

- ► The Pacific Institute for the Mathematical Sciences is a Unité Mixte Internationale (UMI) of CNRS
- CNRS appointments can be stationed at a PIMS university.
- CNRS provides extra funding for international stationments.
- ► PIMS universities include all Canadian research universities west of Ontario, as well of UW (Seattle).

Arithmetic aspects of the Burkhardt quartic

Nils Bruin (Simon Fraser University), joint with Brett Nasserden (University of Waterloo) July 19, 2017, AGC²T (Luminy)

The Burkhardt Quartic

Defining Equation:

$$B: f(y_0, \dots, y_4) := y_0(y_0^3 + y_1^3 + y_2^3 + y_3^3 + y_4^3) + 3y_1y_2y_3y_4 = 0.$$

The Burkhardt Quartic

Defining Equation:

$$B: f(y_0, \dots, y_4) := y_0(y_0^3 + y_1^3 + y_2^3 + y_3^3 + y_4^3) + 3y_1y_2y_3y_4 = 0.$$

Some properties:

- ▶ 45 nodal singularities (maximum possible); over $\mathbb{Q}(\sqrt{-3})$.
- ➤ Only quartic with that property (over C)
- ▶ Linear action of $PSp_4(\mathbb{F}_3)$, the simple group of order 25920.
- ▶ *f* is the unique quartic invariant for this action.

Moduli interpretation

B is birational to $A_2(3)$, the moduli space of principally polarized abelian surfaces *A* with full level 3 structure, i.e., together with an isomorphism $(\mathbb{Z}/3)^2 \times (\mu_3)^2 \to A[3]$.

Questions

Question 1: It is known that the Burkhardt quartic is rational over $\mathbb{Q}(\sqrt{-3})$. Is it also rational over \mathbb{Q} ?

Question 2: The Burkhardt quartic has good reduction at primes $p \neq 3$. We know the zeta function of B over \mathbb{F}_p for $p \equiv 1 \pmod 3$ (Hoffman-Weintraub, 2000). Can we determine it for all $p \neq 3$?

Question 3: The moduli space $A_2(3)$ is *fine*, and an open part of it is formed by Jacobians of genus 2 curves. There should exist a *universal* genus 2 curve C_{α} over that part. Can we write down a model in term of coordinates α on B?

Question 4: How do we mark the level 3 structure on such a curve C_{α} ?

Question 5: Genus 2 curves with 3-torsion class arise as discriminants of cubic genus 1 covers of \mathbb{P}^1 . Can we recognize these?

J-Planes on the Burkhardt

Burkhardt:
$$f(y_0, ..., y_4) = y_0(y_0^3 + y_1^3 + y_2^3 + y_3^3 + y_4^3) + 3y_1y_2y_3y_4 = 0$$

Hessian: Hess(B):
$$\det \left(\frac{\partial f}{\partial y_i \partial y_j} \right)_{i,j} = 0$$

J-planes:
$$B \cap \operatorname{Hess}(B) = \bigcup_{i=1}^{40} J_i$$

J-Planes on the Burkhardt

Burkhardt:
$$f(y_0, ..., y_4) = y_0(y_0^3 + y_1^3 + y_2^3 + y_3^3 + y_4^3) + 3y_1y_2y_3y_4 = 0$$

Hessian: Hess(B):
$$\det \left(\frac{\partial f}{\partial y_i \partial y_j} \right)_{i,j} = 0$$

J-planes:
$$B \cap \operatorname{Hess}(B) = \bigcup_{i=1}^{40} J_i$$

- ► Each J_i is a linear 2-space (e.g. $y_0 = y_1 = 0$)
- ▶ $PSp_4(\mathbb{F}_3)$ acts transitively on them
- ► Each *J_i* contains 9 of the 45 nodes
- ▶ 8 are defined over \mathbb{Q} ; 16 pairs conjugate over $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$.

J-Planes on the Burkhardt

Burkhardt:
$$f(y_0, ..., y_4) = y_0(y_0^3 + y_1^3 + y_2^3 + y_3^3 + y_4^3) + 3y_1y_2y_3y_4 = 0$$

Hessian: Hess(B):
$$\det \left(\frac{\partial f}{\partial y_i \partial y_j} \right)_{i,j} = 0$$

J-planes:
$$B \cap \operatorname{Hess}(B) = \bigcup_{i=1}^{40} J_i$$

- ► Each J_i is a linear 2-space (e.g. $y_0 = y_1 = 0$)
- ▶ $PSp_4(\mathbb{F}_3)$ acts transitively on them
- ▶ Each *J_i* contains 9 of the 45 nodes
- ▶ 8 are defined over \mathbb{Q} ; 16 pairs conjugate over $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$.

Steiner primes: 40 hyperplanes that intersect *B* in 4 J-planes.

Moduli interpretation: Points in $B \setminus \text{Hess}(B)$ correspond to genus 2 curves

Question 1: Rationality of the Burkhardt Quartic

Todd (1936): The Burkhardt quartic is birational to \mathbb{P}^3 over \mathbb{C} .

Baker (1942): Produced a paramametrization over $\mathbb{Q}(\sqrt{-3})$.

Question 1: Can we adjust Baker's idea to work over \mathbb{Q} ?

Approach: Modify Baker's argument to be Galois invariant.

Useful fact: The lines through 3 planes in \mathbb{P}^4 form a rational variety.

Idea: Take 3 planes J_1, J_2, J_3 on B and parametrize the lines through them. Parametrize B using the fourth intersection point.

Watch out: Not all choices of J_1, J_2, J_3 produce a dominant map.

Executing the idea

Theorem.
$$\phi: \mathbb{P}^3 \xrightarrow{\sim} B; \quad (1:t_1:t_2:t_3) \mapsto (\xi_0:\xi_1:\xi_2:\xi_3:\xi_4)$$

$$\xi_0 = t_1^3 - 3t_1^2t_3 - 3t_1t_2^2 - 3t_1t_2t_3 - t_2^3 - 1,$$

$$\xi_1 = -t_1^3 + 3t_1^2t_3 - 3t_1t_3^2 + t_2^3 + 1,$$

$$\xi_2 = -t_1^4 + t_1^3t_2 + 3t_1^3t_3 - 3t_1^2t_2t_3 - 3t_1^2t_3^2 - 2t_1t_2^3 - 3t_1t_2^2t_3 + t_1 - t_2^4 - t_2,$$

$$\xi_3 = -t_1^4 + 4t_1^3t_3 + 3t_1^2t_2^2 + 3t_1^2t_2t_3 - 3t_1^2t_3^2 + t_1t_2^3 - 3t_1t_2^2t_3 - 3t_1t_2t_3^2 + t_1 - t_2^3t_3 - t_3,$$

has birational inverse ψ : $(y_0: y_1: y_2: y_3: y_4) \mapsto (t_0: t_1: t_2: t_3)$,

 $\xi_4 = -t_1^4 - t_1^3 t_2 + 2t_1^3 t_3 + 3t_1^2 t_2 t_3 + t_1 t_2^3 + 3t_1 t_2^2 t_3 + t_1 + t_2^4 + t_2^3 t_3 + t_2 + t_3$

$$t_0 = y_0(y_0^2 - y_0y_1 + y_1^2),$$

$$t_1 = y_0(y_1y_2 - y_0y_3 - y_0y_4),$$

$$t_2 = y_0(y_0y_2 - y_1y_2 + y_1y_3 + y_1y_4),$$

$$t_3 = y_0y_1y_2 - y_0y_1y_3 + y_1^2y_3 - y_0^2y_4.$$

Question 2: Zeta functions

Zeta function: Let X/\mathbb{F}_q be a variety over a finite field \mathbb{F}_q .

$$Z(X/\mathbb{F}_q,T) := \exp\left(\sum_{n=1}^{\infty} \#X(\mathbb{F}_{q^n}) \frac{T^n}{n}\right)$$

Question 2: Zeta functions

Zeta function: Let X/\mathbb{F}_q be a variety over a finite field \mathbb{F}_q .

$$Z(X/\mathbb{F}_q,T) := \exp\left(\sum_{n=1}^{\infty} \#X(\mathbb{F}_{q^n}) \frac{T^n}{n}\right)$$

Basic case:
$$Z(\mathbb{P}^n/\mathbb{F}_q,T)=\frac{1}{(1-T)\cdots(1-q^nT)}$$

Question 2: Zeta functions

Zeta function: Let X/\mathbb{F}_q be a variety over a finite field \mathbb{F}_q .

$$Z(X/\mathbb{F}_q,T) := \exp\left(\sum_{n=1}^{\infty} \#X(\mathbb{F}_{q^n})\frac{T^n}{n}\right)$$

Basic case: $Z(\mathbb{P}^n/\mathbb{F}_q,T)=\frac{1}{(1-T)\cdots(1-q^nT)}$

Unions: $Z(X \cup Y, T)Z(X \cap Y, T) = Z(X, T)Z(Y, T)$

Disjoint Conjugate components: $X = Y \cup Y'$

$$Z(X/\mathbb{F}_q,T)=Z(Y/\mathbb{F}_{q^2},T^2).$$

Birational map induces an isomorphism: $\mathbb{P}^3 \setminus V_\phi \simeq B \setminus V_\psi$

Applied to our problem:
$$Z(B,T) = Z(V_{\psi},T) \frac{Z(\mathbb{P}^3,T)}{Z(V_{\phi},T)}$$

Answer to Question 2

Case $q \equiv 1 \pmod{3}$:

$$Z(B/\mathbb{F}_q,T) = \frac{(1-qT)^{29}}{(1-T)(1-q^2T)^{16}(1-q^3T)}$$

Case $q \equiv 2 \pmod{3}$:

$$Z(B/\mathbb{F}_q,T) = \frac{(1-qT)^{15}(1+qT)^{14}}{(1-T)(1-q^2T)^{10}(1+q^2T)^6(1-q^3T)}$$

Answer to Question 2

Case $q \equiv 1 \pmod{3}$:

$$Z(B/\mathbb{F}_q,T) = \frac{(1-qT)^{29}}{(1-T)(1-q^2T)^{16}(1-q^3T)}$$

Case $q \equiv 2 \pmod{3}$:

$$Z(B/\mathbb{F}_q,T) = \frac{(1-qT)^{15}(1+qT)^{14}}{(1-T)(1-q^2T)^{10}(1+q^2T)^6(1-q^3T)}$$

Further computation:

$$\#(B \setminus \operatorname{Hess}(B))(\mathbb{F}_q) = \begin{cases} (q-4)(q-7)(q-13) & \text{if } q \equiv 1 \pmod{3} \\ (q-2)(q^2-2q-1) & \text{if } q \equiv 2 \pmod{3} \end{cases}$$

Question 3: Moduli interpretation

Moduli space:

 $\mathcal{A}_2(3) = \{A: \text{ abelian surface together with } (\mathbb{Z}/3\mathbb{Z})^2 \times \mu_3^2 \stackrel{\sim}{\to} A[3] \}$

(abelian surfaces together with a basis for the 3-torsion)

Caveat: Principal polarization; Weil pairing on A[3].

Question 3: Moduli interpretation

Moduli space:

 $\mathcal{A}_2(3) = \{A: \text{ abelian surface together with } (\mathbb{Z}/3\mathbb{Z})^2 \times \mu_3^2 \overset{\sim}{\to} A[3] \}$

(abelian surfaces together with a basis for the 3-torsion)

Caveat: Principal polarization; Weil pairing on A[3].

Classical: $B \setminus \operatorname{Hess}(B) = {\operatorname{Jac}(C) : C \text{ genus } 2 \text{ curve}}$

Question: Can we make this explicit?

 $\alpha \in B \setminus \operatorname{Hess}(B) \leadsto \operatorname{genus} 2 \operatorname{curve} C_{\alpha}$

Example of explicit moduli interpretation for g=1

Modular curve: $A_1(3) \subset X(3) \simeq \mathbb{P}^1$

Hesse Pencil:

$$E_{(s:t)}: s(X^3 + Y^3 + Z^3) + tXYZ = 0$$

Cubics passing through $(0:1:1), (0:\zeta_3:1), \dots$ (9 points)

Example of explicit moduli interpretation for g=1

Modular curve: $A_1(3) \subset X(3) \simeq \mathbb{P}^1$

Hesse Pencil:

$$E_{(s:t)}$$
: $s(X^3 + Y^3 + Z^3) + tXYZ = 0$

Cubics passing through $(0:1:1), (0:\zeta_3:1), \dots$ (9 points)

Classical result: Any elliptic curve with $\mathbb{Z}/3 \times \mu_3 \simeq E[3]$ occurs for some values (s:t)

The 9 points mark the 3-torsion on these elliptic curves.

The family $E_{(s:t)}$ makes the moduli interpretation of \mathbb{P}^1 as X(3) completely explicit.

Explicit moduli problem

Problem: Give a formula of C_{α} in terms of $\alpha \in B \setminus \operatorname{Hess}(B)$. such that $\operatorname{Jac}(C_{\alpha})$ realizes the moduli interpretation.

Known results: Hunt gives a model for $\operatorname{Pic}^1(C_{\alpha}) \subset \mathbb{P}^8$ in terms of $\alpha \in B \setminus \operatorname{Hess}(B)$.

Model for dual Kummer: $\mathcal{K}_{\alpha}^{\vee} := \operatorname{Pic}^{1}(C_{\alpha})/\langle \iota \rangle$.

Dual Kummers: come with a conic through six of the nodes.

We have curve specified as 6 points on a conic.

Field of definition obstruction: We need to have conic isomorphic to \mathbb{P}^1 .

Quadratic twists: Level 3 structure determines which quadratic twist.

Moduli questions for 6 points

The following are equivalent moduli questions:

- Six points in P¹
- Six points in \mathbb{P}^3 in general position (embed \mathbb{P}^1 as a rational normal curve)
- 4-dimensional systems

$$\mathcal{Q} = \langle Q_1, Q_2, Q_3, Q_4 \rangle$$

of quadratic forms on \mathbb{P}^3 with 6 points (in general position) as base locus.

Moduli questions for 6 points

The following are equivalent moduli questions:

- Six points in P¹
- Six points in \mathbb{P}^3 in general position (embed \mathbb{P}^1 as a rational normal curve)
- 4-dimensional systems

$$Q = \langle Q_1, Q_2, Q_3, Q_4 \rangle$$

of quadratic forms on \mathbb{P}^3 with 6 points (in general position) as base locus.

Derived quartic surfaces:

- ▶ Weddle surface: $W_Q = \bigcup \{ sing(Q) : Q \in Q \}$
- $\mathcal{K}_{\mathcal{Q}}^{\vee}$: $\det(y_1Q_1 + \dots + y_4Q_4) = 1$ (symmetroid of $\mathcal{W}_{\mathcal{Q}}$)

Conic on $\mathcal{K}_{\mathcal{Q}}^{\vee}$ is image of rational normal curve on $\mathcal{W}_{\mathcal{Q}}$.

Question 3: Answer

Let
$$(1:\alpha_1:\alpha_2:\alpha_3:\alpha_4)$$
 be a point on B . Set
$$H:=\alpha_2\alpha_4X^2-\alpha_3\alpha_4X-\alpha_1\alpha_4^2$$
 $\lambda:=\alpha_1^3\alpha_4^6-3\alpha_1\alpha_2\alpha_3\alpha_4^4+\alpha_1^3\alpha_4^3-\alpha_2^3\alpha_4^3-\alpha_3^3\alpha_4^3-3\alpha_1\alpha_2\alpha_3\alpha_4-\alpha_2^3-\alpha_3^3$ $G:=(3\alpha_1\alpha_2\alpha_3\alpha_4^4+\alpha_1^3\alpha_4^3+2\alpha_2^3\alpha_4^3+\alpha_3^3\alpha_4^3+\alpha_2^3)X^3$ $+(3\alpha_1^2\alpha_2\alpha_4^5-3\alpha_2^2\alpha_3\alpha_4^3+3\alpha_1^2\alpha_2\alpha_4^2-3\alpha_2^2\alpha_3)X^2$ $+(-3\alpha_1^2\alpha_3\alpha_4^5+3\alpha_2\alpha_3^2\alpha_4^3-3\alpha_1^2\alpha_3\alpha_4^2+3\alpha_2\alpha_3^2)X$ $-2\alpha_1^3\alpha_4^6+3\alpha_1\alpha_2\alpha_3\alpha_4^4-\alpha_1^3\alpha_4^3+\alpha_2^3\alpha_4^3-\alpha_3^3$

Theorem: If $C_{\alpha}: y^2 + Gy = \lambda H^3$ is a genus 2 curve. Then

$$(\mathbb{Z}/3)^2 \times \mu_3^2 \simeq \operatorname{Jac}(C_\alpha)[3]$$

Warning: This model is bad for $\alpha_4 = 0$.

Suppose: $C: y^2 = G(x)^2 + 4\lambda H(x)^3$

Consider divisor:

$$T = \{H(x) = 0, y - G(x) = 0\} - \{x = \infty\}$$

Then *T* represents a 3-torsion class:

$$\operatorname{div}(y - G(x)) = \pm 3T$$

Suppose: $C: y^2 = G(x)^2 + 4\lambda H(x)^3$

Consider divisor:

$$T = \{H(x) = 0, y - G(x) = 0\} - \{x = \infty\}$$

Then *T* represents a 3-torsion class:

$$\operatorname{div}(y - G(x)) = \pm 3T$$

Marking: (H, λ, G) marks $\mathbb{Z}/3\mathbb{Z} \subset \operatorname{Jac}(C)[3]$.

Suppose: $C: y^2 = G(x)^2 + 4\lambda H(x)^3$

Consider divisor:

$$T = \{H(x) = 0, y - G(x) = 0\} - \{x = \infty\}$$

Then *T* represents a 3-torsion class:

$$\operatorname{div}(y - G(x)) = \pm 3T$$

Marking: (H, λ, G) marks $\mathbb{Z}/3\mathbb{Z} \subset \operatorname{Jac}(C)[3]$.

Twisted: $-3y^2 = G(x)^2 + 4\lambda H(x)^3$ marks $\mu_3 \subset \operatorname{Jac}(C)[3]$.

Suppose: $C: y^2 = G(x)^2 + 4\lambda H(x)^3$

Consider divisor:

$$T = \{H(x) = 0, y - G(x) = 0\} - \{x = \infty\}$$

Then *T* represents a 3-torsion class:

$$\operatorname{div}(y - G(x)) = \pm 3T$$

Marking: (H, λ, G) marks $\mathbb{Z}/3\mathbb{Z} \subset \operatorname{Jac}(C)[3]$.

Twisted: $-3y^2 = G(x)^2 + 4\lambda H(x)^3$ marks $\mu_3 \subset \operatorname{Jac}(C)[3]$.

Full level structure: $(\mathbb{Z}/3)^2 \times (\mu_3)^2 \subset \operatorname{Jac}(C)$ means two decompositions of each.

3-torsion and J-planes

First polar of B at α :

$$\begin{split} P_{\alpha} &= (4y_0^3 + y_1^3 + y_2^3 + y_3^3 + y_4^3)\alpha_0 + (3y_0y_1^2 + 3y_2y_3y_4)\alpha_1 + (3y_0y_2^2 + 3y_1y_3y_4)\alpha_2 \\ &\quad + (3y_0y_3^2 + 3y_1y_2y_4)\alpha_3 + (3y_0y_4^2 + 3y_1y_2y_3)\alpha_4, \end{split}$$

Construction of dual kummer:

- ▶ Take enveloping cone $EC_{\alpha}(P(\alpha))$
- ▶ Take projection $\pi_{\alpha} \colon \mathbb{P}^4 \to \mathbb{P}^3$ from α
- $\blacktriangleright \ \mathcal{K}_{\alpha}^{\vee} = \pi_{\alpha}(\mathrm{EC}_{\alpha}(P(\alpha)))$

3-torsion and J-planes

First polar of B at α :

$$\begin{split} P_{\alpha} &= (4y_0^3 + y_1^3 + y_2^3 + y_3^3 + y_4^3)\alpha_0 + (3y_0y_1^2 + 3y_2y_3y_4)\alpha_1 + (3y_0y_2^2 + 3y_1y_3y_4)\alpha_2 \\ &\quad + (3y_0y_3^2 + 3y_1y_2y_4)\alpha_3 + (3y_0y_4^2 + 3y_1y_2y_3)\alpha_4, \end{split}$$

Construction of dual kummer:

- ▶ Take enveloping cone $EC_{\alpha}(P(\alpha))$
- ▶ Take projection π_{α} : $\mathbb{P}^4 \to \mathbb{P}^3$ from α
- $\blacktriangleright \ \mathcal{K}_{\alpha}^{\vee} = \pi_{\alpha}(\mathrm{EC}_{\alpha}(P(\alpha)))$

Computation:

- Take a J-plane J of B
- ▶ Then $\pi_{\alpha}(J)$ is tangent to $\mathcal{K}_{\alpha}^{\vee}$.
- ▶ Point on \mathcal{K}_{α} comes from 3-torsion point
- $2 \cdot 40 = 81 1$

Further computation:

Two 3-torsion points have trivial Weil pairing iff their J-planes lie in a common Steiner prime.

Some relevant literature

Classical work by Burkhardt, Coble, Todd, Baker

Bruce Hunt, *The geometry of some special arithmetic quotients*, Springer LNM 1637 (1996)

Noam D. Elkies, *The identification of three moduli spaces*, (1999), arXiv:math/9905195.

J. William Hoffman and Steven H. Weintraub, The Siegel modular variety of degree two and level three, *Trans. Amer. Math. Soc.* 353 (2001), no. 8, 3267–3305

Nils Bruin, Brett Nasserden, *Arithmetic aspects of the Burkhardt quartic threefold*, https://arxiv.org/abs/1705.09006 (2017)

Brett Nasserden, *Arithmetic aspects of the Burkhardt quartic threefold*, M.Sc. thesis, Simon Fraser University (2016) https://theses.lib.sfu.ca/thesis/etd9738

