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The conductor is a product of local factors:
N=]]r" (K=0Q).
P

This talk: For Picard curves over Q we find restrictions on the conductor
exponent f,, which can be computed from the stable reduction of Y at p
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Y has good reduction if there exists a model with Y := ) ®¢ k smooth.
Otherwise, bad reduction. (This includes potentially good but not good
reduction.)

fo #0 = Y bad reduction at p.

A result of Deligne-Mumford

Assume g(Y) > 2. There exists a Galois extension L/K and a unique
minimal semistable model ) over O, such that I' := Gal(L, K) acts on Y,
hence on the special fiber Y.
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Y: y3 = f(x), f € K[x] separable of degree 4

The cover
Y — P!, (x,y) — x.

is Galois over K((3) with group generated by o(x, y) = (x, (3y).

May assume f € O[x] normalized, then
Vr y?=f(x)

defines a model ). lts reduction Y given by the equation reduced mod p.

Yr minimal < 0 < y,(A(f)) < 36.
Assume Yr minimal and p # 3, then

Y good reduction < p{ A(f).

Hence if p | A(f) there is no other model with Y smooth.
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Primes of bad reduction

Every Picard curve Y /Q has bad reduction at p = 3.

Proof: Assume Y has good reduction over K = Q3, i.e. there exists a
smooth model Y/O. Then o € Aut(Y). Put L = Q5'((3).

3r €T = Gal(L/K) with 7((3) = 3.
T acts k-linearly on Y and
rlor=0%#0 € Aut(Y).

Hence 7 acts nontrivially on Y.
Contradiction to the assumption that ) defined over Ok. O

Remark: Assume that Y acquires good reduction over L 5 (3. Analyzing
the action of o and 7 € Gal(L/K) on Y shows that

g(Y/{r))=0.



The conductor exponent

Let ¥/O, stable model, I = Gal(L/K), Y =vr.

Proposition
fo = 0 4 € with
e = 2g(Y) — dim HL(Y", Qy),
=0 & L/K tame.
We have

dim HL(Y°, Q) = Z2g(W +4(Y),

where the sum runs over the irreducible components of Y° and v(Y°) is
the number of loops in the graph of components of v
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Corollary

Assume that Y /Qs3 has potentially good reduction at p = 3. Then ¢ = 6,
hence f, > 6.
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The case p # 3

A similar analysis for p # 3 yields:
Proposition

o A1,

e f, €{0,2,4,6}. (In particular, 6 = 0.)

Computing the stable reduction is much easier if p # 3. We know the field
L over which Y acquires stable reduction explicitly. Y is completely
determined by the configuration of the branch points.

Brumer—Kramer prove an upper bound for f,. This yields f, < 28.



Example

The curve

has good reduction for p # 2, 3. Fact: | Autc(Y)| = 48.
The conductor is N = 2° . 3°.

Y has potentially good reduction at p = 3 over a tame extension.
Y reduces to a chain of 3 elliptic curves over Q4 (v/2, /).

The twist y3 = x* + 1 has N = 216. 30,



Searching for curves with small conductor

Faltings
Let K be a number field, S a finite set of places, and g > 2.

@ The number of curves over K with good reduction outside S (up to
isomorphism) if finite.

@ The number of curves over K with conductor < N is finite.




Searching for curves with small conductor

Faltings
Let K be a number field, S a finite set of places, and g > 2.
@ The number of curves over K with good reduction outside S (up to
isomorphism) if finite.

@ The number of curves over K with conductor < N is finite.

Malmskog—Rasmussen have determines all Picard curves over Q with good
reduction outside S = {3}. These curves have 10 < f3 < 21, hence

N > 2°.3°

The method generalizes in principle to other sets S.
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The exceptional primes

Example Let
Y: P =f(x)=x"+143+T72x — 41,  A(f) = —210.3% .55,
Hence Y has bad reduction at p = 2,3,5.

However, we have
N = 219 i 313

Necessary conditions for p to be an exceptional prime:
o 6| vp(A(F)),
o f splits over K = Q" This implies that Y acquires stable reduction
over K,
@ the Jacobian of Y has good reduction over K.



