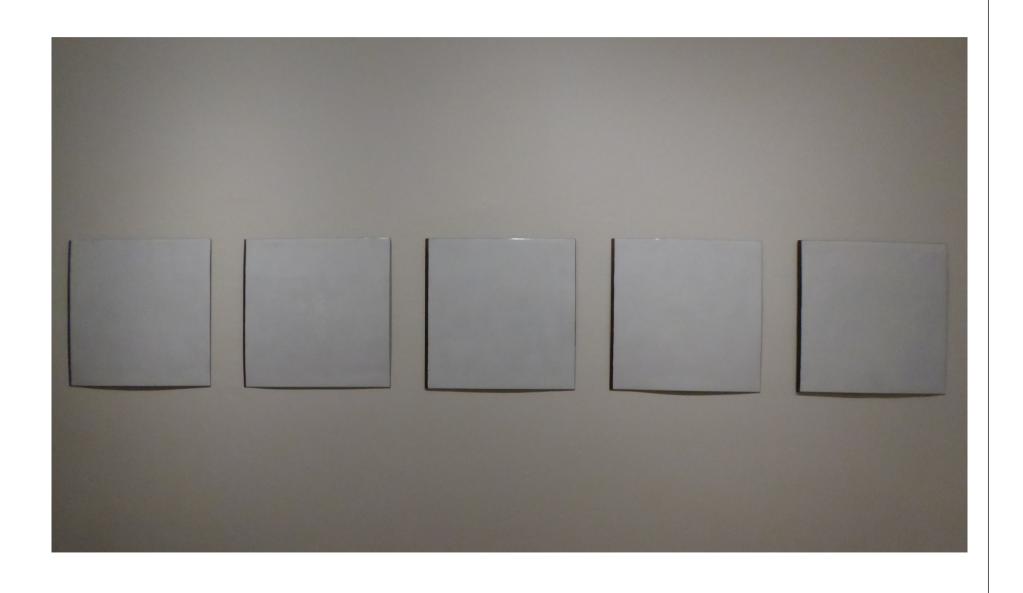
Characterising the Härtig Quantifier model

P.D. Welch, University of Bristol, CIRM 2017.



Reference: Inner models from Extended Logics, J. Kennedy, M.Magidor, & J. Väänänen. Isaac Newton Preprint Series. 2016.

<u>Basic Idea:</u> Replace first order definability in the construction of L by a notion of definability using a stronger notion of logic.

Reference: Inner models from Extended Logics, J. Kennedy, M.Magidor, & J. Väänänen. Isaac Newton Preprint Series. 2016.

<u>Basic Idea:</u> Replace first order definability in the construction of L by a notion of definability using a stronger notion of logic.

Example 1 Second order logic. We define:

$$L_0' = \emptyset; \quad L_{\alpha+1}' = \mathrm{Def}_{SO}(\langle L_\alpha', \in \rangle); \quad L_\lambda' = \bigcup_{\alpha < \lambda} L_\alpha'.$$

Theorem [Myhill-Scott] $L' =_{df} \bigcup_{\alpha < \infty} L'_{\alpha} = HOD$.

Examples 2.3 If we replace Def with $\operatorname{Def}_{\mathcal{L}_{\omega_1,\omega}}$ or $\operatorname{Def}_{\mathcal{L}_{\omega_1,\omega_1}}$ one gets $L(\mathbb{R})$ and the Chang model respectively.

Example 4 Magidor-Malitz quantifier $Q_{\aleph_{\alpha}}^{<\omega}$ (for $\alpha > 0$).

$$M \vDash Q_{\aleph_{\alpha}}^{n} x_{1} \cdots x_{n} \varphi(x_{1} \cdots x_{n}) \iff$$

$$\exists X \subseteq |M| [|X| \ge \aleph_{\alpha} \land \forall x_{1}, \cdots, x_{n} \in X(M \vDash \varphi(x_{1}, \cdots, x_{n}))].$$

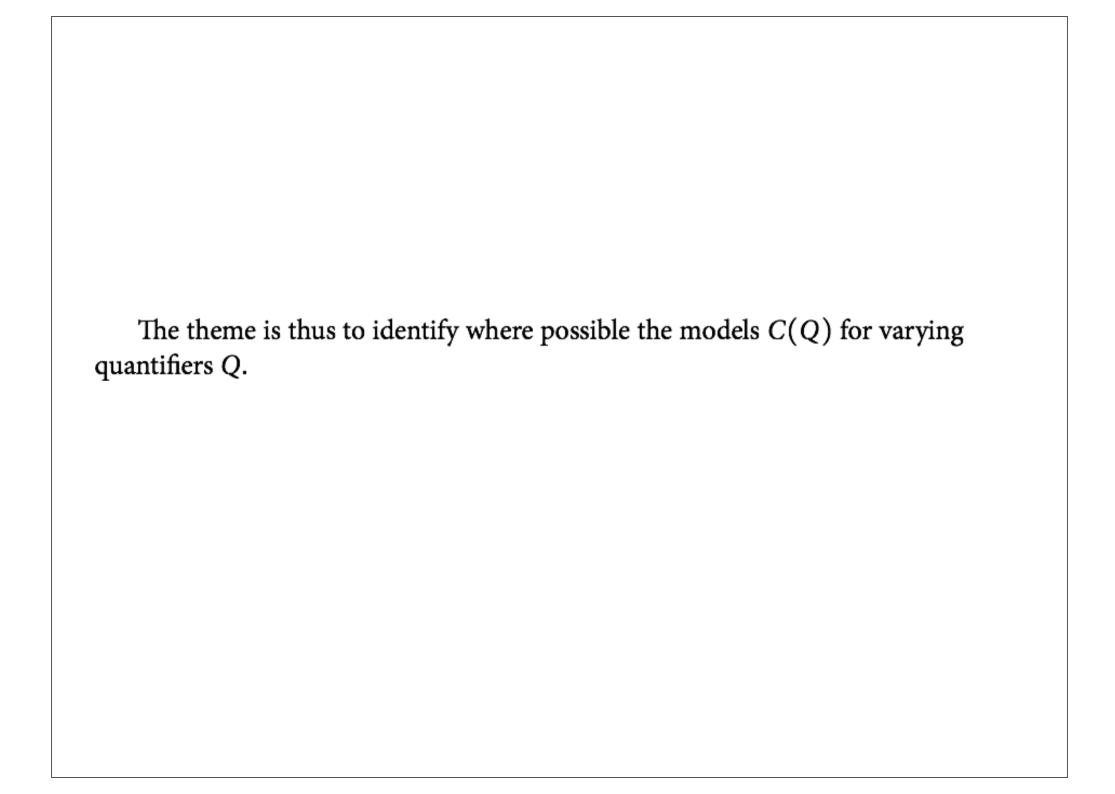
Theorem [KMV] $0^{\sharp} \longrightarrow C(Q_{\aleph_{\alpha}}^{<\omega}) = L.$

Example 5 (The cof_{ω} -quantifier Q_{ω}^{cf})

$$M \vDash Q_{\omega}^{cf} x, y\varphi(x, y, \vec{p})$$

 $\iff \{(x, y) \mid M \vDash \varphi(x, y, \vec{p})\} \text{ codes a linear order of cofinality } \omega.$

- $0^{\sharp} \longrightarrow C^* \neq L$.
- Uncountably many measurable cards. $\longrightarrow C^* \neq HOD$.
- L^{μ} exists $\longrightarrow L^{\mu} \subseteq C^*$.
- \exists a proper class of Woodins \longrightarrow all Regs. $> \aleph_1$ are Mahlo, indiscernible in C^* .
- $\exists \kappa < \lambda (\kappa \text{ Woodin }, \lambda \text{ meas.}) \longrightarrow \text{ on a cone of } x, C^*(x) \models CH.$



Härtig quantifier model, C(I)

 $|[xy\varphi(x,\vec{p})\psi(y,\vec{p})\longleftrightarrow |\{a:\varphi(a,\vec{p})\}|=|\{b:\psi(b,\vec{p})\}|.$

Härtig quantifier model, C(I)

$$|[xy\varphi(x,\vec{p})\psi(y,\vec{p})\longleftrightarrow |\{a:\varphi(a,\vec{p})\}|=|\{b:\psi(b,\vec{p})\}|.$$

- Let C(I) be the resulting model.
- C(I) = L[Card.].
- 0^{\sharp} exists $\rightarrow 0^{\sharp} \in C(I)$.

Theorem [KMV] $K^{DJ} \subseteq C(I)$; if L^{μ} exists, then $L^{\mu} \subseteq C(I)$; $V = L^{\mu} \longrightarrow V = C(I)$.

Theorem [KMV]

 $Con(ZFC+\exists \kappa(\kappa \text{ supercompact })) \Rightarrow Con(ZFC+\exists \text{ a supercompact } \land C(I) \neq HOD).$

Characterizing C(I) = L[Card.].

- In fact we characterise L[P] where P is any proper class of cardinals which is either (i) closed or (ii) $P \subseteq Succ.Card$.
- In Case (i) we let $P_0 = \langle \lambda_\alpha \mid \alpha \in On \rangle$ enumerate the successor elements of P. In Case (ii), let $P_0 = P$.
- For $\alpha \in Lim$, let $\lambda_{\alpha}^* =_{df} sup_k \lambda_{\alpha+k}$.

Theorem 1 Assume sufficiently large cardinals (e.g. 0^{sword}). Let $K^P = K^{L[P]} = L[E^P]$. Then (i):

$$K^P \models \lambda \text{ is measurable } \longleftrightarrow \exists \alpha \in Lim(\lambda = \lambda_{\alpha}^*).$$

(ii) For $\alpha \in Lim$, if we set $c_{\alpha} = \langle \lambda_{\alpha+k} \mid k < \omega \rangle$ then the sequence $\langle c_{\alpha} \rangle_{\alpha \in Lim}$ is mutually Prikry generic over K^P and

$$L[P] = L[E^P][\langle c_{\alpha} \rangle].$$

Theorem 2 (0^{sword}) Let P, Q be two cub classes of cardinals.

 $\langle L[P], \in, P \rangle \equiv \langle L[Q], \in, Q \rangle.$

Theorem 2 (0^{sword}) Let P, Q be two cub classes of cardinals.

$$\langle L[P], \in, P \rangle \equiv \langle L[Q], \in, Q \rangle.$$

Cor. 3 (0^{sword}) $C(I) \neq HOD$; $C(I) \models GCH$.

- The former is because $0^{sword} \notin C(I)$. The latter because again C(I) is an $L[E][\langle c_{\alpha} \rangle_{\alpha \in Lim}]$ -model.
- Thus assuming sufficiently large cardinals C(I) contains Ramsey cardinals but no measurable.

