
Galois action on Fermat curves:
non-vanishing of obstruction map

Dr. Rachel Pries

Colorado State University
rachelpries@gmail.com

KR2V : joint work with R. Davis, V. Stojanoska, K.Wickelgren

Thanks for invitation!

16th Arithmetic, Geometry, Cryptography, and Coding Theory
Luminy, June 2017

Pries (CSU) Galois action on Fermat curves 1 / 30



Outline

We compute (maps between) Galois cohomology groups of Fermat
curves which arise in connection with obstructions to rational points.

1. The Fermat curve X with affine equation U : xp + yp = 1.

2. The splitting field L of 1− (1−xp)p and Q = Gal(L/Q(ζp)).

3. Explicit formula for Galois action on H1(U).

4. The Kummer maps X (K )→ H1(GK ,H1(U)), with K = Q(ζp).

5. Computing the differential map δ2 on H1(Q,H1(U)).

6. Using Heisenberg extensions to bound H1(GK ,H1(U)).

KR2V : joint work with R. Davis, V. Stojanoska, K.Wickelgren
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1. The Fermat curve

Fix p odd prime. Let ζ be a pth root of unity.

Let X be the (smooth projective) curve xp + yp = zp.

X is the Fermat curve, with affine equation xp + yp = 1.

The genus of X is g = (p−1)(p−2)
2 .

(this is not a talk about) Fermat’s Last Theorem:
If [x : y : z] ∈ X (Q) then xyz = 0.

Let Z be the closed subscheme of p points where z = 0.

Let U = X −Z .

Let Y ⊂ X be closed subscheme of 2p points where xy = 0.
Y = {(ζi ,0),(0,ζj) | i , j ∈ Z/p}.
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Survey: points on Fermat curve over number fields

The points of Z and Y are defined over the cyclotomic field K = Q(ζ).

Debarre/Klassen: all but finitely many points of X of degree p−1
arise by intersecting X with Q-rational line through a point of X (Q).

Klassen/Tzermias, Tzermias, Sall: for Fermat curve of degree
p = 5,7, have complete description of degree ≤ p−1 points.

Also: Cusps yield all torsion points on Jac(X ).
Cusps: C = Y ∪Z = {[x : y : z] ∈ X | xyz = 0}.

Fix one cusp b = [0 : 1 : 1]. Embed ι : X → Jac(X ) by ι(P) = [P−b].
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Theorem - Anderson
For p an odd prime, let L be the splitting field of 1− (1−xp)p.

Let JZ (X ) be the generalized Jacobian of X with conductor Z .

Let b = “(1,0)− (0,1)”, a Q-rational point of S.

The number field generated by the pth roots of b in JZ (X )(Q) is L.

(It contains L if n is not prime).

Similar results: Greenberg, Ihara, Coleman,
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2. Facts about the splitting field L of 1− (1−xp)p

i) L = K ( p
√

1−ζi : 1≤ i ≤ p−1), where K = Q(ζp).

ii) K/Q ramified only over p and L/K ramified only over 〈1−ζp〉.

iii) L = K (ζp2 , p
√

1−ζi : 1≤ i ≤ r) with r = (p−1)/2.
(because (1−ζi)/(1−ζ−i) =−ζi ).

iv) Q := Gal(L/K )' (Z/p)ρ is an elementary abelian p-group.

v) The rank ρ = r + 1 if and only if Vandiver’s Conjecture is true for p.

Vandiver’s Conjecture (first conjectured by Kummer in 1849)

The prime p does not divide the class number h+ of K + = Q(ζp + ζ
−1
p ).

True for all p < 163 million (Buhler/Harvey) and for all regular primes.
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Relative homology

Recall that U = X −Z .
Consider étale homology groups with coefficients in Z/p.

The homology group H1(U) has dimension (p−1)2.

Its quotient H1(X ) has dimension 2g = (p−1)(p−2).

The relative homology group M = H1(U,Y ) has dimension p2.

Let β ∈M = H1(U,Y ) be the path (singular 1-simplex)
β : [0,1]→ U(C) given by t 7→ ( p

√
t , p
√

1− t) (real pth roots).

Why is the relative homology easier to work with?
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3. Action of automorphisms on homology

The group µp×µp acts on X : xp + yp = zp (stabilizing U and Y ).

Consider the group ring Λ1 = (Z/p)[µp×µp] = Fp[ε0,ε1]/〈εp
i −1〉.

Nilpotent generators: yi = εi −1, then Λ1 = Fp[y0,y1]/〈yp
i 〉.

The Jacobian (and other (co)homology groups) are Λ1-modules

Note that dim(H1(U,Y )) = p2 = dim(Λ1).

Let β ∈M = H1(U,Y ) be the chosen path (singular 1-simplex)

Theorem - Anderson
M = H1(U,Y ) is a free Λ1-module of rank 1 with generator β.
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Galois action on homology

Let K = Q(ζ) and let GK be its absolute Galois group.

The Jacobian (and other (co)homology groups) are modules for GK .

Since M = H1(U,Y ) is a free Λ1-module of rank 1 with generator β,

the action of σ ∈GK on M is determined by its action on β.

For p an odd prime, let L be the splitting field of 1− (1−xp)p.

Theorem - Anderson
Then σ ∈GK acts trivially on M = H1(U,Y ) if and only if σ fixes L.

The action of GK on M = H1(U,Y ) factors through Q = Gal(L/K ).
If q ∈Q, then action determined by q ·β = Bqβ for some Bq ∈ Λ1.
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3. Explicit formula for Bq

The action of GK on M = H1(U,Y ) factors through Q = Gal(L/K ).
If q ∈Q, then action determined by q ·β = Bqβ for some Bq ∈ Λ1.

Anderson gave a theoretical characterization of Bq.
Corollary (A): (Bq−1)β ∈ H1(U) so Bq−1 ∈ 〈y0y1〉.

Theorem KR2V - For p satisfying Vandiver’s conjecture:
The action of q ∈Q on H1(U,Y ) is determined explicitly by:

Bq =
E(γq(ε0))E(γq(ε1))

E(γq(ε0ε1))
.

Corollary (KR2V ): Bq has norm 0 for all q ∈Q if p ≥ 5.

Corollary (KR2V ): codim(H1(U)Q,MQ) = 2 for all p.
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Explicit formula: example when p = 3

If p = 3, then L = K (ζ9,
3
√

1−ζ−1)
and Q = 〈σ,τ〉 (commuting elements of order 3)

σ acts by multiplication by ζ on ζ9 and
τ acts by multiplication by ζ on 3

√
1−ζ−1.

Λ1 = Z/3[µ3×µ3] generated by ε0 and ε1, and yi = εi −1.

When p = 3, then

Bσ−1 =−(1− ε0)(1− ε1)(ε0 + ε1) = y0y1(1−y0−y1)

Bτ−1 = (1− ε0)(1− ε1)(−1 + ε0ε1) = y0y1(−y0−y1 + y0y1).

N(Bτ) := 1 + Bτ + B2
τ = 0 and H1(U)Q = 〈y2

0 y1,y0y2
1 ,y

2
0 y2

1 〉.
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4. The Kummer map on rational points

Classical Kummer map: if θ ∈ K ∗, let κ(θ) : GK → µp by κ(θ)(σ) = σ
p√

θ
p√

θ
.

Generalized Kummer map: pick b = (0,1) ∈ X (K ) and let π = π1(XK̄ ,b).

Kummer map

Define κ : X (K )→ H1(GK,π), by κ(x) = [σ 7→ γ−1σγ] (γ is path b 7→ x).

The map κab,p : X (K )→ H1(GK,π
ab⊗Zp) is injective.

Since X has good reduction away from p,
it factors through κab,p : X (K )→ H1(G,πab⊗Zp), where

G = GK ,S is Galois group of max. extension of K ramified only over
〈1−ζ〉 and the infinite places, and πab is max. abelian quotient of π.

Change to Z/p coefficients.
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5. The δ2 map viewed as an obstruction

Let G = GK ,S (Galois group of max. ext. of K ram. only over p and ∞)

Given ξ ∈ H1(G,H1(U)), does there exist η ∈ X (K ) s.t. κ(η) = ξ?

Let W = H1(U)∧H1(U)' [π]2/[π]3.

There is a map δ2 : H1(G,H1(U))→ H2(G,W ).
If η ∈ X (K ), then δ2(κab(η)) = 0.

Observation (Ellenberg): the non-vanishing of δ2 yields an
obstruction to lifting a point η′ ∈ Jac(X )(K ) to a point η of X (K ).

δ2(η) = [−,−]∗(η∪η) + L(η) for some linear map L(η).
[−,−]∗ is anti-commutative.
[−,−]∗(ξ1∪ξ2) : G×G→W is (g1,g2) 7→ ξ1(g1)∧Z/pZ g1 ◦ξ2(g2).
Schmidt/Wingberg: δ2 factors through G.
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Strategy

Recall κ : U(K )→ H1(G,H1(U)) and δ2 : H1(G,H1(U))→ H2(G,W ).

If η ∈ U(K ), then δ2(κ(η)) = 0.

(1) Compute κ on well-known points, e.g., η ∈ Y .

(2) Use relation δ2(η1 + η2) = δ2(η1) + δ2(η2) + [−,−]∗(η1∪η2) to
compute δ2 on span of these in H1(G,H1(U)).

(3) Show non-zero except at well-known points.

Current status: for η ∈ Y , finished (1) and (2) for all p and (3) for p = 3.
for η a tangential base point at z ∈ Z , finished (1) up to shift.
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4. The Kummer map on points of Y

We determine the Kummer map κab : U(K )→ H1(Q,H1(U)) on the
points of Y (K ) = {(ζi ,0),(0,ζj) : i , j ∈ Z/p}.

Prop: KR2V

The cocycle q 7→ (1− ε
j
1)(Bq−1) is a cocycle representing κab((0,ζj)).

The cocycle q 7→ εi
0(Bq−1) is a cocycle representing κab((ζi ,0)).

Proof: Let β ∈ H1(U,Y ) be path ( p
√

t , p
√

1− t) in U from (0,1) to (1,0).

Then εi
0β is a path from (0,1) to (ζi ,0).

Then κab((ζi ,0)) is represented by the cocycle that takes

q ∈Q to q(εi
0β)− εi

0β = q(εi
0β)− εi

0β = εi
0(Bq−1)β.
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4. Dimension of image of Kummer map on Y

Let SY = Span{κ(η) | η ∈ Y}, in H1(Q,H1(U)).

Prop: KR2V
The dimension of SY is 2p−3.
The relations are: κab((0,1)) = 0, ∑yη=0 κab(η) = 0, ∑xη=0 κab(η) = 0.

Proof: uses long exact sequence, for M = H1(U,Y ),

H1(U)Q →MQ g→ JY Q κ→ H1(Q,H1(U))→ H1(Q,M)→ H1(Q,JY )...

Note that JY Q = JY since the points η ∈ Y are fixed by Q.
Now dim(SY ) = dim(Coker(g)).
So dim(Coker(g)) = dim(JY Q)− codim(H1(U)Q,MQ) = 2p−3.

The cocycle ∑yη=0 κab(η) is: q 7→ ∑
p−1
j=0 εi

0(Bq−1) = yp−1
0 (Bq−1).

This equals 0 since Bq−1 ∈ 〈y0y1〉.
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5. Non-vanishing of obstruction when p = 3

Let SY = Span(κ(η) | η ∈ Y )⊂ H1(Q,H1(U)).

Let δ2 : H1(Q,H1(U))→ H2(Q,W ).

When p = 3: dim(H1(U)) = 4, dim(H1(Q,H1(U))) = 6, and dim(S) = 3;

dim(W ) = 6 and ** H2(Q,W )'W 3 since all q ∈Q act trivially on W .

Application: when p = 3, if s ∈ SY has the property that δ2(s) = 0,
then s = κ(η) for one of the 6 points η ∈ Y .

Note: this calculation can be done for any p but ** more complicated.

Current work:
let SZ = Span{κ(tz) | z ∈ Z} where tz tangential base point at z.
Expectation: dim(SZ ) = p−1 and SZ ∩SY = {0}.
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6. Bounding H1(G,H1(U))

Determine info about target for Kummer map κ : X (K )→ H1(G,M).

Recall Q = Gal(L/K ) and L/K ramified only above p and ∞.
Let N = Gal(L̃/L) where L̃ is maximal elementary abelian p-group
extension of L ramified only above p and ∞.
Note L̃/K Galois and 0→ N→G→Q→ 0.

Spectral sequence argument yields
0→ H1(Q,M)→ H1(G,M)→ Ker(d2)→ 0,

(B) Differential d2 : H1(N,M)Q → H2(Q,M)

Theorem: Complete analysis of Ker(d2) for all odd primes p.

Application: If p = 3, then dim(H1(GK ,M)) = 13, explicit description.

(C) lower bound on Ker(d2) from Heisenberg extensions of K .
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Exact sequence for target of Kummer map

Kummer map κab : X (K )→ H1(G,πab).

Let G (resp. N) be Galois group of maximal extension of K (resp. L)
ramified only over p and infinite places.

Write short exact sequence 1→ N→G→Q→ 1.

Goal: calculate H1(G,M) where M trivial N-module, M = H1(U,Y ).

Spectral sequence yields:

Exact sequence

0→ H1(Q,M)→ H1(G,M)→ Ker(d2)→ 0,

where d2 : H1(N,M)Q → H2(Q,M).
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Understanding H1(Q,M)

0→ H1(Q,M)→ H1(G,M)→ Ker(d2)→ 0,

Example: When p = 3, then dim(H1(Q,M)) = 9.
Can compute H1(Q,M) using cohomology (Ker/Im) of complex:

M
M

Nσ 33

1−τ

++
⊕

M
1−σ 33

1−τ
++
⊕ M
M
−(1−σ) 33

Nτ
++
⊕
M.

Example: when p = 5, then dim(H1(Q,M)) = 33.

Pries (CSU) Galois action on Fermat curves 20 / 30



(B) Kernel of d2, set-up

Suppose 1→ N→G→Q→ 1 is an exact sequence

Fix a set-theoretic section s : Q→G
This yields 2-cycle w : Q×Q→ N via w(q1,q2) = s(q1)s(q2)s(q1q2)−1.
Let w ab : Q×Q→ Nab.

Consider the differential d2 : H1(N,M)Q → H2(Q,M).

Suppose N acts trivially on M (true here by Anderson)

Then φ ∈ H1(N,M)Q “is” a Q-invariant homomorphism φ : N→M.
Since M is abelian, φ factors through φab : Nab→M.
Since φ is fixed by Q, it determines a map φ∗ : H2(Q,Nab)→ H2(Q,M).

Proposition: KR2V
Then d2(φ) =±φ∗w ab.
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Kernel of d2 : H1(N,M)Q→ H2(Q,M)

Recall the section s : Q→G with Q = 〈τ0,τ1 . . . ,τr 〉.

Let ai = s(τi)
p and ci ,j = s(τj)s(τi)s(τj)

−1s(τi)
−1.

Then ai ,ci ,j ∈ N = Ker(G→Q).

Theorem: KR2V
Let φ : N→M be in H1(N,M). Then φ ∈ Ker(d2) iff (φ(ai),φ(ci ,j)) is in
image of map in a cohomology complex associated with Q.

Explicitly, φ ∈ Ker(d2) if and only if φ(ai) = Nτi (= 0 for p ≥ 5)
and, for some map of sets f : {0, . . . , r}→M,
φ(ci ,j) = (Bτj −1)f (i)− (Bτi −1)f (j) (note this is in H1(U)).
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Application: Kernel of d2 when p = 3

Let p = 3. Then L = Q(ζ9,
3
√

1−ζ−1).

Then Q = 〈σ,τ〉 where τ fixes ζ9 and σ fixes 3
√

1−ζ−1.

Recall the section s : Q→G = GK ,S.

Let a0 = s(σ)3, a1 = s(τ)3, and c = s(τ)s(σ)s(τ)−1s(σ)−1.

Then a0,a1,c ∈ N = GL,T since they are in kernel of G→Q.

Example when p = 3

Let φ : N→M be in H1(N,M)Q. Then φ ∈ Ker(d2) if and only if

φ(a0) = tNσ = t(1 + ε1 + ε2
0)(1 + ε1 + ε2

1) for t ∈ Z/3,

φ(a1) = 0, and φ(c) ∈ H1(U).
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Application: When p = 3 then dim(Ker(d2)) = 4

Proof sketch:
Magma: dimF3(N) = 10, dim(M) = 9 so dim(H1(N,M)) = 90.

Magma: dim(H1(N,M)Q) = 14.
φ ∈ H1(N,M) is fixed by q ∈Q iff φ(q ·conj n) = Bq ·φ(n) for all n ∈ N.

Magma: find element of H2(N,Q) classifying split exact sequence:
Use ω ∈ H2(N,Q) for section s of 0→ N→G→Q→ 0.
Determine a0 = s(σ)3, a1 = s(τ)3, and c = [s(τ),s(σ)]

Magma: The subspace of φ ∈ H1(N,M)Q s.t. φ of a0, a1, c satisfying
Theorem Ker(d2) restrictions has dimension 4.

Algebra: have explicit basis for Ker(d2) when p = 3.
spanned by dimension 3 subspace arising from Heisenberg extensions
and dimension 1 subspace arising from cyclotomic extension Q(ζp3).
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(C) Heisenberg extensions

For all p, we determine a lower bound for dim(Ker(d2)).

Let M = H1(U,Y ) be relative homology of Fermat curve.

The differential map is d2 : H1(N,M)Q → H2(Q,M).

Theorem: KR2V
For all p, there is a ‘Heisenberg’ subspace Ker(d2) ↪→ Ker(d2) that can
be described explicitly.

Example: p = 5, then dim(Ker(d2)) = 9.

So dim(H1(G,M))≥ 42.

Note dim(H1(U)∩MQ) = 9.
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Heisenberg extensions

Hp: upper triangular 3×3 matrices with coeffs in Z/p, 1’s on diagonal.

Up: normal subgroup, upper right is the only non-zero off diagonal.

The extension 1→ Up→ Hp→ (Z/p)2→ 1 classified by

the cup product ι1∪ ι2 in H2((Z/p)2,Z/p)

where ι1, ι2 in H1((Z/p)2,Z/p) given by two projections (Z/p)2→ Z/p.

(special case of) Theorem of Sharifi

Let F = K ( p
√

a, p
√

b) with Gal(F/K )' (Z/p)2.

There is an Hp-Galois field extension R/K dominating F/K

iff κ(a)∪κ(b) = 0 in H2(GK ,Z/p).
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Heisenberg extensions

Fix 1≤ I ≤ p−1, let a = ζI
p and b = 1−ζI

p and let

FI = K ( p
√

ζI
p,

p
√

1−ζI
p).

Steinberg relation: the cup product κ(a)∪κ(b) = 0 is zero.

So there is RI/K dominating FI/K such that Gal(RI/K )' Hp.
Also, RI/FI has modulus (conductor) p2 + p(p−1)/2.
In fact, RI = FI( p

√
cI) where, for w = ζp2 ,

cI =
p−1

∏
J=1

(1−ζ
IJ
p w I)J ,

and τ0(cI) = (1−w I)p

1−ζI
p

cI and other τi act by multiplication by ζp.

Example: When p = 3, then c1 = (1−w4)(1−w7)2.
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Heisenberg extensions

Let R̃ be the compositum of RI for 1≤ I ≤ p−1.

The field extension R̃/K is Galois and ramified only over p.

Let N̄ = Gal(R̃/L) which is a quotient of N.

Recall s section of 1→ N→G→Q→ 1, where N = G.

Recall ci ,j = [s(τj),s(τi)] ∈ N and r = (p−1)/2.

Proposition: KR2V

|N̄|= pr and N̄ is generated by the images of c0,j for 1≤ j ≤ r .

(MQ)r ' H1(N,M)Q ↪→ H1(N,M)Q.
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This gives a lower bound for Ker(d2) because....

Ker(N→ N̄) acts trivially on M, so H1(N̄,M)Q ↪→ H1(N,M)Q

Elements of H1(N̄,M)Q are Q-invariant maps φ̄ : N̄→M.
Q-invariance means φ̄(q · n̄) = q · φ̄(n̄).
Note q · n̄ = n̄ since action is by conjugation and Up central in Hp.

Also N̄ generated by c̄0,j for 1≤ j ≤ r .
φ̄ : N̄→M is Q-invariant iff φ̄(c0,j) ∈MQ (fixed by mult. by Bq).

Theorem Ker(d2): φ̄ ∈ Ker(d̄2) iff (φ̄(c0,j)) is in image of map in
cohomology complex.

Explicitly, φ̄(c0,j) = (τj −1)f0− (σ−1)fj for some f0, . . . , fr s.t.
(σj −1)fi − (σi −1)fj = 0
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Abstract: Fix p odd prime. Let K = Q(ζp).
Let X be the Fermat curve xp + yp = zp.

We extend work of Anderson about action of absolute Galois group GK
on a relative homology group of X . He proved that the action factors
through Q = Gal(L/K ) where L is splitting field of 1− (1−xp)p.

For p satisfying Vandiver’s conjecture, we find explicit formula for the
action of q ∈Q on the relative homology.

Using this, we determine the maps between several Galois
cohomology groups which arise in connection with obstructions for
rational points on a generalized Jacobian of X .

We obtain information about a differential map in the Hochschild-Serre
spectral sequence for short exact sequence of Galois groups with
restricted ramification.

This is joint work with R. Davis, V. Stojanoska, and K. Wickelgren.
Thanks!
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