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Countable torsion abelian groups

Fact
If A is a countable torsion abelian group, then A =

⊕
p∈P Ap

is the direct sum of its (possibly finite) p-primary components

Ap = {a ∈ A | (∃n ≥ 0 ) pna = 0 }.

Fact
Furthermore, if B =

⊕
p∈P Bp is a second countable torsion

abelian group, then:
A ∼= B iff Ap ∼= Bp for every prime p;
A, B are bi-embeddable iff Ap, Bp are bi-embeddable
for every prime p.
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Isomorphism vs bi-embeddability of abelian p-groups

Notation
For each prime p,
Ap is the space of countable abelian p-groups;
∼=p is the isomorphism relation on Ap;
≡p is the bi-embeddability relation on Ap.
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Isomorphism vs bi-embeddability of abelian p-groups

Notation
For each prime p,
Ap is the space of countable abelian p-groups;
∼=p is the isomorphism relation on Ap;
≡p is the bi-embeddability relation on Ap.

Theorem
∼=p and ≡p are incomparable with respect to Borel reducibility.
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Isomorphism vs bi-embeddability of abelian p-groups

Notation
For each prime p,
Ap is the space of countable abelian p-groups;
∼=p is the isomorphism relation on Ap;
≡p is the bi-embeddability relation on Ap.

Hypothesis (RC)
There exists a Ramsey cardinal.

Theorem (RC)
∼=p is strictly more complex than ≡p with respect to ∆1

2 reducibility.
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Comparing different primes

Theorem
If p 6= q are distinct primes, then the isomorphism relations
∼=p and ∼=q are ∆1

2 bireducible.

Theorem
If p 6= q are distinct primes, then the bi-embeddability relations
≡p and ≡q are ∆1

2 bireducible.

Conjecture
If p 6= q are distinct primes, then the isomorphism relations
∼=p and ∼=q are incomparable with respect to Borel reducibility.

Conjecture
If p 6= q are distinct primes, then the bi-embeddability relations
≡p and ≡q are incomparable with respect to Borel reducibility.
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The Ulm analysis of countable abelian p-groups

Definition
If A is a countable abelian p-group, then the α-th Ulm subgroup
Aα is defined inductively by:

A0 = A;
Aα+1 =

⋂
n<ω pnAα;

Aδ =
⋂
α<δ Aα, if δ is a limit ordinal.

Definition
The Ulm length τ(A) is the least ordinal τ such that Aτ = Aτ+1.

Remarks/Definition
τ(A) is a countable ordinal.
Aτ(A) is the maximal divisible subgroup of A.
A is reduced if Aτ(A) = 0.
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The Ulm analysis of countable abelian p-groups

Definition
For each α < τ(A), the αth Ulm factor is Aα = Aα/Aα+1.

Fact
Each Ulm factor Aα is a Σ-cyclic p-group; i.e.

Aα ∼=
⊕
n≥1

C (sn)
pn =

⊕
n≥1

Cpn ⊕ · · · ⊕ Cpn︸ ︷︷ ︸
sn times

where Cpn is cyclic of order pn and sn ∈ ω ∪ {ω }.
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The Ulm analysis of countable abelian p-groups

Theorem (Ulm)
If A and B are countable abelian p-groups, then A ∼= B iff
the following conditions are satisfied:

(i) τ(A) = τ(B);
(ii) Aα ∼= Bα for each α < τ(A) = τ(B);
(ii) The (possibly trivial) divisible subgroups Aτ(A), B τ(B)

are isomorphic.

Remark
Aτ(A) is isomorphic to a direct sum of d copies of the quasi-cyclic
group Z(p∞) for some d ∈ ω ∪ {ω }.
We write rk(Aτ(A)) = d .
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The Zippin realization theorem

Theorem (Zippin)
Suppose that 0 < τ < ω1 and that ( Cα | α < τ ) is a sequence of
nontrivial countable (possibly finite) Σ-cyclic p-groups. Then the
following statements are equivalent:

(i) There exists a countable reduced abelian p-group A
with τ(A) = τ such that Aα ∼= Cα for all α < τ .

(ii) Cα is unbounded for each α such that α + 1 < τ .

Definition

A Σ-cyclic p-group G =
⊕

n≥1 C(sn)
pn is bounded if there exists

an integer m ≥ 0 such that sn = 0 for all n ≥ m.
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Comparing different primes

Notation
If A ∈ Ap, then u(A) denotes the corresponding Ulm Invariant.

Theorem
If p 6= q are distinct primes, then the isomorphism relations
∼=p and ∼=q are ∆1

2 bireducible.

Proof.
There exist ∆1

2 maps

A ∈ Ap 7→ u(A) 7→ A′ ∈ Aq

such that u(A′) = u(A).
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Bi-embeddability: the Barwise-Eklof analysis

Theorem
The countable abelian p-groups A, B are bi-embeddable iff either:

(a) rk(Aτ(A)) = rk(Bτ(B)) = ω; or
(b) rk(Aτ(A)) = rk(Bτ(B)) < ω and the following conditions hold:

(i) τ(A) = τ(B);
(ii) if τ(A) = τ(B) = β + 1, then the final Ulm factors Aβ , Bβ

are bi-embeddable.
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Bi-embeddability of countable Σ-cyclic p-groups

Observation

If G =
⊕

n≥1 C(sn)
pn and H =

⊕
n≥1 C(tn)

pn , where each sn, tn ∈ ω ∪ {ω },
then G and H are bi-embeddable iff one of the following holds:

(i) G and H are both unbounded.
(ii) G and H are both infinite bounded Σ-cyclic p-groups and

mG = max{n | sn = ω } = max{n | tn = ω } = mH ;
sn = tn for all n ≥ mG = mH .

(iii) G and H are isomorphic finite p-groups.
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Bi-embeddability of countable Σ-cyclic p-groups

Observation

If G =
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pn , where each sn, tn ∈ ω ∪ {ω },
then G and H are bi-embeddable iff one of the following holds:

(i) G and H are both unbounded.
(ii) G and H are both infinite bounded Σ-cyclic p-groups and

mG = max{n | sn = ω } = max{n | tn = ω } = mH ;
sn = tn for all n ≥ mG = mH .

(iii) G and H are isomorphic finite p-groups.

Remark
In particular, there are only countably many countable Σ-cyclic
p-groups up to bi-embeddability.
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Bi-embeddability of countable Σ-cyclic p-groups

Observation

If G =
⊕

n≥1 C(sn)
pn and H =

⊕
n≥1 C(tn)

pn , where each sn, tn ∈ ω ∪ {ω },
then G and H are bi-embeddable iff one of the following holds:

(i) G and H are both unbounded.
(ii) G and H are both infinite bounded Σ-cyclic p-groups and

mG = max{n | sn = ω } = max{n | tn = ω } = mH ;
sn = tn for all n ≥ mG = mH .

(iii) G and H are isomorphic finite p-groups.

Remark
Each bi-embeddability class countable Σ-cyclic p-groups contains
a “maximal” isomorphism class.
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Bi-embeddability of countable Σ-cyclic p-groups

Observation

If G =
⊕

n≥1 C(sn)
pn and H =

⊕
n≥1 C(tn)

pn , where each sn, tn ∈ ω ∪ {ω },
then G and H are bi-embeddable iff one of the following holds:

(i) G and H are both unbounded.
(ii) G and H are both infinite bounded Σ-cyclic p-groups and

mG = max{n | sn = ω } = max{n | tn = ω } = mH ;
sn = tn for all n ≥ mG = mH .

(iii) G and H are isomorphic finite p-groups.

Theorem
If p 6= q are distinct primes, then the bi-embeddability relations
≡p and ≡q are ∆1

2 bireducible.
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Bi-embeddability vs isomorphism

Lemma
The bi-embeddability relation ≡p is ∆1

2 reducible to the
isomorphism relation ∼=p.

Proof.
In fact, there exists a ∆1

2 map which selects the maximal isomorphism
class within each bi-embeddability class.
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Bi-embeddability vs isomorphism

Lemma
The bi-embeddability relation ≡p is not Borel reducible to the
isomorphism relation ∼=p.

Proof.
D∞ = {A ∈ Ap | rk(Aτ(A)) = ω } is a single ≡p-class.
Every ∼=p-class is Borel.
Thus it is enough to prove that D∞ is not Borel.

Simon Thomas (Rutgers) Luminy 2017 12th October 2017



Bi-embeddability vs isomorphism

Lemma
The bi-embeddability relation ≡p is not Borel reducible to the
isomorphism relation ∼=p.

Proof.
D∞ = {A ∈ Ap | rk(Aτ(A)) = ω } is a single ≡p-class.

Every ∼=p-class is Borel.
Thus it is enough to prove that D∞ is not Borel.

Simon Thomas (Rutgers) Luminy 2017 12th October 2017



Bi-embeddability vs isomorphism

Lemma
The bi-embeddability relation ≡p is not Borel reducible to the
isomorphism relation ∼=p.

Proof.
D∞ = {A ∈ Ap | rk(Aτ(A)) = ω } is a single ≡p-class.
Every ∼=p-class is Borel.

Thus it is enough to prove that D∞ is not Borel.

Simon Thomas (Rutgers) Luminy 2017 12th October 2017



Bi-embeddability vs isomorphism

Lemma
The bi-embeddability relation ≡p is not Borel reducible to the
isomorphism relation ∼=p.

Proof.
D∞ = {A ∈ Ap | rk(Aτ(A)) = ω } is a single ≡p-class.
Every ∼=p-class is Borel.
Thus it is enough to prove that D∞ is not Borel.

Simon Thomas (Rutgers) Luminy 2017 12th October 2017



D∞ is a complete analytic subset of Ap

Definition (Feferman)
For each infinite tree T ⊆ ω<ω, let Gp(T ) be the abelian p-group
generated by the elements {at | t ∈ T } subject to the relations

p at _ ` = at

p a∅ = 0

Proof.
Gp(T ) is reduced iff T is well-founded.
Let Gp(T )(ω) be the direct sum of ω copies of Gp(T ).
Gp(T )(ω) ∈ D∞ iff T is not well-founded.
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Bi-embeddability vs isomorphism

Theorem
∼=p is not Borel reducible to ≡p.

Proof.
Suppose that ∼=p is Borel reducible to ≡p.
By Shoenfield Absoluteness, we can suppose that 2ω > ω1.
But there are 2ω many ∼=p-classes and only ω1 many ≡p-classes.

Theorem (RC)
∼=p is not ∆1

2 reducible to ≡p.

Proof.
By Martin-Solovay Absoluteness.
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Countable torsion abelian groups

Fact
If A is a countable torsion abelian group, then A =

⊕
p∈P Ap

is the direct sum of its (possibly finite) p-primary components

Ap = {a ∈ A | ( ∃n ≥ 0 ) pna = 0 }.

Fact
Furthermore, if B =

⊕
p∈P Bp is a second countable torsion

abelian group, then:
A ∼= B ⇐⇒ Ap ∼=p Bp for every prime p;
A ≡ B ⇐⇒ Ap ≡p Bp for every prime p.
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Countable torsion abelian groups

Notation
Ator is the space of countable torsion abelian groups;
∼=tor is the isomorphism relation on Ator ;
≡tor is the bi-embeddability relation on Ator .
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Countable torsion abelian groups

Notation
Ator is the space of countable torsion abelian groups;
∼=tor is the isomorphism relation on Ator ;
≡tor is the bi-embeddability relation on Ator .

Theorem
∼=tor and ≡tor are incomparable with respect to Borel reducibility.
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Countable torsion abelian groups

Notation
Ator is the space of countable torsion abelian groups;
∼=tor is the isomorphism relation on Ator ;
≡tor is the bi-embeddability relation on Ator .

Theorem (RC)
∼=tor is strictly more complex than ≡tor with respect to ∆1

2 reducibility.
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The same old same old ...

Lemma
The bi-embeddability relation ≡p is not Borel reducible to the
isomorphism relation ∼=tor .

Proof.
D∞ = {A ∈ Ap | rk(Aτ(A)) = ω } is a complete analytic ≡p-class.

Lemma
The bi-embeddability relation ≡tor is ∆1

2 reducible to the
isomorphism relation ∼=tor .

Proof.
There exists a ∆1

2 map which selects an isomorphism class within
each bi-embeddability class.
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The same old same old ...

Theorem
∼=p is not Borel reducible to ≡tor .

Theorem (RC)
∼=p is not ∆1

2 reducible to ≡tor .
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The same old same old ...

Theorem
∼=p is not Borel reducible to ≡tor .

Theorem (RC)
∼=p is not ∆1

2 reducible to ≡tor .

Proof.
Otherwise, we can pass to a suitable forcing extension

V [G] |= ωω1 < (2ω)<ω1

and then apply absoluteness.
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The same old same old ...

Theorem
∼=p is not Borel reducible to ≡tor .

Theorem (RC)
∼=p is not ∆1

2 reducible to ≡tor .

Proof.
Otherwise, we can pass to a suitable forcing extension

V [G] |= ωω2 < 2ω1

and then apply absoluteness.
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Pinned names

Definition (Kanovei)
Let E be an analytic equivalence relation on the Polish space X
and let P be a forcing notion. Then a P-name τ is E-pinned if:

P τ ∈ X VP

P×P τ left EVP×P
τright

Here τ left, τright are the (P× P)-names such that if G × H is
(P× P)-generic, then τ left[G × H] = τ [G] and τright[G × H] = τ [H].
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Pinned names

Example
Let Ecntble be the Borel equivalence relation on Rω defined by

z Ecntble z ′ ⇐⇒ {z(n) | n ∈ ω} = {z ′(n) | n ∈ ω}.

Let P consist of all finite partial functions p : ω → R.
Let G ⊆ P be generic and let g =

⋃
G.

If τ is the canonical P-name of g, then τ is Ecntble-pinned.
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Example
Let Ecntble be the Borel equivalence relation on Rω defined by

z Ecntble z ′ ⇐⇒ {z(n) | n ∈ ω} = {z ′(n) | n ∈ ω}.

Let P consist of all finite partial functions p : ω → R.
Let G ⊆ P be generic and let g =

⋃
G.

If τ is the canonical P-name of g, then τ is Ecntble-pinned.

Simon Thomas (Rutgers) Luminy 2017 12th October 2017



Pinned names

Definition (Zapletal)
Let E be an analytic equivalence relation on the Polish space X
and let P be a forcing notion. Then we can extend E to the class
X (P,E) of E-pinned P-names by defining

σ E σ′ ⇐⇒ P×P σ left E σ′right

Let λP(E) be the number of E-pinned P-names up to E-equivalence.
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Pinned names

Definition (Zapletal)
Let E be an analytic equivalence relation on the Polish space X
and let P be a forcing notion. Then we can extend E to the class
X (P,E) of E-pinned P-names by defining

σ E σ′ ⇐⇒ P×P σ left E σ′right

Let λP(E) be the number of E-pinned P-names up to E-equivalence.

Theorem
If E, F are analytic equivalence relations and E ≤B F,
then λP(E) ≤ λP(F ).
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Pinned names

Definition (Zapletal)
Let E be an analytic equivalence relation on the Polish space X
and let P be a forcing notion. Then we can extend E to the class
X (P,E) of E-pinned P-names by defining

σ E σ′ ⇐⇒ P×P σ left E σ′right

Let λP(E) be the number of E-pinned P-names up to E-equivalence.

Theorem
Suppose that κ is a Ramsey cardinal and that |P| < κ. If E, F are
analytic equivalence relations and E is ∆1

2 reducible to F ,
then λP(E) ≤ λP(F ).
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Counting pinned names

Definition
Let P be the notion of forcing consisting of all finite partial
functions p : ω → ω1.

Proposition
λP(≡tor ) = ωω2 .

Proposition
λP(∼=p) = 2ω1 .

The End
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