Rational Point Count Distributions for del Pezzo Surfaces over Finite Fields

Nathan Kaplan

University of California, Irvine CIRM: AGCT

June 22, 2017

Kaplan (UCI)

del Pezzo Surfaces over \mathbb{F}_q

June 22, 2017 1 / 17

A Counting Problem

A homogeneous cubic polynomial in w, x, y, z is defined by 20 coefficients:

$$f_3(w, x, y, z) = a_0 w^3 + a_1 w^2 x + \cdots + a_{19} z^3.$$

Question

- G How many of these q²⁰ cubic polynomials define a smooth cubic surface in P³ with q² + 7q + 1 F_q-points?
- What about other rational point counts?

A Counting Problem

A homogeneous cubic polynomial in w, x, y, z is defined by 20 coefficients:

$$f_3(w, x, y, z) = a_0 w^3 + a_1 w^2 x + \cdots + a_{19} z^3.$$

Question

- G How many of these q²⁰ cubic polynomials define a smooth cubic surface in P³ with q² + 7q + 1 F_q-points?
- What about other rational point counts?

A homogeneous quartic polynomial in x, y, z is defined by 15 coefficients:

$$f_4(x, y, z) = a_0 x^4 + a_1 x^3 y + \dots + a_{14} z^4.$$

Question

How many of these q¹⁵ quartic polynomials define a smooth quartic curve such that w² = f₄(x, y, z) has q² + 8q + 1 F_q-points?

What about other rational point counts?

del Pezzo Surface Definitions

Definition

A del Pezzo surface X is a smooth surface such that $-K_X$ is ample. The degree of X is $K_X^2 = d$.

• $1 \le d \le 9$.

Example

Let X_d be a degree d del Pezzo surface defined over an arbitrary field k.

- X_4 is isomorphic to the intersection of two quadrics in \mathbb{P}^4 .
- **2** X_3 is isomorphic to a cubic surface in \mathbb{P}^3 .
- Solution 3 State 3 A state3 A state 3 A state3 A state3 A state3 A state3 A state3
- X₁ is isomorphic to a hypersurface of degree six in the weighted projective space P(3, 2, 1, 1).

del Pezzo Surfaces as Blow-ups

Theorem

Let X_d be a del Pezzo surface of degree d over an algebraically closed field. If $1 \le d \le 7$, X_d is the blow-up of \mathbb{P}^2 at 9 - d points in general position:

- No three points on a line.
- 2 No six lie on a conic.
- O no eight lie on a cubic with a singularity at one of the points.

del Pezzo Surfaces as Blow-ups

Theorem

Let X_d be a del Pezzo surface of degree d over an algebraically closed field. If $1 \le d \le 7$, X_d is the blow-up of \mathbb{P}^2 at 9 - d points in general position:

- No three points on a line.
- 2 No six lie on a conic.
- O no eight lie on a cubic with a singularity at one of the points.

Example

- A del Pezzo surface of degree 3 defined over \mathbb{F}_q is the blow-up of $\mathbb{P}^2(\overline{\mathbb{F}_q})$ at 6 points in general position.
- These points do not have to be in $\mathbb{P}^2(\mathbb{F}_q)$.
- The anti-canonical embedding takes this blow-up to a smooth cubic surface in P³.

Exceptional Curves and the Picard Group

Definition

An exceptional curve of X_d is an irreducible genus zero curve with self-intersection -1.

 X_3 has 27 exceptional curves:

- $\binom{6}{1}$ from the points you blew up,
- $\binom{6}{2}$ from the lines connecting these points,
- $\binom{6}{5}$ from conics passing through five of the six points.

The anti-canonical embedding takes the 27 exceptional curves to the 27 lines of the cubic surface.

Let
$$\overline{X} = X \otimes \overline{\mathbb{F}_q}$$
. Then $\operatorname{Pic}(\overline{X}) = \langle L, E_1, \dots, E_{9-d} \rangle$.

del Pezzo Surfaces of degree 2

A del Pezzo surface of degree 2 defined over \mathbb{F}_q is the blow-up of $\mathbb{P}^2(\overline{\mathbb{F}_q})$ at 7 points in general position.

The anti-canonical linear system gives a 2:1 map to \mathbb{P}^2 branched over a plane quartic curve.

 X_2 has 56 exceptional curves:

- $\binom{7}{1}$ from the points you blew up,
- $\binom{7}{2}$ from the lines connecting these points,
- $\binom{7}{5}$ from conics passing through five of the six points.
- $\binom{7}{6}$ from cubics through these seven points and singular at one.

The anti-canonical linear system maps pairs of these 56 exceptional curves to the 28 bitangents of the plane quartic.

Kaplan (UCI)

del Pezzo Surfaces over \mathbb{F}_q

June 22, 2017 6 / 17

The action of $Gal(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ on $Pic(\overline{X})$

 $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ acts on $\operatorname{Pic}(\overline{X})$. This action preserves $K_{\overline{X}}$ and the intersection form.

We can identify K_{S}^{\perp} with the lattice E_{9-d} (where $E_{3} = A_{2} \times A_{1}$, $E_{4} = A_{4}$, $E_{5} = D_{5}$).

The image Γ of $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ in $\operatorname{Aut}(\operatorname{Pic}(\overline{X}))$ gives a cyclic subgroup of the corresponding Weyl group $W(E_{9-d})$.

Question (Andrey's Talk)

For each d, each cyclic subgroup $\Gamma \subset W(E_{9-d})$, and each finite field \mathbb{F}_q can we find X_d such that the image of $Gal(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ is conjugate to Γ ?

Cubic surfaces: See [Rybakov-Trepalin, 16]. del Pezzo surfaces of degree 2: See [Trepalin, 16].

Kaplan (UCI)

del Pezzo Surfaces over \mathbb{F}_{a}

\mathbb{F}_q -points on del Pezzo surfaces

Theorem

Let X_d be a del Pezzo surface of degree d over \mathbb{F}_q . Then

$$\#X_d(\mathbb{F}_q) = q^2 + q + 1 + aq, \text{ where } a \in egin{cases} \{-3, -2, \dots, 4, 6\} & \text{if } d = 3 \ \{-7, -5, -4, \dots, 5, 7\} & \text{if } d = 2 \end{cases}$$

Definition

A del Pezzo surface is split if and only if all the exceptional curves are defined over \mathbb{F}_q .

 X_d is split if and only if:

- $\#X_d(\mathbb{F}_q)$ is as large as possible.
- The [lines/bitangents] of the [cubic surface/plane quartic] are all defined over \mathbb{F}_q .
- The points you blew up were all in $\mathbb{P}^2(\mathbb{F}_q)$.

Which rational point counts arise?

Theorem

Let X_d be a del Pezzo surface of degree d over \mathbb{F}_q . Then

$$\#X_d(\mathbb{F}_q) = q^2 + q + 1 + aq, ext{ where } a \in egin{cases} \{-3, -2, \dots, 4, 6\} & ext{if } d = 3 \ \{-7, -5, -4, \dots, 5, 7\} & ext{if } d = 2 \end{cases}$$

Question

Which rational point counts actually arise?

Banawit-Fité-Loughran answer this question for each q.

Which rational point counts arise?

Theorem

Let X_d be a del Pezzo surface of degree d over \mathbb{F}_q . Then

$$\#X_d(\mathbb{F}_q) = q^2 + q + 1 + aq, ext{ where } a \in egin{cases} \{-3, -2, \dots, 4, 6\} & ext{if } d = 3 \ \{-7, -5, -4, \dots, 5, 7\} & ext{if } d = 2 \end{cases}$$

Question

Which rational point counts actually arise?

Banawit-Fité-Loughran answer this question for each q.

Example

 $#X_2(\mathbb{F}_q) = q^2 + 8q + 1$ if and only if there exist 7 points in $\mathbb{P}^2(\mathbb{F}_q)$ in general position. [Exists for $q \ge 9$.] $#X_2(\mathbb{F}_q) = q^2 + 6q + 1$ if and only if there exist 5 points in $\mathbb{P}^2(\mathbb{F}_q)$ and a pair of Galois conjugate points defined over \mathbb{F}_{q^2} in general position. [Exists for $q \ge 5$.]

Counting Points in General Position

Theorem

() The number of collections of 6 points in $\mathbb{P}^2(\mathbb{F}_q)$ in general position is

$$|\mathsf{PGL}_3(\mathbb{F}_q)| \cdot (q-2)(q-3)(q-5)^2.$$

) The number of collections of 7 points in $\mathbb{P}^2(\mathbb{F}_q)$ in general position is

$$\mathsf{PGL}_3(\mathbb{F}_q)| \cdot (q-7)(q-5)(q-3)(q^3-20q^2+119q-175).$$

Theorem (Elkies, K.)

(1) The number of cubics $f_3(w, x, y, z)$ that define a split cubic surface over \mathbb{F}_q is

$$\frac{|\operatorname{GL}_4(\mathbb{F}_q)|(q-2)(q-3)(q-5)^2}{|W(E_6)|}$$

The number of quartics $f_4(x, y, z)$ with $w^2 = f_4(x, y, z)$ split is

$$\frac{(q-1)|\mathsf{PGL}_3(\mathbb{F}_q)| \cdot (q-7)(q-5)(q-3)(q^3-20q^2+119q-175)}{|W(\mathcal{E}_7)|}$$

Arcs in the Projective Plane

Definition

An *n*-arc in $\mathbb{P}^2(\mathbb{F}_q)$ is an ordered collection of *n*-distinct points, no three on a line.

Let $C_n(q)$ denote the number of n-arcs in $\mathbb{P}^2(\mathbb{F}_q)$.

Example

$$C_4(q) = (q^2 + q + 1)(q^2 + q)q^2(q - 1)^2 = |\mathsf{PGL}_3(\mathbb{F}_q)|.$$

Arcs in the Projective Plane

Definition

An *n*-arc in $\mathbb{P}^2(\mathbb{F}_q)$ is an ordered collection of *n*-distinct points, no three on a line.

Let $C_n(q)$ denote the number of n-arcs in $\mathbb{P}^2(\mathbb{F}_q)$.

Example

$$C_4(q) = (q^2 + q + 1)(q^2 + q)q^2(q - 1)^2 = |\mathsf{PGL}_3(\mathbb{F}_q)|.$$

Theorem (Glynn)

For q odd,

$$C_7(q) = |\mathsf{PGL}_3(\mathbb{F}_q)|(q-3)(q-5)(q^4-20q^3+148q^2-468q+498).$$

For q even, subtract an additional term for the number of copies of the Fano plane in $\mathbb{P}^2(\mathbb{F}_q)$.

Kaplan (UCI)

June 22, 2017 11 / 17

Counting collections of 7-points in general position

- Start with formula for $C_7(q)$.
- Q Count collections of 7 points on a conic.
- Sount 7-arcs with 6 points on a conic.

When q is odd, every point in $\mathbb{P}^2(\mathbb{F}_q)$ not on a conic lies on either 0 or 2 rational tangent lines.

When q is even...

Definition. A curve X in \mathbf{P}^n is *strange* if there is a point A which lies on all the tangent lines of X.

Example 3.8.2. A conic in \mathbf{P}^2 over a field of characteristic 2 is strange. For example, consider the conic $y = x^2$. Then $dy/dx \equiv 0$, so all the tangent lines are horizontal, so they all pass through the point at infinity on the x-axis.

(日) (母) (ヨ) (ヨ) (ヨ)

Points in General Position to $w^2 = f_4(x, y, z)$

Question

Given p_1, \ldots, p_7 in general position, how do we find an equation of the form $w^2 = f_4(x, y, z)$ isomorphic to their blow-up?

Points in General Position to $w^2 = f_4(x, y, z)$

Question

Given p_1, \ldots, p_7 in general position, how do we find an equation of the form $w^2 = f_4(x, y, z)$ isomorphic to their blow-up?

- Let x, y, z be a basis for the 3-dimensional space of cubics vanishing at p₁,..., p₇.
- O There is a 7-dimensional space of sextics vanishing to order at least 2 at each of these 7.
- **(**) $\langle x^2, xy, xz, y^2, yz, z^2 \rangle$ is a 6-dimensional subspace.
- Choose *w* not in this subspace.
- w satisfies an equation $w^2 + w \cdot f_2(x, y, z) + f_4(x, y, z) = 0$.
- Complete the square. [q odd]

See Dolgachev, Classical Algebraic Geometry: A Modern View.

How many times does each curve arise?

Proposition

$$\sum_{C} \frac{1}{\#\operatorname{Aut}(C)} = \frac{2(q-7)(q-5)(q-3)(q^3-20q^2+119q-175)}{|W(E_7)|},$$

where the sum is over non-isomorphic smooth plane quartics with 28 \mathbb{F}_q -rational bitangents.

Classification Strategy:

- Find all collections of 7 points in $\mathbb{P}^2(\mathbb{F}_q)$ in general position.
- 3 Blow them up to find equations $w^2 = f_4(x, y, z)$.
- Compute $\# \operatorname{Aut}(C)$ for $\{f_4 = 0\}$.
- Stop when you've found 'enough'.

Classifying split del Pezzo surfaces of degree 2 over \mathbb{F}_q

Example

• For *q* = 9,

$$\frac{2(q-7)(q-5)(q-3)(q^3-20q^2+119q-175)}{|W(E_7)|}=\frac{1}{6048}.$$

Blow up any tuple of 7 points in general position and get $w^2 = f_4(x, y, z)$ where $\{f_4 = 0\}$ is isomorphic to the Fermat quartic, which has 6048 automorphisms.

- Similar story for \mathbb{F}_{11} and the Klein quartic.
- Over \mathbb{F}_{13} , two isomorphism classes. Over \mathbb{F}_{17} there are seven. Over \mathbb{F}_{19} there are fourteen.

. . .

June 22, 2017 15 / 17

Full del Pezzo Surfaces

Definition

A del Pezzo surface is full if it is split and every \mathbb{F}_q -point lies on an exceptional curve.

Example

- del Pezzo surfaces of degree 6 or greater are never full.
- A split del Pezzo surface of degree 5 over $𝔽_q$ is full if and only if q ∈ {2,3}.
- A split del Pezzo surface of degree 4 over \mathbb{F}_q is full if and only if q = 5.

• Hirschfeld classified full cubic surfaces: They exist only when $q \in \{4, 7, 8, 9, 11, 13, 16\}$.

Full del Pezzo surfaces of degree 2 can only exist for small q. Must have $56(q + 1) \ge q^2 + 8q + 1$.

イロト 不得 とくき とくき とうき

Other Rational Point Counts

Theorem (Elkies, K.)

() The number of cubics $f_3(w, x, y, z)$ that define a cubic surface S over \mathbb{F}_q with $\#S(\mathbb{F}_q) = q^2 + 3q + 1$ is

$$\frac{|\operatorname{GL}_4(\mathbb{F}_q)| \cdot 120 \cdot (2q^4 + 9q^3 - 27q^2 + 182q - 270)}{|W(E_6)|}$$

Output: The number of quartics f₄(x, y, z) such that w² = f₄(x, y, z) is a degree 2 del Pezzo surface S with #S(F_q) = q² + 5q + 1 is

$$\frac{\mathsf{GL}_3(\mathbb{F}_q)|\cdot 63(q-3)(q^5-12q^4+146q^3-1235q^2+4461q-5185)}{|W(E_7)|}$$

Strategy:

- Equivalent to finding individual coefficients of the Hamming weight enumerator of a certain evaluation code.
- ② Compute all but a few coefficients by analyzing singular varieties.
- Ompute the lowest weight coefficients of the dual code.
- Use the MacWilliams theorem to solve for the few unknown coefficients.