# Galois action on Fermat curves: non-vanishing of obstruction map

Dr. Rachel Pries

Colorado State University rachelpries@gmail.com

KR<sup>2</sup> V: joint work with R. Davis, V. Stojanoska, K. Wickelgren

Thanks for invitation!

16th Arithmetic, Geometry, Cryptography, and Coding Theory Luminy, June 2017



### **Outline**

We compute (maps between) Galois cohomology groups of Fermat curves which arise in connection with obstructions to rational points.

- 1. The Fermat curve X with affine equation  $U: x^p + y^p = 1$ .
- 2. The splitting field L of  $1-(1-x^p)^p$  and  $Q=\operatorname{Gal}(L/\mathbb{Q}(\zeta_p))$ .
- 3. Explicit formula for Galois action on  $H_1(U)$ .
- 4. The Kummer maps  $X(K) \to H^1(G_K, H_1(U))$ , with  $K = \mathbb{Q}(\zeta_p)$ .
- 5. Computing the differential map  $\delta_2$  on  $H^1(Q, H_1(U))$ .
- 6. Using Heisenberg extensions to bound  $H^1(G_K, H_1(U))$ .
- $\mathit{KR}^2\mathit{V}$ : joint work with R. Davis, V. Stojanoska, K. Wickelgren

### 1. The Fermat curve

Fix p odd prime. Let  $\zeta$  be a pth root of unity.

Let *X* be the (smooth projective) curve  $x^p + y^p = z^p$ .

*X* is the **Fermat curve**, with affine equation  $x^p + y^p = 1$ .

The genus of X is  $g = \frac{(p-1)(p-2)}{2}$ .

(this is not a talk about) Fermat's Last Theorem:

If  $[x:y:z] \in X(\mathbb{Q})$  then xyz = 0.

Let *Z* be the closed subscheme of *p* points where z = 0.

Let U = X - Z.

Let  $Y \subset X$  be closed subscheme of 2p points where xy = 0.

$$Y = \{(\zeta^{i}, 0), (0, \zeta^{j}) \mid i, j \in \mathbb{Z}/p\}.$$

### Survey: points on Fermat curve over number fields

The points of Z and Y are defined over the cyclotomic field  $K = \mathbb{Q}(\zeta)$ .

**Debarre/Klassen:** all but finitely many points of X of degree p-1 arise by intersecting X with  $\mathbb{Q}$ -rational line through a point of  $X(\mathbb{Q})$ .

**Klassen/Tzermias, Tzermias, Sall:** for Fermat curve of degree p = 5, 7, have complete description of degree  $\leq p - 1$  points.

Also: Cusps yield all torsion points on Jac(X).

Cusps:  $C = Y \cup Z = \{ [x : y : z] \in X \mid xyz = 0 \}.$ 

Fix one cusp b = [0 : 1 : 1]. Embed  $\iota : X \to \operatorname{Jac}(X)$  by  $\iota(P) = [P - b]$ .

#### Theorem - Anderson

For p an odd prime, let L be the splitting field of  $1 - (1 - x^p)^p$ .

Let  $J_Z(X)$  be the generalized Jacobian of X with conductor Z.

Let b = "(1,0) - (0,1)", a  $\mathbb{Q}$ -rational point of S.

The number field generated by the pth roots of b in  $J_Z(X)(\overline{\mathbb{Q}})$  is L.

(It contains L if n is not prime).

Similar results: Greenberg, Ihara, Coleman,

# 2. Facts about the splitting field *L* of $1 - (1 - x^p)^p$

- i)  $L = K(\sqrt[p]{1-\zeta^i}: 1 \le i \le p-1)$ , where  $K = \mathbb{Q}(\zeta_p)$ .
- ii)  $K/\mathbb{Q}$  ramified only over p and L/K ramified only over  $\langle 1-\zeta_p \rangle$ .
- iii)  $L = K(\zeta_{p^2}, \sqrt[p]{1 \zeta^i} : 1 \le i \le r)$  with r = (p-1)/2. (because  $(1 \zeta^i)/(1 \zeta^{-i}) = -\zeta^i$ ).
- iv)  $Q := \operatorname{Gal}(L/K) \simeq (\mathbb{Z}/p)^p$  is an elementary abelian p-group.
- v) The rank  $\rho = r + 1$  if and only if Vandiver's Conjecture is true for  $\rho$ .

### Vandiver's Conjecture (first conjectured by Kummer in 1849)

The prime p does not divide the class number  $h^+$  of  $K^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$ .

True for all p < 163 million (Buhler/Harvey) and for all regular primes.

### Relative homology

Recall that U = X - Z.

Consider étale homology groups with coefficients in  $\mathbb{Z}/p$ .

The homology group  $H_1(U)$  has dimension  $(p-1)^2$ .

Its quotient  $H_1(X)$  has dimension 2g = (p-1)(p-2).

The relative homology group  $M = H_1(U, Y)$  has dimension  $p^2$ .

Let  $\beta \in M = H_1(U, Y)$  be the path (singular 1-simplex)  $\beta : [0,1] \to U(\mathbb{C})$  given by  $t \mapsto (\sqrt[p]{t}, \sqrt[p]{1-t})$  (real pth roots).

Why is the relative homology easier to work with?

### 3. Action of automorphisms on homology

The group  $\mu_p \times \mu_p$  acts on  $X : x^p + y^p = z^p$  (stabilizing U and Y).

Consider the group ring  $\Lambda_1 = (\mathbb{Z}/p)[\mu_p \times \mu_p] = \mathbb{F}_p[\epsilon_0, \epsilon_1]/\langle \epsilon_i^p - 1 \rangle$ .

Nilpotent generators:  $y_i = \varepsilon_i - 1$ , then  $\Lambda_1 = \mathbb{F}_p[y_0, y_1] / \langle y_i^p \rangle$ .

The Jacobian (and other (co)homology groups) are  $\Lambda_1$ -modules

Note that  $\dim(H_1(U, Y)) = p^2 = \dim(\Lambda_1)$ .

Let  $\beta \in M = H_1(U, Y)$  be the chosen path (singular 1-simplex)

#### Theorem - Anderson

 $M = H_1(U, Y)$  is a free  $\Lambda_1$ -module of rank 1 with generator  $\beta$ .

### Galois action on homology

Let  $K = \mathbb{Q}(\zeta)$  and let  $G_K$  be its absolute Galois group.

The Jacobian (and other (co)homology groups) are modules for  $G_K$ .

Since  $M = H_1(U, Y)$  is a free  $\Lambda_1$ -module of rank 1 with generator  $\beta$ ,

the action of  $\sigma \in G_K$  on M is determined by its action on  $\beta$ .

For *p* an odd prime, let *L* be the splitting field of  $1 - (1 - x^p)^p$ .

#### Theorem - Anderson

Then  $\sigma \in G_K$  acts trivially on  $M = H_1(U, Y)$  if and only if  $\sigma$  fixes L.

The action of  $G_K$  on  $M = H_1(U, Y)$  factors through  $Q = \operatorname{Gal}(L/K)$ . If  $q \in Q$ , then action determined by  $q \cdot \beta = B_q \beta$  for some  $B_q \in \Lambda_1$ .

# 3. Explicit formula for $B_a$

The action of  $G_K$  on  $M = H_1(U, Y)$  factors through Q = Gal(L/K). If  $q \in Q$ , then action determined by  $q \cdot \beta = B_q \beta$  for some  $B_q \in \Lambda_1$ .

Anderson gave a theoretical characterization of  $B_a$ . Corollary (A):  $(B_a - 1)\beta \in H_1(U)$  so  $B_a - 1 \in \langle y_0 y_1 \rangle$ .

### Theorem $KR^2V$ - For p satisfying Vandiver's conjecture:

The action of  $q \in Q$  on  $H_1(U, Y)$  is determined explicitly by:

$$B_q = rac{E(\gamma_q(\epsilon_0))E(\gamma_q(\epsilon_1))}{E(\gamma_q(\epsilon_0\epsilon_1))}.$$

Corollary ( $KR^2V$ ):  $B_q$  has norm 0 for all  $q \in Q$  if  $p \ge 5$ .

Corollary  $(KR^2V)$ :  $\operatorname{codim}(H_1(U)^Q, M^Q) = 2$  for all p.

# Explicit formula: example when p = 3

If p = 3, then  $L = K(\zeta_9, \sqrt[3]{1 - \zeta^{-1}})$  and  $Q = \langle \sigma, \tau \rangle$  (commuting elements of order 3)

 $\sigma$  acts by multiplication by  $\zeta$  on  $\zeta_9$  and  $\tau$  acts by multiplication by  $\zeta$  on  $\sqrt[3]{1-\zeta^{-1}}.$ 

 $\Lambda_1 = \mathbb{Z}/3[\mu_3 \times \mu_3]$  generated by  $\epsilon_0$  and  $\epsilon_1$ , and  $y_i = \epsilon_i - 1$ .

When p = 3, then

$$B_{\sigma} - 1 = -(1 - \epsilon_0)(1 - \epsilon_1)(\epsilon_0 + \epsilon_1) = y_0 y_1(1 - y_0 - y_1)$$

$$B_{\tau}-1=(1-\epsilon_{0})(1-\epsilon_{1})(-1+\epsilon_{0}\epsilon_{1})=y_{0}y_{1}(-y_{0}-y_{1}+y_{0}y_{1}).$$

$$N(B_\tau) := 1 + B_\tau + B_\tau^2 = 0 \text{ and } H_1(U)^Q = \langle y_0^2 y_1, y_0 y_1^2, y_0^2 y_1^2 \rangle.$$

### 4. The Kummer map on rational points

Classical Kummer map: if  $\theta \in K^*$ , let  $\kappa(\theta) : G_K \to \mu_p$  by  $\kappa(\theta)(\sigma) = \frac{\sigma \sqrt[p]{\theta}}{\sqrt[p]{\theta}}$ .

Generalized Kummer map: pick  $b = (0,1) \in X(K)$  and let  $\pi = \pi_1(X_{\bar{K}}, b)$ .

### Kummer map

Define  $\kappa : X(K) \to \mathbf{H}^1(\mathbf{G}_K, \pi)$ , by  $\kappa(x) = [\sigma \mapsto \gamma^{-1}\sigma\gamma]$  ( $\gamma$  is path  $b \mapsto x$ ).

The map  $\kappa^{ab,p}: X(K) \to H^1(G_K, \pi^{ab} \otimes \mathbb{Z}_p)$  is injective.

Since X has good reduction away from p, it factors through  $\kappa^{\mathrm{ab},p}:X(K)\to \mathbf{H^1}(\mathbf{G},\pi^{\mathrm{ab}}\otimes\mathbb{Z}_{\mathbf{p}})$ , where

 $G = G_{K,S}$  is Galois group of max. extension of K ramified only over  $\langle 1 - \zeta \rangle$  and the infinite places, and  $\pi^{ab}$  is max. abelian quotient of  $\pi$ .

Change to  $\mathbb{Z}/p$  coefficients.

### 5. The $\delta_2$ map viewed as an obstruction

Let  $G = G_{K,S}$  (Galois group of max. ext. of K ram. only over p and  $\infty$ )

Given  $\xi \in H^1(G, H_1(U))$ , does there exist  $\eta \in X(K)$  s.t.  $\kappa(\eta) = \xi$ ?

Let 
$$W = H_1(U) \wedge H_1(U) \simeq [\pi]_2/[\pi]_3$$
.

There is a map  $\delta_2: H^1(G,H_1(U)) \to H^2(G,W)$ . If  $\eta \in X(K)$ , then  $\delta_2(\kappa^{ab}(\eta)) = 0$ .

**Observation (Ellenberg):** the non-vanishing of  $\delta_2$  yields an obstruction to lifting a point  $\eta' \in \operatorname{Jac}(X)(K)$  to a point  $\eta$  of X(K).

 $\delta_2(\eta) = [-,-]_*(\eta \cup \eta) + \mathcal{L}(\eta)$  for some linear map  $\mathcal{L}(\eta)$ .  $[-,-]_*$  is anti-commutative.

 $[-,-]_*(\xi_1 \cup \xi_2) : G \times G \to W \text{ is } (g_1,g_2) \mapsto \xi_1(g_1) \wedge_{\mathbb{Z}/p\mathbb{Z}} g_1 \circ \xi_2(g_2).$ 

Schmidt/Wingberg:  $\delta_2$  factors through G.

### Strategy

Recall  $\kappa: U(K) \to H^1(G, H_1(U))$  and  $\delta_2: H^1(G, H_1(U)) \to H^2(G, W)$ .

If  $\eta \in U(K)$ , then  $\delta_2(\kappa(\eta)) = 0$ .

- (1) Compute  $\kappa$  on well-known points, e.g.,  $\eta \in Y$ .
- (2) Use relation  $\delta_2(\eta_1 + \eta_2) = \delta_2(\eta_1) + \delta_2(\eta_2) + [-,-]_*(\eta_1 \cup \eta_2)$  to compute  $\delta_2$  on span of these in  $H^1(G,H_1(U))$ .
- (3) Show non-zero except at well-known points.

Current status: for  $\eta \in Y$ , finished (1) and (2) for all p and (3) for p = 3. for  $\eta$  a tangential base point at  $z \in Z$ , finished (1) up to shift.

# 4. The Kummer map on points of Y

We determine the Kummer map  $\kappa^{ab}: U(K) \to H^1(Q, H_1(U))$  on the points of  $Y(K) = \{(\zeta^i, 0), (0, \zeta^j): i, j \in \mathbb{Z}/p\}.$ 

### Prop: KR<sup>2</sup>V

The cocycle  $q\mapsto (1-\varepsilon_1^j)(B_q-1)$  is a cocycle representing  $\kappa^{ab}((0,\zeta^j))$ . The cocycle  $q\mapsto \varepsilon_0^i(B_q-1)$  is a cocycle representing  $\kappa^{ab}((\zeta^i,0))$ .

**Proof:** Let  $\beta \in H_1(U, Y)$  be path  $(\sqrt[q]{t}, \sqrt[q]{1-t})$  in U from (0,1) to (1,0).

Then  $\varepsilon_0^i \beta$  is a path from (0,1) to  $(\zeta^i,0)$ .

Then  $\kappa^{ab}((\zeta^i,0))$  is represented by the cocycle that takes

$$q \in Q$$
 to  $q(\varepsilon_0^i \beta) - \varepsilon_0^i \beta = q(\varepsilon_0^i \beta) - \varepsilon_0^i \beta = \varepsilon_0^i (B_q - 1)\beta$ .

# 4. Dimension of image of Kummer map on Y

Let  $S_Y = \text{Span}\{\kappa(\eta) \mid \eta \in Y\}$ , in  $H^1(Q, H_1(U))$ .

### Prop: KR<sup>2</sup>V

The dimension of  $S_Y$  is 2p-3.

The relations are:  $\kappa^{ab}((0,1)) = 0$ ,  $\sum_{y_{\eta}=0} \kappa^{ab}(\eta) = 0$ ,  $\sum_{x_{\eta}=0} \kappa^{ab}(\eta) = 0$ .

Proof: uses long exact sequence, for  $M = H_1(U, Y)$ ,

$$H_1(U)^Q \to M^Q \stackrel{g}{\to} JY^Q \stackrel{\kappa}{\to} H^1(Q, H_1(U)) \to H^1(Q, M) \to H^1(Q, JY)...$$

Note that  $JY^Q = JY$  since the points  $\eta \in Y$  are fixed by Q.

Now  $\dim(S_Y) = \dim(\operatorname{Coker}(g))$ .

So 
$$\dim(\operatorname{Coker}(g)) = \dim(JY^Q) - \operatorname{codim}(H_1(U)^Q, M^Q) = 2p - 3.$$

The cocycle  $\sum_{y_{\eta}=0} \kappa^{ab}(\eta)$  is:  $q \mapsto \sum_{j=0}^{p-1} \varepsilon_0^j (B_q - 1) = y_0^{p-1} (B_q - 1)$ . This equals 0 since  $B_q - 1 \in \langle y_0 y_1 \rangle$ .

### 5. Non-vanishing of obstruction when p = 3

Let 
$$S_Y = \operatorname{Span}(\kappa(\eta) \mid \eta \in Y) \subset H^1(Q, H_1(U))$$
.

Let 
$$\delta_2: H^1(Q,H_1(U)) \rightarrow H^2(Q,W)$$
.

When 
$$p = 3$$
:  $\dim(H_1(U)) = 4$ ,  $\dim(H^1(Q, H_1(U))) = 6$ , and  $\dim(S) = 3$ ;

$$\dim(W) = 6$$
 and \*\*  $H^2(Q, W) \simeq W^3$  since all  $q \in Q$  act trivially on  $W$ .

**Application:** when p=3, if  $s \in S_Y$  has the property that  $\delta_2(s)=0$ , then  $s=\kappa(\eta)$  for one of the 6 points  $\eta \in Y$ .

Note: this calculation can be done for any p but \*\* more complicated.

#### Current work:

let  $S_Z = \operatorname{Span}\{\kappa(t_Z) \mid z \in Z\}$  where  $t_Z$  tangential base point at z.

Expectation:  $\dim(S_Z) = p - 1$  and  $S_Z \cap S_Y = \{0\}$ .

# 6. Bounding $H^1(G, H_1(U))$

Determine info about target for Kummer map  $\kappa: X(K) \to H^1(G,M)$ .

Recall  $Q = \operatorname{Gal}(L/K)$  and L/K ramified only above p and  $\infty$ . Let  $N = \operatorname{Gal}(\tilde{L}/L)$  where  $\tilde{L}$  is maximal elementary abelian p-group extension of L ramified only above p and  $\infty$ . Note  $\tilde{L}/K$  Galois and  $0 \to N \to G \to Q \to 0$ .

Spectral sequence argument yields

$$0 \rightarrow H^1(Q, M) \rightarrow H^1(G, M) \rightarrow \operatorname{Ker}(d_2) \rightarrow 0,$$

(B) Differential  $d_2: H^1(N,M)^Q \to H^2(Q,M)$ 

**Theorem:** Complete analysis of  $Ker(d_2)$  for all odd primes p.

**Application:** If p = 3, then  $\dim(H^1(G_K, M)) = 13$ , explicit description.

(C) lower bound on  $Ker(d_2)$  from Heisenberg extensions of K.

### Exact sequence for target of Kummer map

Kummer map  $\kappa^{ab}: X(K) \to \textbf{H}^{\textbf{1}}(\textbf{G},\pi^{ab}).$ 

Let G (resp. N) be Galois group of maximal extension of K (resp. L) ramified only over p and infinite places.

Write short exact sequence  $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ .

Goal: calculate  $H^1(G, M)$  where M trivial N-module,  $M = H_1(U, Y)$ .

Spectral sequence yields:

### Exact sequence

$$0 o H^1(Q,M) o \mathbf{H^1}(\mathbf{G},\mathbf{M}) o \operatorname{Ker}(d_2) o 0,$$

where  $d_2: H^1(N,M)^Q \rightarrow H^2(Q,M)$ .

# Understanding $H^1(Q, M)$

$$0 \rightarrow H^1(Q, M) \rightarrow H^1(G, M) \rightarrow \operatorname{Ker}(d_2) \rightarrow 0,$$

**Example:** When p = 3, then  $\dim(H^1(Q, M)) = 9$ . Can compute  $H^1(Q, M)$  using cohomology (Ker/Im) of complex:



**Example:** when p = 5, then  $dim(H^1(Q, M)) = 33$ .

### (B) Kernel of $d_2$ , set-up

Suppose  $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$  is an exact sequence

Fix a set-theoretic section  $s: Q \rightarrow G$ 

This yields 2-cycle  $w: Q \times Q \to N$  via  $w(q_1, q_2) = s(q_1)s(q_2)s(q_1q_2)^{-1}$ . Let  $w^{ab}: Q \times Q \to N^{ab}$ .

Consider the differential  $d_2: H^1(N,M)^Q \to H^2(Q,M)$ .

Suppose N acts trivially on M (true here by Anderson)

Then  $\phi \in H^1(N,M)^Q$  "is" a Q-invariant homomorphism  $\phi : N \to M$ .

Since  $\emph{M}$  is abelian,  $\phi$  factors through  $\phi^{ab}: \emph{N}^{ab} \rightarrow \emph{M}.$ 

Since  $\phi$  is fixed by Q, it determines a map  $\phi_*: H^2(Q, N^{ab}) \to H^2(Q, M)$ .

### Proposition: KR<sup>2</sup>V

Then  $d_2(\phi) = \pm \phi_* w^{ab}$ .

# Kernel of $d_2: H^1(N,M)^Q \to H^2(Q,M)$

Recall the section  $s: Q \to G$  with  $Q = \langle \tau_0, \tau_1, \dots, \tau_r \rangle$ .

Let 
$$a_i = s(\tau_i)^p$$
 and  $c_{i,j} = s(\tau_j)s(\tau_i)s(\tau_j)^{-1}s(\tau_i)^{-1}$ .

Then  $a_i, c_{i,j} \in N = \operatorname{Ker}(G \to Q)$ .

### Theorem: KR<sup>2</sup>V

Let  $\phi: N \to M$  be in  $H^1(N, M)$ . Then  $\phi \in \text{Ker}(d_2)$  iff  $(\phi(a_i), \phi(c_{i,j}))$  is in image of map in a cohomology complex associated with Q.

Explicitly,  $\phi \in \operatorname{Ker}(d_2)$  if and only if  $\phi(a_i) = N_{\tau_i}$  (= 0 for  $p \ge 5$ ) and, for some map of sets  $f : \{0, \dots, r\} \to M$ ,  $\phi(c_{i,j}) = (B_{\tau_j} - 1)f(i) - (B_{\tau_i} - 1)f(j)$  (note this is in  $H_1(U)$ ).

# Application: Kernel of $d_2$ when p = 3

Let 
$$p = 3$$
. Then  $L = \mathbb{Q}(\zeta_9, \sqrt[3]{1 - \zeta^{-1}})$ .

Then  $Q = \langle \sigma, \tau \rangle$  where  $\tau$  fixes  $\zeta_9$  and  $\sigma$  fixes  $\sqrt[3]{1 - \zeta^{-1}}$ .

Recall the section  $s: Q \rightarrow G = G_{K,S}$ .

Let 
$$a_0 = s(\sigma)^3$$
,  $a_1 = s(\tau)^3$ , and  $c = s(\tau)s(\sigma)s(\tau)^{-1}s(\sigma)^{-1}$ .

Then  $a_0, a_1, c \in N = G_{L,T}$  since they are in kernel of  $G \to Q$ .

### Example when p = 3

Let  $\phi: N \to M$  be in  $H^1(N, M)^Q$ . Then  $\phi \in \text{Ker}(d_2)$  if and only if

$$\phi(a_0)=tN_\sigma=t(1+\epsilon_1+\epsilon_0^2)(1+\epsilon_1+\epsilon_1^2) \text{ for } t\in\mathbb{Z}/3,$$

$$\phi(a_1) = 0$$
, and  $\phi(c) \in H_1(U)$ .

# Application: When p = 3 then $dim(Ker(d_2)) = 4$

#### **Proof sketch:**

Magma:  $\dim_{\mathbb{F}_3}(N) = 10$ ,  $\dim(M) = 9$  so  $\dim(H^1(N, M)) = 90$ .

Magma:  $\dim(H^1(N, M)^Q) = 14$ .

 $\phi \in H^1(N,M)$  is fixed by  $q \in Q$  iff  $\phi(q \cdot_{\text{conj}} n) = B_q \cdot \phi(n)$  for all  $n \in N$ .

Magma: find element of  $H^2(N, Q)$  classifying split exact sequence:

Use  $\omega \in H^2(N,Q)$  for section s of  $0 \to N \to G \to Q \to 0$ .

Determine  $a_0 = s(\sigma)^3$ ,  $a_1 = s(\tau)^3$ , and  $c = [s(\tau), s(\sigma)]$ 

Magma: The subspace of  $\phi \in H^1(N, M)^Q$  s.t.  $\phi$  of  $a_0$ ,  $a_1$ , c satisfying Theorem  $\operatorname{Ker}(d_2)$  restrictions has dimension 4.

Algebra: have explicit basis for  $\operatorname{Ker}(d_2)$  when p=3. spanned by dimension 3 subspace arising from Heisenberg extensions and dimension 1 subspace arising from cyclotomic extension  $\mathbb{Q}(\zeta_{p^3})$ .

24 / 30

# (C) Heisenberg extensions

For all p, we determine a lower bound for  $\dim(\operatorname{Ker}(d_2))$ .

Let  $M = H_1(U, Y)$  be relative homology of Fermat curve.

The differential map is  $d_2: H^1(N,M)^Q \to H^2(Q,M)$ .

### Theorem: KR2V

For all p, there is a 'Heisenberg' subspace  $Ker(\overline{d}_2) \hookrightarrow Ker(d_2)$  that can be described explicitly.

**Example:** p = 5, then dim $(Ker(\overline{d}_2)) = 9$ .

So  $\dim(H^1(G, M)) \ge 42$ .

Note  $\dim(H_1(U) \cap M^Q) = 9$ .

### Heisenberg extensions

 $H_p$ : upper triangular  $3 \times 3$  matrices with coeffs in  $\mathbb{Z}/p$ , 1's on diagonal.

 $U_p$ : normal subgroup, upper right is the only non-zero off diagonal.

The extension  $1 \to U_p \to H_p \to (\mathbb{Z}/p)^2 \to 1$  classified by

the cup product  $\iota_1 \cup \iota_2$  in  $H^2((\mathbb{Z}/p)^2, \mathbb{Z}/p)$ 

where  $\iota_1$ ,  $\iota_2$  in  $H^1((\mathbb{Z}/p)^2,\mathbb{Z}/p)$  given by two projections  $(\mathbb{Z}/p)^2 \to \mathbb{Z}/p$ .

### (special case of) Theorem of Sharifi

Let  $F = K(\sqrt[p]{a}, \sqrt[p]{b})$  with  $Gal(F/K) \simeq (\mathbb{Z}/p)^2$ .

There is an  $H_p$ -Galois field extension R/K dominating F/K

iff  $\kappa(a) \cup \kappa(b) = 0$  in  $H^2(G_K, \mathbb{Z}/p)$ .

### Heisenberg extensions

Fix  $1 \le l \le p-1$ , let  $a = \zeta_p^l$  and  $b = 1 - \zeta_p^l$  and let

$$F_I = K(\sqrt[p]{\zeta_\rho^I}, \sqrt[p]{1-\zeta_\rho^I}).$$

Steinberg relation: the cup product  $\kappa(a) \cup \kappa(b) = 0$  is zero.

So there is  $R_I/K$  dominating  $F_I/K$  such that  $\operatorname{Gal}(R_I/K) \simeq H_p$ . Also,  $R_I/F_I$  has modulus (conductor)  $p^2 + p(p-1)/2$ . In fact,  $R_I = F_I(\sqrt[p]{c_I})$  where, for  $w = \zeta_{p^2}$ ,

$$c_I = \prod_{J=1}^{p-1} (1 - \zeta_p^{IJ} w^I)^J,$$

and  $\tau_0(c_I) = \frac{(1-w^I)^p}{1-\zeta_p^I}c_I$  and other  $\tau_i$  act by multiplication by  $\zeta_p$ .

Example: When p = 3, then  $c_1 = (1 - w^4)(1 - w^7)^2$ .

# Heisenberg extensions

Let  $\tilde{R}$  be the compositum of  $R_I$  for  $1 \le I \le p-1$ .

The field extension  $\tilde{R}/K$  is Galois and ramified only over p.

Let  $\bar{N} = \operatorname{Gal}(\tilde{R}/L)$  which is a quotient of N.

Recall s section of  $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ , where N = G.

Recall  $c_{i,j} = [s(\tau_j), s(\tau_i)] \in N$  and r = (p-1)/2.

### Proposition: KR<sup>2</sup>V

 $|\bar{N}| = p^r$  and  $\bar{N}$  is generated by the images of  $c_{0,j}$  for  $1 \le j \le r$ .

 $(M^Q)^r \simeq H^1(\overline{N},M)^Q \hookrightarrow H^1(N,M)^Q.$ 

# This gives a lower bound for $Ker(d_2)$ because....

 $\operatorname{Ker}(N \to \bar{N})$  acts trivially on M, so  $H^1(\bar{N}, M)^Q \hookrightarrow H^1(N, M)^Q$ 

Elements of  $H^1(\bar{N}, M)^Q$  are Q-invariant maps  $\bar{\phi} : \bar{N} \to M$ .

*Q*-invariance means  $\bar{\phi}(q \cdot \bar{n}) = q \cdot \bar{\phi}(\bar{n})$ . Note  $q \cdot \bar{n} = \bar{n}$  since action is by conjugation and  $U_0$  central

Note  $q \cdot \bar{n} = \bar{n}$  since action is by conjugation and  $U_p$  central in  $H_p$ .

Also  $\bar{N}$  generated by  $\bar{c}_{0,j}$  for  $1 \leq j \leq r$ .  $\bar{\phi} : \bar{N} \to M$  is Q-invariant iff  $\bar{\phi}(c_{0,j}) \in M^Q$  (fixed by mult. by  $B_q$ ).

Theorem  $\operatorname{Ker}(\overline{d}_2)$ :  $\overline{\phi} \in \operatorname{Ker}(\overline{d}_2)$  iff  $(\overline{\phi}(c_{0,j}))$  is in image of map in cohomology complex.

Explicitly,  $\bar{\phi}(c_{0,j}) = (\tau_j - 1)f_0 - (\sigma - 1)f_j$  for some  $f_0, \dots, f_r$  s.t.  $(\sigma_j - 1)f_i - (\sigma_i - 1)f_j = 0$ 



**Abstract:** Fix p odd prime. Let  $K = \mathbb{Q}(\zeta_p)$ . Let X be the Fermat curve  $x^p + y^p = z^p$ .

We extend work of Anderson about action of absolute Galois group  $G_K$  on a relative homology group of X. He proved that the action factors through  $Q = \operatorname{Gal}(L/K)$  where L is splitting field of  $1 - (1 - x^p)^p$ .

For p satisfying Vandiver's conjecture, we find explicit formula for the action of  $q \in Q$  on the relative homology.

Using this, we determine the maps between several Galois cohomology groups which arise in connection with obstructions for rational points on a generalized Jacobian of X.

We obtain information about a differential map in the Hochschild-Serre spectral sequence for short exact sequence of Galois groups with restricted ramification.

This is joint work with R. Davis, V. Stojanoska, and K. Wickelgren. Thanks!