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Motivation
Question (Brumer): What is the smallest possible conductor a Picard
curve defined over Q can have?

Mestre bound: A/Q abelian variety of dimension g . Conductor N satisfies

N > (10.32)g .

Smallest cases known to me (curves):

g = 1 : X1(11) N = 11,

g = 2 : X1(13) N = 132.

g = 3 : (Picard) N = 26 · 36.

The conductor is a product of local factors:

N =
∏
p

pfp , (K = Q).

This talk: For Picard curves over Q we find restrictions on the conductor
exponent fp, which can be computed from the stable reduction of Y at p.
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Models

Let p prime, K = Qnr
p , O ⊂ K ring of integers, k = O/(p). A model Y of

Y is a normal proper flat O-scheme with Y ⊗O K ' Y .

Y has good reduction if there exists a model with Y := Y ⊗O k smooth.
Otherwise, bad reduction. (This includes potentially good but not good
reduction.)

fp 6= 0 ⇒ Y bad reduction at p.

A result of Deligne–Mumford

Assume g(Y ) ≥ 2. There exists a Galois extension L/K and a unique
minimal semistable model Y over OL, such that Γ := Gal(L,K ) acts on Y,
hence on the special fiber Y .
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Picard curve over K , char(K ) 6= 3

Y : y3 = f (x), f ∈ K [x ] separable of degree 4

The cover
Y → P1, (x , y) 7→ x .

is Galois over K (ζ3) with group generated by σ(x , y) = (x , ζ3y).

May assume f ∈ O[x ] normalized, then

Yf : y3 = f (x)

defines a model Yf . Its reduction Y given by the equation reduced mod p.

Yf minimal ⇔ 0 ≤ νp(∆(f )) < 36.

Assume Yf minimal and p 6= 3, then

Y good reduction ⇔ p - ∆(f ).

Hence if p | ∆(f ) there is no other model with Y smooth.
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Primes of bad reduction

Every Picard curve Y /Q has bad reduction at p = 3.

Proof: Assume Y has good reduction over K = Qnr
3 , i.e. there exists a

smooth model Y/O. Then σ ∈ Autk(Y ). Put L = Qnr
3 (ζ3).

∃τ ∈ Γ = Gal(L/K ) with τ(ζ3) = ζ23 .

τ acts k-linearly on Y and

τ−1στ = σ2 6= σ ∈ Autk(Y ).

Hence τ acts nontrivially on Y .
Contradiction to the assumption that Y defined over OK .

Remark: Assume that Y acquires good reduction over L 3 ζ3. Analyzing
the action of σ and τ ∈ Gal(L/K ) on Y shows that

g(Y /〈τ〉) = 0.
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The conductor exponent

Let Y/OL stable model, Γ = Gal(L/K ), Y
0

= Y /Γ.

Proposition

fp = δ + ε with

ε = 2g(Y )− dimH1
et(Y

0
,Q`),

δ = 0 ⇔ L/K tame.

We have
dimH1

et(Y
0
,Q`) =

∑
W

2g(W ) + γ(Y
0
),

where the sum runs over the irreducible components of Y
0

and γ(Y
0
) is

the number of loops in the graph of components of Y
0
.



The main result

Let Y /Qnr
3 be a Picard curve. Then f3 ≥ 4.

The proof shows that ε ∈ {4, 5, 6} by a case-by-case analysis for Y .

All values for ε occur.

Corollary

Assume that Y /Q3 has potentially good reduction at p = 3. Then ε = 6,
hence fp ≥ 6.
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The case p 6= 3

A similar analysis for p 6= 3 yields:

Proposition

f2 6= 1,

fp ∈ {0, 2, 4, 6}. (In particular, δ = 0.)

Computing the stable reduction is much easier if p 6= 3. We know the field
L over which Y acquires stable reduction explicitly. Y is completely
determined by the configuration of the branch points.

Brumer–Kramer prove an upper bound for fp. This yields f2 ≤ 28.
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Example

The curve

Y : y3 = x4 − 1 =: f (x), ∆(f ) = −28

has good reduction for p 6= 2, 3. Fact: |AutC(Y )| = 48.
The conductor is N = 26 · 36.
Y has potentially good reduction at p = 3 over a tame extension.
Y reduces to a chain of 3 elliptic curves over Qnr

2 ( 3
√

2, i).

The twist y3 = x4 + 1 has N = 216 · 36.



Searching for curves with small conductor

Faltings

Let K be a number field, S a finite set of places, and g ≥ 2.

The number of curves over K with good reduction outside S (up to
isomorphism) if finite.

The number of curves over K with conductor ≤ N is finite.

Malmskog–Rasmussen have determines all Picard curves over Q with good
reduction outside S = {3}. These curves have 10 ≤ f3 ≤ 21, hence
N > 26 · 36.
The method generalizes in principle to other sets S .
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The exceptional primes

Example Let

Y : y3 = f (x) = x4 + 14x2 + 72x − 41, ∆(f ) = −210 · 34 · 56.

Hence Y has bad reduction at p = 2, 3, 5.

However, we have
N = 219 · 313.

Necessary conditions for p to be an exceptional prime:

6 | νp(∆(f )),

f splits over K = Qnr
p . This implies that Y acquires stable reduction

over K ,

the Jacobian of Y has good reduction over K .
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