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Introduction

A code-based cryptosystem

Decoding problem
Let C be a random t-errors correcting code, and y ∈ Fn

qm .
Does there exist a vector e ∈ Fn

qm , of weight wH(e) ≤ t, such that
y − e ∈ C?

We consider a family F of linear codes with an efficient decoding
algorithm.
Let C ⊂ Fn

q be a code of F , we denote:

M a generator matrix of C
t ∈ N∗ the error-correcting capability
D a t-errors correcting algorithm.
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Introduction

McEliece scheme

1 Key generation:
Public key: (M,t)
Private key: D

2 Encryption: A message x ∈ Fk
q is encrypted by:

y = c + e

where c = xM is a codeword of C and e ∈ Fn
q is a random vector, of

weight wH(e) ≤ t.
3 Decryption: We use D to recover c , then we can recover x from c .
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Introduction

Properties

Advantages:
Fast encryption and decryption.
Candidate for post-quantum cryptography

Drawback:
Large key size

Structural attacks
-> Let F be any family of linear codes.
-> Let M be a random looking generator matrix of a code C ∈ F .

From M, can we recover the structure of the code C?
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Introduction

Alternant AG codes

Definition
Let X be an algebraic curve, P = {P1, . . . ,Pn} be a set of n distinct
rational points of X and G be a divisor, then the AG code CL(X ,P,G ) is
defined by:

CL(X ,P,G ) := {EvP(f ) | f ∈ L(G )},

and
Ar (X ,P,G ) := CL(X ,P,G )⊥ ∩ Fn

q,

where r = dim(CL(X ,P,G )).
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Introduction

Some propositions

Binary Goppa codes (codes over P1) (McEliece, 1978)
→ No structural attack

Generalised Reed-Solomon (codes over P1) (Niederreiter, 1986)
→ [Sidelnikov, Shestakov,1992]

Algebraic-geometry (AG) codes (on curve with genus > 0) (Janwa,
Moreno, 1996)
→ [Faure, Minder, 2009]
→ [Couvreur, Márquez-Corbella, Pellikaan, 2014]

Alternant of AG codes (Janwa, Moreno, 1996)
→ No structural attack
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Introduction

Some propositions with compact keys

Quasi-cyclic alternant codes (Berger, Cayrel, Gaborit, Otmani, 2009)
Quasi-dyadic alternant codes (Misoczki, Baretto, 2009)

Structural attacks:
→ [Faugère, Otmani, Perret, Tillich, 2010]
→ [Faugère, Otmani, Perret, Portzamparc, Tillich, 2015]
→ [B., 2017]
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Alternant codes on cyclic covers of P1

Alternant codes on cyclic covers of P1
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Alternant codes on cyclic covers of P1 Codes with automorphisms

Cyclic cover of P1

We consider the curve:

X : y ` = f (x)

and the automorphism:

σ : X −→ X
(x , y) 7−→ (x , ξy)

where ξ is a `-th root of unity.

Q1

σ(Q1)

σ2(Q1)

E. Barelli (INRIA Saclay and LIX) Short McEliece Key from AG codes AGCT 2017 10 / 22



Alternant codes on cyclic covers of P1 Codes with automorphisms

σ-invariant support and divisor

For a point Q ∈ X , we denote Orbσ(Q) := {σj(Q) | j ∈ {1..`}}.
We define the support:

P :=

n/`∐
i=1

Orbσ(Qi ), (1)

where the points Qi ∈ X are pairwise distinct with trivial stabilizer
subgroup.

We define the divisor:

G := s P∞, (2)

with s ∈ N∗, and P∞ the point at infinity of the curve X .

σ-invariant code
The automorphism σ induces a permutation on C = CL(X ,P,G ).
The subfield subcode A := C⊥ ∩ Fn

q, is also σ-invariant.
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Alternant codes on cyclic covers of P1 Security analysis

Alternant codes on cyclic covers of P1

Security analysis
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Alternant codes on cyclic covers of P1 Security analysis

Invariant code

Definition
Let C be a linear code and σ ∈ Perm(C) then we define:

Cσ := {c ∈ C | σ(c) = c}.

If C is a σ-invariant linear code over Fqm then:

(C ∩ Fn
q)
σ = {c ∈ C | c ∈ Fn

q and σ(c) = c} = Cσ ∩ Fn
q.
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Alternant codes on cyclic covers of P1 Security analysis

Invariant of Ar(X ,P ,G )

Theorem
Let C := CL(X ,P,G ) be an AG
code, with P and G defined as
(1) and (2), and σ ∈ Perm(C) of
order `, then:

Cσ = CL(P1, P̃, G̃ ),

of length n
` and dimension s

` .

Corollary

The invariant code Ar (X ,P,G )σ

is Ar/`(P1, P̃, G̃ ) of length n
` .

Q1

σ(Q1)

σ2(Q1)

Q2

σ(Q2)

σ2(Q2)

G = sP∞

Q̃1 Q̃2 G̃ = s
`
P∞

P1

X
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Alternant codes on cyclic covers of P1 Security analysis

Recover P and X

Let M be a generator matrix of C := CL(X ,P,G ).
We assume that we know G and we want to recover P and X from M.

P :=
{
(xi : ξ

jyi : 1) | i ∈ {1, . . . ,
n

`
} and j ∈ {0, . . . , `− 1}

}
.

→ Compute Cσ = CL(P1, P̃, G̃ ) from M

→ Recover P̃ =
{
(xi : 1) | i ∈ {1, . . . , n` }

}
→ Recover yi with a linear system which comes from:

L(sP∞) =
〈
x iy j | i ≥ 0, j ≥ 0, and `i + (`− 1)j ≤ s

〉
→ Recover X from P

E. Barelli (INRIA Saclay and LIX) Short McEliece Key from AG codes AGCT 2017 15 / 22



Alternant codes on cyclic covers of P1 Security analysis

Recover P and X

Let M be a generator matrix of C := CL(X ,P,G ).
We assume that we know G and we want to recover P and X from M.

P :=
{
(xi : ξ

jyi : 1) | i ∈ {1, . . . ,
n

`
} and j ∈ {0, . . . , `− 1}

}
.

→ Compute Cσ = CL(P1, P̃, G̃ ) from M

→ Recover P̃ =
{
(xi : 1) | i ∈ {1, . . . , n` }

}
→ Recover yi with a linear system which comes from:

L(sP∞) =
〈
x iy j | i ≥ 0, j ≥ 0, and `i + (`− 1)j ≤ s

〉
→ Recover X from P

E. Barelli (INRIA Saclay and LIX) Short McEliece Key from AG codes AGCT 2017 15 / 22



Alternant codes on cyclic covers of P1 Security analysis

Recover P and X

Let M be a generator matrix of C := CL(X ,P,G ).
We assume that we know G and we want to recover P and X from M.

P :=
{
(xi : ξ

jyi : 1) | i ∈ {1, . . . ,
n

`
} and j ∈ {0, . . . , `− 1}

}
.

→ Compute Cσ = CL(P1, P̃, G̃ ) from M

→ Recover P̃ =
{
(xi : 1) | i ∈ {1, . . . , n` }

}

→ Recover yi with a linear system which comes from:

L(sP∞) =
〈
x iy j | i ≥ 0, j ≥ 0, and `i + (`− 1)j ≤ s

〉
→ Recover X from P

E. Barelli (INRIA Saclay and LIX) Short McEliece Key from AG codes AGCT 2017 15 / 22



Alternant codes on cyclic covers of P1 Security analysis

Recover P and X

Let M be a generator matrix of C := CL(X ,P,G ).
We assume that we know G and we want to recover P and X from M.

P :=
{
(xi : ξ

jyi : 1) | i ∈ {1, . . . ,
n

`
} and j ∈ {0, . . . , `− 1}

}
.

→ Compute Cσ = CL(P1, P̃, G̃ ) from M

→ Recover P̃ =
{
(xi : 1) | i ∈ {1, . . . , n` }

}
→ Recover yi with a linear system which comes from:

L(sP∞) =
〈
x iy j | i ≥ 0, j ≥ 0, and `i + (`− 1)j ≤ s

〉

→ Recover X from P

E. Barelli (INRIA Saclay and LIX) Short McEliece Key from AG codes AGCT 2017 15 / 22



Alternant codes on cyclic covers of P1 Security analysis

Recover P and X

Let M be a generator matrix of C := CL(X ,P,G ).
We assume that we know G and we want to recover P and X from M.

P :=
{
(xi : ξ

jyi : 1) | i ∈ {1, . . . ,
n

`
} and j ∈ {0, . . . , `− 1}

}
.

→ Compute Cσ = CL(P1, P̃, G̃ ) from M

→ Recover P̃ =
{
(xi : 1) | i ∈ {1, . . . , n` }

}
→ Recover yi with a linear system which comes from:

L(sP∞) =
〈
x iy j | i ≥ 0, j ≥ 0, and `i + (`− 1)j ≤ s

〉
→ Recover X from P

E. Barelli (INRIA Saclay and LIX) Short McEliece Key from AG codes AGCT 2017 15 / 22



Alternant codes on the Hermitian curve

Alternant codes on the Hermitian curve
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Alternant codes on the Hermitian curve Invariant code and quotient curve

Invariant code of σ-invariant AG codes

Lemma
Let c := EvP(f ) ∈ CL(X ,P,G ), with deg(G ) < n, such that σ(c) = c ,
then f is σ-invariant, ie: f ◦ σ = f .

X

��

σ

��
Fq(X )

X/〈σ〉 Fq(X )σ
`

σ ∈ Aut(X ) of order `.

Theorem
Let P be a σ-invariant set of rational
points of X and G be a σ-invariant
divisor of X , then:

CL(X ,P,G )σ = CL(X/〈σ〉, P̃, G̃ )

where P̃ is a set of points of X/〈σ〉 and
G̃ is a divisor of X/〈σ〉.
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Alternant codes on the Hermitian curve Invariant code and quotient curve

Quotient curves of H
Let Fq2

0
be a finite field and consider the Hermitian curve, denoted by H of

equation:
yq0 + y = xq0+1.

We denote A(P∞) := {σ ∈ Aut(H) | σ(P∞) = P∞} then σ ∈ A(P∞) is
described by: {

σ(x) = ax + b,

σ(y) = aq0+1y + abq0x + c ,

with a ∈ F∗
q2
0
, b ∈ Fq2

0
and bq0+1 = cq0 + c .

For odd q0, if we choose a 6= 1 such that aq0−1 = 1, then ord(σ) = ord(a)
and the genus of the quotient curve is ([Bassa, Ma, Xing, Yeo, 2013]):

g(H/〈σ〉) = q0 − 1
2

.
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Alternant codes on the Hermitian curve Security analysis

Security of the invariant code

The invariant code of an alternant AG code is an alternant AG code
No specific attacks known for alternant AG codes

Exhaustive search on the divisor:
We say that C1 and C2 are diagonal-equivalent, and we denote C1 ∼ C2, if
there exist λ1, . . . , λn nonzero elements such that:

C2 = {(λ1c1, . . . , λncn) | (c1, . . . , cn) ∈ C1}.

Theorem ([Munuera, Pellikaan, 1993])

If P is a set of n > 2g − 2 rational points of X , where g is the genus of X ,
and G and H are two divisors of the same degree 2g − 1 < t < n− 1, then:

CL(X ,P,G ) ∼ CL(X ,P,H)⇔ G ∼ H.
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Alternant codes on the Hermitian curve Security analysis

Number of non equivalent AG codes

For a fixed dimension, the number of non equivalent AG codes on X with
support P is:

#AGcode(X ,P) = #Pic0(X ).

For the curve H/〈σ〉 (with H defined on Fq2
0
):

#Pic0(H/〈σ〉) ≈ q0
2g

g = q0−1
2

n ≈ q3
0

#AGcode(H,P) ≈ ( 3
√
n)

3√n
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Alternant codes on the Hermitian curve Security analysis

Number of non equivalent alternant AG codes

We look at non equivalent alternant of AG codes (over Fq0):

#A(X ,P) ≤ (q
2(n−1)
0 − qn−1

0 )#Pic0(X ).

Example of parameters: H is defined on F112

n k Message security #Pic0(H/σ) #A(H/σ,P) Key size
1100 729 2118 234 27634 163 Kbits
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Conclusion

Conclusion

Results:
1 Codes on cyclic cover of P1

We can recover the invariant code
Thanks to the invariant code we can recover the support and the curve.

2 Codes on Hermitian curve
Automorphism σ such that the quotient curve H/〈σ〉 is not P1

Maximal curve → good parameters for the code

Perspectives:
1 Codes on cyclic cover of the Hermitian curve
2 Codes on cyclic cover of random plane curves
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