5g/3
r‘3

WhICh gives the desired error term, which is directly related to the Maroni bound!



Tetragonal curves

If d = 4 then we have three Maroni invariants, say e; < e, < e3 which satisfy
e t+e,+e3=9g—3

and the Maroni bound

But according to the Shintani zeta function we expect an exponent 5/6: this does not seem
compatible?



Schreyer invariants (= Casnati-Ekedahl invariants) po-1

Consider a curve C over a field k along with a
morphism ¢: C — P! of degree d > 4. C

Assume that C is non-hyperelliptic, non-trigonal,
and canonically embedded in P97 1,

Well-known: C arises™ as the intersection of

(g—2)(g—3)
2

quadratic hypersurfaces of P91, or if you
want, effective divisors in the class 2H.

* except if C is isomorphic to a smooth plane quintic



Schreyer invariants

Consider a curve C over a field k along with a
morphism ¢: C — P! of degree d > 4.

Assume that C is non-hyperelliptic, non-trigonal,
and canonically embedded in P97 1,

Theorem (Schreyer, 1986): Inside the scroll
associated to ¢ the curve C arises as the
intersection of

d(d-3)
2

effective divisors in classes of the form

2H — b;R

for invariants b; € Z that are unique™® up to order.



Schreyer invariants

We call the numbers

bl) b2) v bd(d—S)
2

the Schreyer invariants of C with respect to the map ¢. They satify

by + by + -+ bgua-3=Wd—-3)(g—d—1)
2

They were introduced as a tool in the study of syzygies of algebraic curves (Green’s conjecture).

A generalized treatment was given by Casnati-Ekedahl, 1996.



Back to tetragonal curves

If d = 4 then we have three Maroni invariants, say e; < e, < e3 which satisfy
e t+e,+e3=9g—3

and the Maroni bound

We also have two Schreyer invariants, say b; < b, which satisfy
b1 + bz =0 — 5

Inside our three-dimensional scroll C is a complete intersection of two divisors Y and Z, which
belong to |2H — b;R| and |2H — b, R|, respectively.



Back to tetragonal curves

On an appropriate chart the members of |2H — b;R| are defined by polynomials supported on

(0,2,0) (2e; — by, 2,0)

(0,0,2) (2e; — b;,0,2)

So by counting lattice points one sees that dim|2H — b;R| = 4g — 7 — 6b;.

Well-known that dim Aut(scroll) = 2(e3 —e;) + 8 + 8¢, ¢, + 0¢ e, T e, e



Back to tetragonal curves

We have two polynomials fy(x,y,z) and f,(x,y, z) supported on:

(0,2,0) (2e; — by, 2,0) (0,2,0) (2e, — b,,2,0)

' (2¢3 - 2e; — b, 0,0
(O;O; ‘.,E ................................................. _bll 0;0) (O;O) ‘.,E .............................. ( 3 21 )

(01012) (281 — bl' 0,2) (0’0’2) (Zel T b2) 012)

To fy(x,y,z) we can add g(x)f,(x,y, z) for deg g(x) < b, — b, without changing the curve.

Therefore from the above pair we expect a contribution proportional to:

4g—7—6b1+4g—7—6b2—(bz—b1+1)—8—2(33—31) — q89—6(b1+b2)—b2 +b1—15 2g+15—b2 +b1

q = q
— q2g+15—b2+g—5—b2 ~ q39—2b1—2(33—31)



Back to tetragonal curves

This must be fed to a double sum running over all triples e4, e5, e3 and all corresponding pairs b4, b,.
Let us look at the “main” case where e; = e, = e3 = e.

(0,2,0) (2e — b;,2,0)

S A (2e — b;,0,0)

(2e — b;,0,2)
We see that b; < 2e = 2(e; + e, +e3)/3=2(g—3)/3<2g/3 — 2.

(0,0,2)

Assume that the proportion of smooth complete intersections is “constant enough” inside this range,
plus some self-admitted sloppiness, we get a contribution proportional to

29/3

2 q3g—b2

by=g/2

But this we recognize from the trigonal count! It gives terms in g29 and g°9/3 as wanted.



Back to tetragonal curves

The other cases work similarly.

Everything combines nicely (but very heuristically) to the desired secondary term, suggesting that
indeed

T4(q9) = c4,qq%9 — d4qq°9"* + 0(q973)

for some constants ¢4 4, ds g > 0.

Here the exponent in q59/3 = X>/6 is explained by a bound of Maroni type on Schreyer’s invariants.

Is this a coincidence?



Recillas’ trigonal construction

Consider a curve C over F; along with a morphism
@:C - P! of degree 4.

Assume that C is canonically embedded in P91,

Take the linear spans of the fibers ¢ "1{P} as P
runs through all points of P!, these are P%’s.

In each such P?, take the three “dual” points.

Theorem (Recillas 1974): If ¢: C = P has no
ramification of type 4P or 2P + 2(Q then these dual

points cut out a smooth trigonal curve of genus g + 1.

This is now known as Recillas’ trigonal construction.



Recillas’ trigonal construction

By explicit computation we refound the following
striking fact:

Theorem (Casnati, 1995): Under the same
assumptions, the Maroni invariants of Recillas’
trigonal construction applied to C are by + 2 and

b, + 2, where b4, b, are the Schreyer invariants of C.

This gives a very satisfactory explanation for the
Maroni type bound on the b;’s!

pI—1



Back to number fields

Is there a similar theory working behind the scenes in the case of number fields K?

It seems so!

Older (unpublished) idea due to Yonggiang: based on the alternative definition
$.0c = 0c D Oc(—e; —2) D Oc(—e; —2) D - D Oc(—eq-1 — 2)
it is natural to define the Maroni invariants of K as

log llv1ll, log [[v2l, ..., log [[vg—1ll

where 1, v4, V5, ..., V4_1 is @ Minkowski-reduced basis of the lattice 6 (0Og), with o the canonical
embedding.



Back to number fields

Compare

Theorem (Minkowski’s second theorem): ||v{|| - ||V, ]| -+ [lvg—1]] ~4 Vol (Rd/a(OK)) = /|Ag]|.

with
61+32+"'+ed_1:g—d+1.

and

Theorem (Peikert-Rosen, 2007): ||v;|| = 04 (A}{d)

with the Maroni bound

(Similar bound appears in Bhargava-Shankar-Taniguchi-Thorne-Tsimerman-Zhao, 2017)



Back to number fields

What about the Schreyer invariants of K?
Fact: Recillas’ trigonal construction is the geometric counterpart of the cubic resolvent
(X —aa; — aza,) (X — a1a3 — aa,) (X — a1y — Aza3)

which is a Galois resolvent for the group D, € §,.

Thus: natural to define the Schreyer invariants of a quartic field as the Maroni invariants of its cubic
resolvent (ignoring potential reducibility concerns).

What about higher degree fields? Is this part of a richer theory?



Back to number fields

Experiments computing Maroni invariants of Galois resolvents strongly suggest so, although we

cannot yet pin down how it works exactly.

Experiments in degree three:

Genus of input curve: g Maroni invariants of input curve: e4, e, (sum: g — 2)
subgroup G € S5 generators index generic genus Maroni invariants
of G-resolvent
trivial id 3g+1 e1,€1,€2,€2, g
curve
itself — CZ (12) g €1, €2
As = (5 (123) g+1 g




Back to number fields

Experiments in degree four:

Genus of input curve: g

Maroni invariants of input curve: eq, €,,e3 (sum: g — 3)

Schreyer invariants of input curve: by, b, (sum: g — 5)

subgroup G € §, generators index generic genus Maroni invariants
of G-resolvent
Cy (1234) 6 3g +4 g—e1—1Lg—e—1,
g—€3—1,g—b1—3,
g - bz - 3
curve V4 (12), (34‘) 6 Zg + 1 91:92:33»1?1 + 2, b2 + 2
itself > S, (12), (123) 4 g e1,€z, €3
cubic _» D, (1234), (12)(34) 3 g+1 by +2,b, +2
e Ay even perm. 2 g+2 g+1




Back to number fields

Experiments in degree five:

Genus of input curve: g

Maroni invariants of input curve: e, €,, €3, €4 (sum: g — 4)

Schreyer invariants of input curve: by, by, b3, by, bs (sum: 2g — 12)

subgroup G < St generators index generic genus Maroni invariants
of G-resolvent
curve __» Sy perm. fixing 5 5 g €1, €5, €3,€,
e (1234), (12345) 3g +7 9=bi-29 b2
Cay:l:: / g 3g B If— 24 )
Ac even perm. 2 g+3 g+2




Back to number fields

Experiments in degree six:

Genus of input curve: g

Maroni invariants of input curve: e, e,, €3, €4, €5 (sum: g — 5)

Schreyer invariants of input curve: by, by, ..., bg (sSum: 3g — 21)

subgroup G < St generators index generic genus Maroni invariants
of G-resolvent
curve __y Sc perm. fixing 6 6 g €1,€5,€3, €4, ex
tselt 5.2 ¢, (12), (123) 10 3g + 6 by +2, ..., be+2
(45), (456)
(14)(25)(36)
Ag even perm. 2 gt+4 g+3




Questions?

Thanks for your attention!



