Picard curves with small conductor joint work with Michel Börner and Stefan Wewers

Irene Bouw

Ulm University

June 19, 2017

Motivation

Question (Brumer): What is the smallest possible conductor a Picard curve defined over $\mathbb Q$ can have?

Motivation

Question (Brumer): What is the smallest possible conductor a Picard curve defined over $\mathbb Q$ can have?

Mestre bound: A/\mathbb{Q} abelian variety of dimension g. Conductor N satisfies

 $N > (10.32)^g$.

Smallest cases known to me (curves):

$$\begin{array}{ll} g = 1: & X_1(11) & N = 11, \\ g = 2: & X_1(13) & N = 13^2. \\ g = 3: & (\mathsf{Picard}) & N = 2^6 \cdot 3^6. \end{array}$$

Motivation

Question (Brumer): What is the smallest possible conductor a Picard curve defined over \mathbb{Q} can have?

Mestre bound: A/\mathbb{Q} abelian variety of dimension g. Conductor N satisfies

 $N > (10.32)^g$.

Smallest cases known to me (curves):

$$\begin{array}{ll} g = 1: & X_1(11) & N = 11, \\ g = 2: & X_1(13) & N = 13^2. \\ g = 3: & (\mathsf{Picard}) & N = 2^6 \cdot 3^6. \end{array}$$

The conductor is a product of local factors:

$$N=\prod_p p^{f_p}, \qquad (K=\mathbb{Q}).$$

This talk: For Picard curves over \mathbb{Q} we find restrictions on the conductor exponent f_p , which can be computed from the stable reduction of Y at p.

Models

Let *p* prime, $K = \mathbb{Q}_p^{\mathrm{nr}}$, $\mathcal{O} \subset K$ ring of integers, $k = \mathcal{O}/(p)$. A **model** \mathcal{Y} of *Y* is a normal proper flat \mathcal{O} -scheme with $\mathcal{Y} \otimes_{\mathcal{O}} K \simeq Y$.

Y has **good reduction** if there exists a model with $\overline{Y} := \mathcal{Y} \otimes_{\mathcal{O}} k$ smooth. Otherwise, **bad reduction**. (This includes potentially good but not good reduction.)

$$f_p \neq 0 \qquad \Rightarrow \qquad Y \text{ bad reduction at } p.$$

Models

Let *p* prime, $K = \mathbb{Q}_p^{\mathrm{nr}}$, $\mathcal{O} \subset K$ ring of integers, $k = \mathcal{O}/(p)$. A **model** \mathcal{Y} of Y is a normal proper flat \mathcal{O} -scheme with $\mathcal{Y} \otimes_{\mathcal{O}} K \simeq Y$.

Y has **good reduction** if there exists a model with $\overline{Y} := \mathcal{Y} \otimes_{\mathcal{O}} k$ smooth. Otherwise, **bad reduction**. (This includes potentially good but not good reduction.)

$$f_p \neq 0 \qquad \Rightarrow \qquad Y \text{ bad reduction at } p.$$

A result of Deligne-Mumford

Assume $g(Y) \ge 2$. There exists a Galois extension L/K and a unique minimal semistable model \mathcal{Y} over \mathcal{O}_L , such that $\Gamma := \operatorname{Gal}(L, K)$ acts on \mathcal{Y} , hence on the special fiber \overline{Y} .

Picard curve over K, $char(K) \neq 3$

$$Y: y^3 = f(x), f \in K[x]$$
 separable of degree 4

The cover

$$Y \to \mathbb{P}^1, \qquad (x,y) \mapsto x.$$

is Galois over $K(\zeta_3)$ with group generated by $\sigma(x, y) = (x, \zeta_3 y)$.

Picard curve over K, $char(K) \neq 3$

$$Y: y^3 = f(x), f \in K[x]$$
 separable of degree 4

The cover

$$Y \to \mathbb{P}^1, \qquad (x,y) \mapsto x.$$

is Galois over $K(\zeta_3)$ with group generated by $\sigma(x, y) = (x, \zeta_3 y)$.

May assume $f \in \mathcal{O}[x]$ normalized, then

$$\mathcal{Y}_f: \qquad y^3 = f(x)$$

defines a model \mathcal{Y}_f . Its reduction \overline{Y} given by the equation reduced mod p.

Picard curve over K, $char(K) \neq 3$

$$Y: y^3 = f(x), f \in K[x]$$
 separable of degree 4

The cover

$$Y \to \mathbb{P}^1, \qquad (x,y) \mapsto x.$$

is Galois over $K(\zeta_3)$ with group generated by $\sigma(x, y) = (x, \zeta_3 y)$.

May assume $f \in \mathcal{O}[x]$ normalized, then

$$\mathcal{Y}_f: \qquad y^3 = f(x)$$

defines a model \mathcal{Y}_f . Its reduction \overline{Y} given by the equation reduced mod p.

$$\mathcal{Y}_f$$
 minimal $\Leftrightarrow 0 \leq \nu_p(\Delta(f)) < 36.$

Assume \mathcal{Y}_f minimal and $p \neq 3$, then

Y good reduction $\Leftrightarrow p \nmid \Delta(f)$.

Hence if $p \mid \Delta(f)$ there is no **other** model with \overline{Y} smooth.

Every Picard curve Y/\mathbb{Q} has bad reduction at p = 3.

Every Picard curve Y/\mathbb{Q} has bad reduction at p = 3.

Proof: Assume Y has good reduction over $K = \mathbb{Q}_3^{\mathrm{nr}}$, i.e. there exists a smooth model \mathcal{Y}/\mathcal{O} . Then $\sigma \in \mathrm{Aut}_k(\overline{Y})$. Put $L = \mathbb{Q}_3^{\mathrm{nr}}(\zeta_3)$.

Every Picard curve Y/\mathbb{Q} has bad reduction at p = 3.

Proof: Assume Y has good reduction over $K = \mathbb{Q}_3^{nr}$, i.e. there exists a smooth model \mathcal{Y}/\mathcal{O} . Then $\sigma \in \operatorname{Aut}_k(\overline{Y})$. Put $L = \mathbb{Q}_3^{nr}(\zeta_3)$.

$$\exists au \in \mathsf{\Gamma} = \operatorname{Gal}(L/K) ext{ with } au(\zeta_3) = \zeta_3^2.$$

au acts k-linearly on \overline{Y} and

$$\tau^{-1}\sigma\tau = \sigma^2 \neq \sigma \qquad \in \operatorname{Aut}_k(\overline{Y}).$$

Hence τ acts nontrivially on \overline{Y} .

Every Picard curve Y/\mathbb{Q} has bad reduction at p = 3.

Proof: Assume Y has good reduction over $K = \mathbb{Q}_3^{nr}$, i.e. there exists a smooth model \mathcal{Y}/\mathcal{O} . Then $\sigma \in \operatorname{Aut}_k(\overline{Y})$. Put $L = \mathbb{Q}_3^{nr}(\zeta_3)$.

$$\exists au \in \mathsf{\Gamma} = \operatorname{Gal}(L/K) ext{ with } au(\zeta_3) = \zeta_3^2.$$

au acts k-linearly on \overline{Y} and

$$\tau^{-1}\sigma\tau = \sigma^2 \neq \sigma \qquad \in \operatorname{Aut}_k(\overline{Y}).$$

Hence τ acts nontrivially on \overline{Y} . Contradiction to the assumption that \mathcal{Y} defined over $\mathcal{O}_{\mathcal{K}}$.

Every Picard curve Y/\mathbb{Q} has bad reduction at p = 3.

Proof: Assume Y has good reduction over $K = \mathbb{Q}_3^{nr}$, i.e. there exists a smooth model \mathcal{Y}/\mathcal{O} . Then $\sigma \in \operatorname{Aut}_k(\overline{Y})$. Put $L = \mathbb{Q}_3^{nr}(\zeta_3)$.

$$\exists au \in \mathsf{\Gamma} = \operatorname{Gal}(L/K) ext{ with } au(\zeta_3) = \zeta_3^2.$$

au acts k-linearly on \overline{Y} and

$$\tau^{-1}\sigma\tau = \sigma^2 \neq \sigma \qquad \in \operatorname{Aut}_k(\overline{Y}).$$

Hence τ acts nontrivially on \overline{Y} .

Contradiction to the assumption that \mathcal{Y} defined over $\mathcal{O}_{\mathcal{K}}$.

Remark: Assume that Y acquires good reduction over $L \ni \zeta_3$. Analyzing the action of σ and $\tau \in \operatorname{Gal}(L/K)$ on \overline{Y} shows that

 $g(\overline{Y}/\langle \tau \rangle) = 0.$

The conductor exponent

Let $\mathcal{Y}/\mathcal{O}_L$ stable model, $\Gamma = \operatorname{Gal}(L/K)$, $\overline{Y}^0 = \overline{Y}/\Gamma$.

Proposition $f_p = \delta + \epsilon$ with

$$\begin{split} \epsilon &= 2g(Y) - \dim H^1_{\text{et}}(\overline{Y}^0, \mathbb{Q}_\ell), \\ \delta &= 0 \quad \Leftrightarrow \quad L/K \quad \text{tame.} \end{split}$$

We have

$$\dim H^1_{\mathrm{\acute{e}t}}(\overline{Y}^0,\mathbb{Q}_\ell) = \sum_{\overline{W}} 2g(\overline{W}) + \gamma(\overline{Y}^0),$$

where the sum runs over the irreducible components of \overline{Y}^0 and $\gamma(\overline{Y}^0)$ is the number of loops in the graph of components of \overline{Y}^0 .

The main result

Let Y/\mathbb{Q}_3^{nr} be a Picard curve. Then $f_3 \geq 4$.

The main result

Let Y/\mathbb{Q}_3^{nr} be a Picard curve. Then $f_3 \ge 4$.

The proof shows that $\epsilon \in \{4, 5, 6\}$ by a case-by-case analysis for \overline{Y} .

All values for ϵ occur.

The main result

Let Y/\mathbb{Q}_3^{nr} be a Picard curve. Then $f_3 \geq 4$.

The proof shows that $\epsilon \in \{4, 5, 6\}$ by a case-by-case analysis for \overline{Y} .

All values for ϵ occur.

Corollary

Assume that Y/\mathbb{Q}_3 has potentially good reduction at p = 3. Then $\epsilon = 6$, hence $f_p \ge 6$.

The case $p \neq 3$

A similar analysis for $p \neq 3$ yields:

Proposition • $f_2 \neq 1$, • $f_p \in \{0, 2, 4, 6\}$. (In particular, $\delta = 0$.)

The case $p \neq 3$

A similar analysis for $p \neq 3$ yields:

Proposition • $f_2 \neq 1$, • $f_p \in \{0, 2, 4, 6\}$. (In particular, $\delta = 0$.)

Computing the stable reduction is much easier if $p \neq 3$. We know the field L over which Y acquires stable reduction explicitly. \overline{Y} is completely determined by the configuration of the branch points.

Brumer–Kramer prove an upper bound for f_p . This yields $f_2 \leq 28$.

Example

The curve

Y:
$$y^3 = x^4 - 1 =: f(x), \qquad \Delta(f) = -2^8$$

has good reduction for $p \neq 2, 3$. Fact: $|\operatorname{Aut}_{\mathbb{C}}(Y)| = 48$. The conductor is $N = 2^6 \cdot 3^6$.

Y has potentially good reduction at p = 3 over a tame extension. *Y* reduces to a chain of 3 elliptic curves over $\mathbb{Q}_2^{\mathrm{nr}}(\sqrt[3]{2}, i)$.

The twist $y^3 = x^4 + 1$ has $N = 2^{16} \cdot 3^6$.

Searching for curves with small conductor

Faltings

Let K be a number field, S a finite set of places, and $g \ge 2$.

- The number of curves over K with good reduction outside S (up to isomorphism) if finite.
- The number of curves over K with conductor $\leq N$ is finite.

Searching for curves with small conductor

Faltings

Let K be a number field, S a finite set of places, and $g \ge 2$.

- The number of curves over *K* with good reduction outside *S* (up to isomorphism) if finite.
- The number of curves over K with conductor $\leq N$ is finite.

Malmskog–Rasmussen have determines all Picard curves over \mathbb{Q} with good reduction outside $S = \{3\}$. These curves have $10 \le f_3 \le 21$, hence $N > 2^6 \cdot 3^6$.

The method generalizes in principle to other sets S.

The exceptional primes

Example Let

Y:
$$y^3 = f(x) = x^4 + 14x^2 + 72x - 41$$
, $\Delta(f) = -2^{10} \cdot 3^4 \cdot 5^6$.

Hence Y has bad reduction at p = 2, 3, 5.

The exceptional primes

Example Let

$$Y: \qquad y^3 = f(x) = x^4 + 14x^2 + 72x - 41, \qquad \Delta(f) = -2^{10} \cdot 3^4 \cdot 5^6.$$

Hence Y has bad reduction at p = 2, 3, 5.

However, we have

$$N = 2^{19} \cdot 3^{13}$$
.

Necessary conditions for p to be an exceptional prime:

• 6 |
$$\nu_{\rho}(\Delta(f))$$
,

- f splits over K = Q^{nr}_p. This implies that Y acquires stable reduction over K,
- the Jacobian of Y has good reduction over K.