Set Theory and C*-algebras: automorphisms of continuous quotients

Alessandro Vignati IMJ-PRG - Université Paris Diderot

14th International Workshop on Set Theory Luminy, 8-13 October 2017

Alessandro VignatilMJ-PRG - Université Paris Diderot Set Theory and C*-algebras: automorphisms of continuous quotients

イロト イポト イヨト イヨト

э.

Can the homeomorphisms of $\beta \omega \setminus \omega$ be "described"?

Alessandro VignatilMJ-PRG - Université Paris Diderot Set Theory and C*-algebras: automorphisms of continuous quotients

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 2/14

Can the homeomorphisms of $\beta \omega \setminus \omega$ be "described"?

An homeomorphism ϕ of $\beta \omega \setminus \omega$ is "describable" (trivial) if there is an almost permutation (i.e., bijection $f : \omega \setminus n_1 \to \omega \setminus n_2$) such that $\phi(x) = \{f(A) \mid A \in x\}$ for all $x \in \beta \omega \setminus \omega$.

イロト イポト イヨト イヨト

э.

Can the homeomorphisms of $\beta \omega \setminus \omega$ be "described"?

An homeomorphism ϕ of $\beta \omega \setminus \omega$ is "describable" (trivial) if there is an almost permutation (i.e., bijection $f : \omega \setminus n_1 \to \omega \setminus n_2$) such that $\phi(x) = \{f(A) \mid A \in x\}$ for all $x \in \beta \omega \setminus \omega$.

Theorem

- (Rudin) Assume CH. Then there are nontrivial homeomorphisms of $\beta \omega \setminus \omega$. In fact there are $2^{\aleph_1} > \mathfrak{c}$ automorphisms.
- (Shelah, Shelah-Steprans, Velickovic) It is consistent that all homeomorphisms of βω \ ω are trivial. In fact, it follows from OCA + MA_{ℵ1}.

イロト イポト イヨト イヨト

э.

Can the homeomorphisms of $\beta \omega \setminus \omega$ be "described"?

An homeomorphism ϕ of $\beta \omega \setminus \omega$ is "describable" (trivial) if there is a bijection $f: \setminus \omega \setminus n_1 \to \omega \setminus n_2$ such that $\phi(x) = \{f(A) \mid A \in x\}$ for all $x \in \beta \omega \setminus \omega$.

Theorem (Rudin, Shelah, Shelah-Steprans, Velickovic)

The automorphisms structure of the C^{*}-algebra ℓ_{∞}/c_0 is independent of ZFC.

Let X be locally compact and second countable. An homeomorphism ϕ of $\beta X \setminus X$ is trivial if there are compact sets $K_1, K_2 \subseteq X$ and an homeomorphism $f: X \setminus K_1 \to X \setminus K_2$ such that $\phi(x) = \{f(C) \mid C \in x\}$.

《曰》《聞》《臣》《臣》

э.

Let X be locally compact and second countable. An homeomorphism ϕ of $\beta X \setminus X$ is trivial if there are compact sets $K_1, K_2 \subseteq X$ and an homeomorphism $f: X \setminus K_1 \to X \setminus K_2$ such that $\phi(x) = \{f(C) \mid C \in x\}$.

Question

Let X be locally compact, noncompact, and second-countable. Are all homeomorphisms of $\beta X \setminus X$ trivial?

(日)

590

Let X be locally compact and second countable. An homeomorphism ϕ of $\beta X \setminus X$ is trivial if there are compact sets $K_1, K_2 \subseteq X$ and an homeomorphism $f: X \setminus K_1 \to X \setminus K_2$ such that $\phi(x) = \{f(C) \mid C \in x\}$.

Question

Let X be locally compact, noncompact, and second-countable. Are all homeomorphisms of $\beta X \setminus X$ trivial?

Alternatively

Question

Let X be locally compact, noncompact, and second-countable. Are all automorphisms of the C^{*}-algebra $C_b(X)/C_0(X)$ "describable"?

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Shelah, Shelah-Steprans, Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Shelah, Shelah-Steprans, Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah	McKenney-V.

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Shelah, Shelah-Steprans, Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah	McKenney-V.
$X = [0,1), X = \mathbb{R}$	Yu (but see K.P. Hart)	partially Farah-Shelah

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Shelah, Shelah-Steprans, Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah	McKenney-V.
$X = [0,1), X = \mathbb{R}$	Yu (but see K.P. Hart)	partially Farah-Shelah
X manifold	V.	partially Farah-Shelah

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Shelah, Shelah-Steprans, Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah	McKenney-V.
$X=[0,1),\ X=\mathbb{R}$	Yu (but see K.P. Hart)	partially Farah-Shelah
X manifold	V.	partially Farah-Shelah

Fix $n \ge 2$. There is a specific space X_n of dimension n such that we don't know whether CH implies the existence of nontrivial homeomorphisms of $\beta X_n \setminus X_n$.

・ロト ・ 日 ト ・ ヨ ト ・ 日 ト

𝒫𝔅[−] 5/14

÷.

A C^{*}-algebra is a ^{*}-closed Banach subalgebra of $\mathcal{B}(H)$, for some $H = \ell^2(\kappa)$.

There is a noncommutative analog of the Čech-Stone reminder.

《曰》 《聞》 《臣》 《臣》

æ

A C^{*}-algebra is a ^{*}-closed Banach subalgebra of $\mathcal{B}(H)$, for some $H = \ell^2(\kappa)$.

There is a noncommutative analog of the Čech-Stone reminder.

Definition

If A is a nonunital C^* -algebra, there is a universal unital object $\mathcal{M}(A)$, the multiplier algebra, which is the largest unital algebra in which A is a "dense" ideal.

イロト イポト イヨト イヨト

3

A C^{*}-algebra is a ^{*}-closed Banach subalgebra of $\mathcal{B}(H)$, for some $H = \ell^2(\kappa)$.

There is a noncommutative analog of the Čech-Stone reminder.

Definition

If A is a nonunital C^* -algebra, there is a universal unital object $\mathcal{M}(A)$, the multiplier algebra, which is the largest unital algebra in which A is a "dense" ideal. The algebra $\mathcal{M}(A)/A$ is the corona of A.

イロト イポト イヨト イヨト

3

A C^{*}-algebra is a ^{*}-closed Banach subalgebra of $\mathcal{B}(H)$, for some $H = \ell^2(\kappa)$.

There is a noncommutative analog of the Čech-Stone reminder.

Definition

If A is a nonunital C^* -algebra, there is a universal unital object $\mathcal{M}(A)$, the multiplier algebra, which is the largest unital algebra in which A is a "dense" ideal. The algebra $\mathcal{M}(A)/A$ is the corona of A.

- If A is unital, $\mathcal{M}(A) = A$;
- If $A = C_0(X)$, $\mathcal{M}(A) = C(\beta X)$, $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$;

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

A C^{*}-algebra is a ^{*}-closed Banach subalgebra of $\mathcal{B}(H)$, for some $H = \ell^2(\kappa)$.

There is a noncommutative analog of the Čech-Stone reminder.

Definition

If A is a nonunital C^* -algebra, there is a universal unital object $\mathcal{M}(A)$, the multiplier algebra, which is the largest unital algebra in which A is a "dense" ideal. The algebra $\mathcal{M}(A)/A$ is the corona of A.

- If A is unital, $\mathcal{M}(A) = A$;
- If $A = C_0(X)$, $\mathcal{M}(A) = C(\beta X)$, $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$;
- If $A = \mathcal{K}(H)$, $\mathcal{M}(A) = \mathcal{B}(H)$. The corona is the Calkin algebra;

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

A C^{*}-algebra is a ^{*}-closed Banach subalgebra of $\mathcal{B}(H)$, for some $H = \ell^2(\kappa)$.

There is a noncommutative analog of the Čech-Stone reminder.

Definition

If A is a nonunital C^* -algebra, there is a universal unital object $\mathcal{M}(A)$, the multiplier algebra, which is the largest unital algebra in which A is a "dense" ideal. The algebra $\mathcal{M}(A)/A$ is the corona of A.

• If A is unital,
$$\mathcal{M}(A) = A$$
;

• If
$$A = C_0(X)$$
, $\mathcal{M}(A) = C(\beta X)$, $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$;

- If $A = \mathcal{K}(H)$, $\mathcal{M}(A) = \mathcal{B}(H)$. The corona is the Calkin algebra;
- If A_n are C^* -algebras, define

$$B = \bigoplus A_n = \{(a_n) \mid ||a_n|| \to 0\}, \ C = \prod A_n = \{a_n \mid \sup ||a_n|| < \infty\}.$$

Then $\mathcal{M}(B) = C$. $\prod A_n / \bigoplus A_n$ is said the **reduced product**.

Let A be a nonuntail separable C^* -algebra. Can the automorphisms of $\mathcal{M}(A)/A$ be described?

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ < ?/14

Let A be a nonuntail separable C^{*}-algebra. Can the automorphisms of $\mathcal{M}(A)/A$ be described?

Conjecture

 $CH \Rightarrow No. PFA \Rightarrow Yes.$

Theorem (Phillips-Weaver, Farah)

If $A = \mathcal{K}(H)$, the answer is independent of ZFC.

Let A_n, B_n be unital C^* -algebras. An isomorphism $\Phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ is trivial if there is an almost permutation fand maps $\phi_n: A_n \to B_{f(n)}$ making the following commute

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Assume OCA_{∞} and MA_{\aleph_1} . Let A_n , B_n be unital separable C^* -algebras, $\Phi \colon \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ an isomorphism, and suppose that (after a certain $m \in \omega$)

- each A_n is amenable (as a Banach algebra)
- no A_n or B_n can be written as $C_n \bigoplus D_n$, where C_n, D_n are unital.

Then Φ is trivial.

Assume OCA_{∞} and MA_{\aleph_1} . Let A_n , B_n be unital separable C^* -algebras, $\Phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ an isomorphism, and suppose that (after a certain $m \in \omega$)

- each A_n is amenable (as a Banach algebra)
- no A_n or B_n can be written as $C_n \bigoplus D_n$, where C_n, D_n are unital.

Then Φ is trivial.

Theorem (Farah-Shelah)

If A_n are unital and separable C^* -algebras, $\prod A_n / \bigoplus A_n$ is countably saturated.

э.

Assume OCA_{∞} and MA_{\aleph_1} . Let A_n , B_n be unital separable C^* -algebras, $\Phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ an isomorphism, and suppose that (after a certain $m \in \omega$)

- each A_n is amenable (as a Banach algebra)
- no A_n or B_n can be written as $C_n \bigoplus D_n$, where C_n, D_n are unital.

Then Φ is trivial.

Theorem (Farah-Shelah)

If A_n are unital and separable C^* -algebras, $\prod A_n / \bigoplus A_n$ is countably saturated.

Theorem

Let A_n be separable amenable and unital. Then whether all automorphisms of $\prod A_n / \bigoplus A_n$ are trivial is independent of ZFC.

イロト イポト イヨト イヨト

э.

Alessandro VignatilMJ-PRG - Université Paris Diderot Set Theory and C*-algebras: automorphisms of continuous quotients

Question

If n_i and k_i are different naturals, can $\mathbb{M}(\{n_i\})$ be isomorphic to $\mathbb{M}(\{k_i\})$?

Question

If n_i and k_i are different naturals, can $\mathbb{M}(\{n_i\})$ be isomorphic to $\mathbb{M}(\{k_i\})$?

• This is related to continuous model theory. Under CH, elementary equivalence of reduced products is equivalent to isomorphism (countable saturation).

Question

If n_i and k_i are different naturals, can $\mathbb{M}(\{n_i\})$ be isomorphic to $\mathbb{M}(\{k_i\})$?

- This is related to continuous model theory. Under CH, elementary equivalence of reduced products is equivalent to isomorphism (countable saturation).
- If there is m that divides infinitely many n_i but doesn't divide infinitely many k_i, then M({n_i}) ≠ M({k_i}.

イロト イポト イヨト イヨト 二日

Question

If n_i and k_i are different naturals, can $\mathbb{M}(\{n_i\})$ be isomorphic to $\mathbb{M}(\{k_i\})$?

- This is related to continuous model theory. Under CH, elementary equivalence of reduced products is equivalent to isomorphism (countable saturation).
- If there is m that divides infinitely many n_i but doesn't divide infinitely many k_i, then M({n_i}) ≠ M({k_i}.
- This is the only information we have so far.

イロト イポト イヨト イヨト 二日

Question

If n_i and k_i are different naturals, can $\mathbb{M}(\{n_i\})$ be isomorphic to $\mathbb{M}(\{k_i\})$?

- This is related to continuous model theory. Under CH, elementary equivalence of reduced products is equivalent to isomorphism (countable saturation).
- If there is m that divides infinitely many n_i but doesn't divide infinitely many k_i, then M({n_i}) ≠ M({k_i}.
- This is the only information we have so far.

Theorem (Folklore)

For every sequence n_i there is a subsequence n_{k_i} such that if $X, Y \subseteq \omega$ are infinite then

$$\mathbb{M}(\{n_{k_i} \mid i \in X\}) \equiv \mathbb{M}(\{n_{k_i} \mid i \in Y\})$$

Question

If n_i and k_i are different naturals, can $\mathbb{M}(\{n_i\})$ be isomorphic to $\mathbb{M}(\{k_i\})$?

- This is related to continuous model theory. Under CH, elementary equivalence of reduced products is equivalent to isomorphism (countable saturation).
- If there is m that divides infinitely many n_i but doesn't divide infinitely many k_i, then M({n_i}) ≠ M({k_i}.
- This is the only information we have so far.

Theorem (Folklore)

For every sequence n_i there is a subsequence n_{k_i} such that if $X, Y \subseteq \omega$ are infinite then

$$\mathbb{M}(\{n_{k_i} \mid i \in X\}) \equiv \mathbb{M}(\{n_{k_i} \mid i \in Y\})$$

Theorem (Folklore+Ghasemi)

Assume CH. For every sequence $\{n_i\}$ there are infinite dimensional C^{*}-algebras A_n such that $\prod A_n / \bigoplus A_n \cong \mathbb{M}(\{n_i\})$ (all such isomorphisms are nontrivial).

Alessandro VignatilMJ-PRG - Université Paris Diderot Set Theory and C*-algebras: automorphisms of continuous quotients

æ

Problem

Suppose A_n, B_n are unital and separable and $\phi_n \colon A_n \to B_n$ are maps inducing an isomorphism $\Phi \colon \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$.

- Can we find isomorphisms $\psi_n \colon A_n \to B_n$ such that $\pi(\prod \psi_n) = \psi$? (up to a finite set)
- Output Can we at least say that A_n and B_n must be isomorphic? (up to a finite set)

イロト イ部ト イモト イモト 一日

Problem

Suppose A_n, B_n are unital and separable and $\phi_n \colon A_n \to B_n$ are maps inducing an isomorphism $\Phi \colon \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$.

- Can we find isomorphisms $\psi_n \colon A_n \to B_n$ such that $\pi(\prod \psi_n)) = \psi$? (up to a finite set)
- Output Can we at least say that A_n and B_n must be isomorphic? (up to a finite set)

Theorem

Let ϕ_n, A_n, B_n as above

• Yes to 1, if each A_n is finite-dimensional [McKenney-V.], or abelian [Šemrl].

Problem

Suppose A_n, B_n are unital and separable and $\phi_n \colon A_n \to B_n$ are maps inducing an isomorphism $\Phi \colon \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$.

- Can we find isomorphisms $\psi_n \colon A_n \to B_n$ such that $\pi(\prod \psi_n) = \psi$? (up to a finite set)
- Output Can we at least say that A_n and B_n must be isomorphic? (up to a finite set)

Theorem

Let ϕ_n, A_n, B_n as above

- Yes to 1, if each A_n is finite-dimensional [McKenney-V.], or abelian [Šemrl].
- If each A_n is a limit of finite-dimensional algebras (AF), then Yes to 2. In particular all B_n must be AF, and A_n ≅ B_n (after a given m) [McKenney-V.]

(日) (部) (문) (문) (문)

Problem

Suppose A_n, B_n are unital and separable and $\phi_n \colon A_n \to B_n$ are maps inducing an isomorphism $\Phi \colon \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$.

- Can we find isomorphisms $\psi_n \colon A_n \to B_n$ such that $\pi(\prod \psi_n)) = \psi$? (up to a finite set)
- Can we at least say that A_n and B_n must be isomorphic? (up to a finite set)

Theorem

Let ϕ_n, A_n, B_n as above

- Yes to 1, if each A_n is finite-dimensional [McKenney-V.], or abelian [Šemrl].
- If each A_n is a limit of finite-dimensional algebras (AF), then Yes to 2. In particular all B_n must be AF, and A_n ≅ B_n (after a given m) [McKenney-V.]

Assume $OCA_{\infty} + MA_{\aleph_1}$. Suppose that $\phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ is an isomorphism and that A_n and B_n cannot be written as $C_n \oplus D_n$, and they are all unital and separable. Suppose also that each A_n is a limit of finite-dimensional algebras, or is abelian. Then there is an almost permutation f such that up to finite sets

$$A_n \cong B_{f(n)}$$

イロト イポト イヨト イヨト 二日

Assume $OCA_{\infty} + MA_{\aleph_1}$. Suppose that $\phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ is an isomorphism and that A_n and B_n cannot be written as $C_n \oplus D_n$, and they are all unital and separable. Suppose also that each A_n is a limit of finite-dimensional algebras, or is abelian. Then there is an almost permutation f such that up to finite sets

$$A_n \cong B_{f(n)}$$

If each A_n is finite-dimensional, or abelian, then ϕ admits a lift which is an isomorphism (up to finite sets).

Assume $OCA_{\infty} + MA_{\aleph_1}$. Suppose that $\phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ is an isomorphism and that A_n and B_n cannot be written as $C_n \oplus D_n$, and they are all unital and separable. Suppose also that each A_n is a limit of finite-dimensional algebras, or is abelian. Then there is an almost permutation f such that up to finite sets

$$A_n \cong B_{f(n)}$$

If each A_n is finite-dimensional, or abelian, then ϕ admits a lift which is an isomorphism (up to finite sets).

For reduced products of matrices this was previously proved by McKenney. Also, again in case A_n and B_n are matrices, was proved to be consistent (using forcing) by Ghasemi.

Assume $OCA_{\infty} + MA_{\aleph_1}$. Suppose that $\phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ is an isomorphism and that A_n and B_n cannot be written as $C_n \oplus D_n$, and they are all unital and separable. Suppose also that each A_n is a limit of finite-dimensional algebras, or is abelian. Then there is an almost permutation f such that up to finite sets

$$A_n \cong B_{f(n)}$$

If each A_n is finite-dimensional, or abelian, then ϕ admits a lift which is an isomorphism (up to finite sets).

For reduced products of matrices this was previously proved by McKenney. Also, again in case A_n and B_n are matrices, was proved to be consistent (using forcing) by Ghasemi.

Corollary

Assume $OCA_{\infty} + MA_{\aleph_1}$. Let X_i, Y_i be metrizable connected compact spaces, $X = \bigsqcup X_i$ and $Y = \bigsqcup Y_i$. Then $\beta X \setminus X \cong \beta Y \setminus Y$ if and only if there is an almost permutation f such that $X_i \cong Y_{f(i)}$ (if f(i) is defined).

イロト イ部ト イモト イモト 一日

Assume $OCA_{\infty} + MA_{\aleph_1}$. Suppose that $\phi: \prod A_n / \bigoplus A_n \to \prod B_n / \bigoplus B_n$ is an isomorphism and that A_n and B_n cannot be written as $C_n \oplus D_n$, and they are all unital and separable. Suppose also that each A_n is a limit of finite-dimensional algebras, or is abelian. Then there is an almost permutation f such that up to finite sets

$$A_n \cong B_{f(n)}$$

If each A_n is finite-dimensional, or abelian, then ϕ admits a lift which is an isomorphism (up to finite sets).

For reduced products of matrices this was previously proved by McKenney. Also, again in case A_n and B_n are matrices, was proved to be consistent (using forcing) by Ghasemi.

Corollary

Assume $OCA_{\infty} + MA_{\aleph_1}$. Let X_i , Y_i be metrizable connected compact spaces, $X = \bigsqcup X_i$ and $Y = \bigsqcup Y_i$. Then $\beta X \setminus X \cong \beta Y \setminus Y$ if and only if there is an almost permutation f such that $X_i \cong Y_{f(i)}$ (if f(i) is defined). If each X_i is infinite this is not true under CH.

イロト イ部ト イモト イモト 一日

Thank you!

୬**୯** _{14/14}

æ