Short McEliece Key from Alternant Algebraic-geometry codes with automorphisms

Élise Barelli

INRIA Saclay and LIX, CNRS UMR 7161 École Polytechnique, 91120 Palaiseau Cedex

AGCT 2017, Luminy

- $\fbox{2}$ Alternant codes on cyclic covers of \mathbb{P}^1
 - Codes with automorphisms
 - Security analysis
- 3 Alternant codes on the Hermitian curve
 - Invariant code and quotient curve
 - Security analysis

A code-based cryptosystem

Decoding problem

Let C be a random *t*-errors correcting code, and $y \in \mathbb{F}_{q^m}^n$. Does there exist a vector $e \in \mathbb{F}_{q^m}^n$, of weight $w_H(e) \leq t$, such that $y - e \in C$?

A code-based cryptosystem

Decoding problem

Let C be a random *t*-errors correcting code, and $y \in \mathbb{F}_{q^m}^n$. Does there exist a vector $e \in \mathbb{F}_{q^m}^n$, of weight $w_H(e) \leq t$, such that $y - e \in C$?

We consider a family ${\mathcal F}$ of linear codes with an efficient decoding algorithm.

Let $\mathcal{C} \subset \mathbb{F}_a^n$ be a code of \mathcal{F} , we denote:

- M a generator matrix of C
- $t \in \mathbb{N}^*$ the error-correcting capability
- \mathcal{D} a *t*-errors correcting algorithm.

McEliece scheme

• Key generation: $\overline{\text{Public key: } (M,t)}$ Private key: \mathcal{D}

McEliece scheme

 Key generation: Public key: (M,t) Private key: D

2 Encryption: A message $x \in \mathbb{F}_q^k$ is encrypted by:

$$y = c + e$$

where c = xM is a codeword of C and $e \in \mathbb{F}_q^n$ is a random vector, of weight $w_H(e) \leq t$.

McEliece scheme

 Key generation: Public key: (M,t) Private key: D

2 Encryption: A message $x \in \mathbb{F}_q^k$ is encrypted by:

$$y = c + e$$

where c = xM is a codeword of C and $e \in \mathbb{F}_q^n$ is a random vector, of weight $w_H(e) \leq t$.

3 Decryption: We use \mathcal{D} to recover *c*, then we can recover *x* from *c*.

Properties

Advantages:

- Fast encryption and decryption.
- Candidate for post-quantum cryptography

Drawback:

• Large key size

Properties

Advantages:

- Fast encryption and decryption.
- Candidate for post-quantum cryptography

Drawback:

• Large key size

Structural attacks

- -> Let \mathcal{F} be any family of linear codes.
- -> Let *M* be a random looking generator matrix of a code $C \in \mathcal{F}$.

From M, can we recover the structure of the code C?

Alternant AG codes

Definition

Let \mathcal{X} be an algebraic curve, $\mathcal{P} = \{P_1, \ldots, P_n\}$ be a set of *n* distinct rational points of \mathcal{X} and \mathcal{G} be a divisor, then the AG code $C_L(\mathcal{X}, \mathcal{P}, \mathcal{G})$ is defined by:

$$C_L(\mathcal{X},\mathcal{P},G) := \{ \mathsf{Ev}_{\mathcal{P}}(f) \mid f \in L(G) \},\$$

and

$$\mathcal{A}_r(\mathcal{X},\mathcal{P},G) := \mathcal{C}_L(\mathcal{X},\mathcal{P},G)^{\perp} \cap \mathbb{F}_q^n,$$

where $r = \dim(C_L(\mathcal{X}, \mathcal{P}, G))$.

• Binary Goppa codes (codes over \mathbb{P}^1) (McEliece, 1978) \rightarrow No structural attack

- Binary Goppa codes (codes over \mathbb{P}^1) (McEliece, 1978)
 - \rightarrow No structural attack
- Generalised Reed-Solomon (codes over \mathbb{P}^1) (Niederreiter, 1986)
 - \rightarrow [Sidelnikov, Shestakov,1992]

- Binary Goppa codes (codes over \mathbb{P}^1) (McEliece, 1978)
 - \rightarrow No structural attack
- \bullet Generalised Reed-Solomon (codes over $\mathbb{P}^1)$ (Niederreiter, 1986)
 - \rightarrow [Sidelnikov, Shestakov,1992]
- Algebraic-geometry (AG) codes (on curve with genus > 0) (Janwa, Moreno, 1996)
 - \rightarrow [Faure, Minder, 2009]
 - ightarrow [Couvreur, Márquez-Corbella, Pellikaan, 2014]

- Binary Goppa codes (codes over \mathbb{P}^1) (McEliece, 1978)
 - \rightarrow No structural attack
- \bullet Generalised Reed-Solomon (codes over $\mathbb{P}^1)$ (Niederreiter, 1986)
 - \rightarrow [Sidelnikov, Shestakov,1992]
- Algebraic-geometry (AG) codes (on curve with genus > 0) (Janwa, Moreno, 1996)
 - \rightarrow [Faure, Minder, 2009]
 - ightarrow [Couvreur, Márquez-Corbella, Pellikaan, 2014]
- Alternant of AG codes (Janwa, Moreno, 1996)
 - \rightarrow No structural attack

Some propositions with compact keys

- Quasi-cyclic alternant codes (Berger, Cayrel, Gaborit, Otmani, 2009)
- Quasi-dyadic alternant codes (Misoczki, Baretto, 2009)

Structural attacks:

- \rightarrow [Faugère, Otmani, Perret, Tillich, 2010]
- \rightarrow [Faugère, Otmani, Perret, Portzamparc, Tillich, 2015] \rightarrow [B., 2017]

Alternant codes on cyclic covers of \mathbb{P}^1

Cyclic cover of \mathbb{P}^1

σ -invariant support and divisor

For a point $Q \in \mathcal{X}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{1}$$

where the points $Q_i \in \mathcal{X}$ are pairwise distinct with trivial stabilizer subgroup.

σ -invariant support and divisor

For a point $Q \in \mathcal{X}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{1}$$

where the points $Q_i \in \mathcal{X}$ are pairwise distinct with trivial stabilizer subgroup.

We define the **divisor**:

$$G := s P_{\infty}, \tag{2}$$

with $s \in \mathbb{N}^*$, and P_{∞} the point at infinity of the curve \mathcal{X} .

σ -invariant support and divisor

For a point $Q \in \mathcal{X}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{1}$$

where the points $Q_i \in \mathcal{X}$ are pairwise distinct with trivial stabilizer subgroup.

We define the **divisor**:

$$G := s P_{\infty}, \tag{2}$$

with $s \in \mathbb{N}^*$, and P_∞ the point at infinity of the curve \mathcal{X} .

σ -invariant code

The automorphism σ induces a permutation on $\mathcal{C} = C_L(\mathcal{X}, \mathcal{P}, G)$. The subfield subcode $\mathcal{A} := \mathcal{C}^{\perp} \cap \mathbb{F}_{q}^n$ is also σ -invariant.

Alternant codes on cyclic covers of \mathbb{P}^1

Security analysis

Invariant code

Definition

Let C be a linear code and $\sigma \in \mathsf{Perm}(C)$ then we define:

$$\mathcal{C}^{\sigma} := \{ c \in \mathcal{C} \mid \sigma(c) = c \}.$$

If C is a σ -invariant linear code over \mathbb{F}_{q^m} then:

$$(\mathcal{C} \cap \mathbb{F}_q^n)^\sigma = \{ c \in \mathcal{C} \mid c \in \mathbb{F}_q^n \text{ and } \sigma(c) = c \} = \mathcal{C}^\sigma \cap \mathbb{F}_q^n$$

Invariant of $\mathcal{A}_r(\mathcal{X}, \mathcal{P}, G)$

Theorem

Let $C := C_L(\mathcal{X}, \mathcal{P}, G)$ be an AG code, with \mathcal{P} and G defined as (1) and (2), and $\sigma \in \text{Perm}(C)$ of order ℓ , then:

$$\mathcal{C}^{\sigma} = \mathcal{C}_L(\mathbb{P}^1, \tilde{\mathcal{P}}, \tilde{\mathcal{G}}),$$

of length $\frac{n}{\ell}$ and dimension $\frac{s}{\ell}$.

Corollary

The invariant code $\mathcal{A}_r(\mathcal{X}, \mathcal{P}, G)^{\sigma}$ is $\mathcal{A}_{r/\ell}(\mathbb{P}^1, \tilde{\mathcal{P}}, \tilde{G})$ of length $\frac{n}{\ell}$.

Recover ${\mathcal P}$ and ${\mathcal X}$

Let M be a generator matrix of $\mathcal{C} := C_L(\mathcal{X}, \mathcal{P}, G)$. We assume that we know G and we want to recover \mathcal{P} and \mathcal{X} from M.

$$\mathcal{P} := \Big\{ \big(\mathsf{x}_{\boldsymbol{i}} : \xi^{\boldsymbol{j}} \mathsf{y}_{\boldsymbol{i}} : 1 \big) \mid \boldsymbol{i} \in \{1, \dots, \frac{n}{\ell}\} \text{ and } \boldsymbol{j} \in \{0, \dots, \ell-1\} \Big\}.$$

15 / 22

Recover ${\mathcal P}$ and ${\mathcal X}$

Let M be a generator matrix of $\mathcal{C} := C_L(\mathcal{X}, \mathcal{P}, G)$. We assume that we know G and we want to recover \mathcal{P} and \mathcal{X} from M.

$$\mathcal{P} := \Big\{ \big(\mathsf{x}_{\textit{i}} : \xi^{j} \mathsf{y}_{\textit{i}} : 1 \big) \mid \textit{i} \in \{1, \dots, \frac{n}{\ell}\} \text{ and } \textit{j} \in \{0, \dots, \ell-1\} \Big\}.$$

$$ightarrow$$
 Compute $\mathcal{C}^{\sigma}=\mathcal{C}_{\mathcal{L}}(\mathbb{P}^{1}, ilde{\mathcal{P}}, ilde{\mathcal{G}})$ from M

15 / 22

Recover \mathcal{P} and \mathcal{X}

Let M be a generator matrix of $\mathcal{C} := C_L(\mathcal{X}, \mathcal{P}, G)$. We assume that we know G and we want to recover \mathcal{P} and \mathcal{X} from M.

$$\mathcal{P} := \Big\{ (x_i : \xi^j \mathbf{y}_i : 1) \mid i \in \{1, \dots, \frac{n}{\ell}\} \text{ and } j \in \{0, \dots, \ell-1\} \Big\}.$$

$$\rightarrow \text{ Compute } \mathcal{C}^{\sigma} = C_L(\mathbb{P}^1, \tilde{\mathcal{P}}, \tilde{\mathcal{G}}) \text{ from } M$$

$$\rightarrow$$
 Recover $\mathcal{P} = \left\{ (x_i : 1) \mid i \in \{1, \dots, \frac{n}{\ell}\} \right\}$

Recover ${\mathcal P}$ and ${\mathcal X}$

Let *M* be a generator matrix of $C := C_L(\mathcal{X}, \mathcal{P}, G)$. We assume that we know *G* and we want to recover \mathcal{P} and \mathcal{X} from *M*.

$$\mathcal{P} := \Big\{ (x_i : \xi^j y_i : 1) \mid i \in \{1, \dots, \frac{n}{\ell}\} \text{ and } j \in \{0, \dots, \ell - 1\} \Big\}.$$

$$ightarrow \, {\sf Compute} \; {\cal C}^\sigma = {\it C}_{\it L}({\mathbb P}^1, ilde{\cal P}, ilde{\cal G}) \; {\sf from} \; M$$

- \rightarrow Recover $\tilde{\mathcal{P}} = \left\{ (x_i : 1) \mid i \in \{1, \dots, \frac{n}{\ell}\} \right\}$
- \rightarrow Recover y_i with a linear system which comes from:

$$L(sP_{\infty}) = \left\langle x^{i}y^{j} \mid i \geq 0, \; j \geq 0, \; ext{and} \; \ell i + (\ell - 1)j \leq s
ight
angle$$

Recover ${\mathcal P}$ and ${\mathcal X}$

Let *M* be a generator matrix of $C := C_L(\mathcal{X}, \mathcal{P}, G)$. We assume that we know *G* and we want to recover \mathcal{P} and \mathcal{X} from *M*.

$$\mathcal{P} := \Big\{ (x_i : \xi^j y_i : 1) \mid i \in \{1, \ldots, \frac{n}{\ell}\} \text{ and } j \in \{0, \ldots, \ell-1\} \Big\}.$$

$$ightarrow\,$$
 Compute $\mathcal{C}^{\sigma}=\mathit{C_L}(\mathbb{P}^1, ilde{\mathcal{P}}, ilde{\mathcal{G}})$ from M

- \rightarrow Recover $\tilde{\mathcal{P}} = \left\{ (x_i : 1) \mid i \in \{1, \dots, \frac{n}{\ell}\} \right\}$
- \rightarrow Recover y_i with a linear system which comes from:

$$L(sP_{\infty}) = \left\langle x^{i}y^{j} \mid i \geq 0, \; j \geq 0, \; ext{and} \; \ell i + (\ell-1)j \leq s
ight
angle$$

 \rightarrow Recover $\mathcal X$ from $\mathcal P$

Alternant codes on the Hermitian curve

Invariant code of σ -invariant AG codes

Lemma

Let $c := Ev_{\mathcal{P}}(f) \in C_L(\mathcal{X}, \mathcal{P}, G)$, with deg(G) < n, such that $\sigma(c) = c$, then f is σ -invariant, ie: $f \circ \sigma = f$.

 $\sigma \in \operatorname{Aut}(\mathcal{X})$ of order ℓ .

Theorem

Let \mathcal{P} be a σ -invariant set of rational points of \mathcal{X} and G be a σ -invariant divisor of \mathcal{X} , then:

$$\mathcal{C}_L(\mathcal{X},\mathcal{P},G)^{\sigma} = \mathcal{C}_L(\mathcal{X}/\langle \sigma \rangle, \tilde{\mathcal{P}}, \tilde{G})$$

where $\tilde{\mathcal{P}}$ is a set of points of $\mathcal{X}/\langle \sigma \rangle$ and \tilde{G} is a divisor of $\mathcal{X}/\langle \sigma \rangle$.

Quotient curves of ${\cal H}$

Let $\mathbb{F}_{q_0^2}$ be a finite field and consider the Hermitian curve, denoted by $\mathcal H$ of equation:

$$y^{q_0} + y = x^{q_0+1}$$

18 / 22

Quotient curves of $\mathcal H$

Let $\mathbb{F}_{q_0^2}$ be a finite field and consider the Hermitian curve, denoted by \mathcal{H} of equation:

$$y^{q_0} + y = x^{q_0 + 1}.$$

We denote $A(P_{\infty}) := \{ \sigma \in Aut(\mathcal{H}) \mid \sigma(P_{\infty}) = P_{\infty} \}$ then $\sigma \in A(P_{\infty})$ is described by:

$$\begin{cases} \sigma(x) = ax + b, \\ \sigma(y) = a^{q_0 + 1}y + ab^{q_0}x + c, \end{cases}$$

with $a \in \mathbb{F}_{q_0^2}^*$, $b \in \mathbb{F}_{q_0^2}$ and $b^{q_0+1} = c^{q_0} + c$.

Quotient curves of $\mathcal H$

Let $\mathbb{F}_{q_0^2}$ be a finite field and consider the Hermitian curve, denoted by \mathcal{H} of equation:

$$y^{q_0} + y = x^{q_0 + 1}.$$

We denote $A(P_{\infty}) := \{ \sigma \in Aut(\mathcal{H}) \mid \sigma(P_{\infty}) = P_{\infty} \}$ then $\sigma \in A(P_{\infty})$ is described by:

$$\begin{cases} \sigma(x) = ax + b, \\ \sigma(y) = a^{q_0+1}y + ab^{q_0}x + c, \end{cases}$$

with $a \in \mathbb{F}_{q_0^2}^*$, $b \in \mathbb{F}_{q_0^2}$ and $b^{q_0+1} = c^{q_0} + c.$

For odd q_0 , if we choose $a \neq 1$ such that $a^{q_0-1} = 1$, then $\operatorname{ord}(\sigma) = \operatorname{ord}(a)$ and the genus of the quotient curve is ([Bassa, Ma, Xing, Yeo, 2013]):

$$g(\mathcal{H}/\langle\sigma
angle) = rac{q_0-1}{2}$$

Security of the invariant code

- The invariant code of an alternant AG code is an alternant AG code
- No specific attacks known for alternant AG codes

19 / 22

Security of the invariant code

- The invariant code of an alternant AG code is an alternant AG code
- No specific attacks known for alternant AG codes

Exhaustive search on the divisor:

We say that C_1 and C_2 are **diagonal-equivalent**, and we denote $C_1 \sim C_2$, if there exist $\lambda_1, \ldots, \lambda_n$ nonzero elements such that:

$$\mathcal{C}_2 = \{ (\lambda_1 c_1, \ldots, \lambda_n c_n) \mid (c_1, \ldots, c_n) \in \mathcal{C}_1 \}.$$

Security of the invariant code

- The invariant code of an alternant AG code is an alternant AG code
- No specific attacks known for alternant AG codes

Exhaustive search on the divisor:

We say that C_1 and C_2 are **diagonal-equivalent**, and we denote $C_1 \sim C_2$, if there exist $\lambda_1, \ldots, \lambda_n$ nonzero elements such that:

$$\mathcal{C}_2 = \{ (\lambda_1 c_1, \ldots, \lambda_n c_n) \mid (c_1, \ldots, c_n) \in \mathcal{C}_1 \}.$$

Theorem ([Munuera, Pellikaan, 1993])

If \mathcal{P} is a set of n > 2g - 2 rational points of \mathcal{X} , where g is the genus of \mathcal{X} , and G and H are two divisors of the same degree 2g - 1 < t < n - 1, then:

$$C_L(\mathcal{X},\mathcal{P},G) \sim C_L(\mathcal{X},\mathcal{P},H) \Leftrightarrow G \sim H.$$

Number of non equivalent AG codes

For a fixed dimension, the number of non equivalent AG codes on ${\mathcal X}$ with support ${\mathcal P}$ is:

$$#AGcode(\mathcal{X}, \mathcal{P}) = #Pic^{0}(\mathcal{X}).$$

20 / 22

Number of non equivalent AG codes

For a fixed dimension, the number of non equivalent AG codes on ${\mathcal X}$ with support ${\mathcal P}$ is:

$$#AGcode(\mathcal{X}, \mathcal{P}) = #Pic^{0}(\mathcal{X}).$$

For the curve $\mathcal{H}/\langle \sigma \rangle$ (with \mathcal{H} defined on $\mathbb{F}_{q_0^2}$):

•
$$\#\operatorname{Pic}^{0}(\mathcal{H}/\langle\sigma\rangle) \approx q_{0}^{2g}$$

• $g = \frac{q_{0}-1}{2}$
• $n \approx q_{0}^{3}$

$$\# \mathsf{AGcode}(\mathcal{H}, \mathcal{P}) \approx (\sqrt[3]{n})^{\sqrt[3]{n}}$$

Number of non equivalent alternant AG codes

We look at non equivalent alternant of AG codes (over \mathbb{F}_{q_0}):

$$\#\mathcal{A}(\mathcal{X},\mathcal{P}) \leq (q_0^{2(n-1)} - q_0^{n-1}) \# \mathsf{Pic}^0(\mathcal{X}).$$

Example of parameters: $\mathcal H$ is defined on $\mathbb F_{11^2}$

n	k	Message security	$\# Pic^0(\mathcal{H}/\sigma)$	$\#\mathcal{A}(\mathcal{H}/\sigma,\mathcal{P})$	Key size
1100	729	2 ¹¹⁸	2 ³⁴	2 ⁷⁶³⁴	163 Kbits

Conclusion

Results:

- $\textcircled{0} \quad \text{Codes on cyclic cover of } \mathbb{P}^1$
 - We can recover the invariant code
 - Thanks to the invariant code we can recover the support and the curve.

Conclusion

Results:

- - We can recover the invariant code
 - Thanks to the invariant code we can recover the support and the curve.
- Odes on Hermitian curve
 - Automorphism σ such that the quotient curve $\mathcal{H}/\langle\sigma\rangle$ is not \mathbb{P}^1
 - $\bullet\,$ Maximal curve \rightarrow good parameters for the code

Conclusion

Results:

- - We can recover the invariant code
 - Thanks to the invariant code we can recover the support and the curve.
- Odes on Hermitian curve
 - Automorphism σ such that the quotient curve $\mathcal{H}/\langle\sigma
 angle$ is not \mathbb{P}^1
 - $\bullet\,$ Maximal curve \rightarrow good parameters for the code

Perspectives:

- Codes on cyclic cover of the Hermitian curve
- Odes on cyclic cover of random plane curves