The isomorphism and bi-embeddability relations for countable torsion abelian groups

Simon Thomas (Joint work with Filippo Calderoni)

Rutgers University

12th October 2017

Countable torsion abelian groups

Simon Thomas (Rutgers)

12th October 2017

Image: A match a ma

Fact

If *A* is a countable torsion abelian group, then $A = \bigoplus_{p \in P} A_p$ is the direct sum of its (possibly finite) *p*-primary components

$$A_{p} = \{ a \in A \mid (\exists n \geq 0) p^{n}a = 0 \}.$$

Fact

If *A* is a countable torsion abelian group, then $A = \bigoplus_{p \in P} A_p$ is the direct sum of its (possibly finite) *p*-primary components

$$A_{p} = \{ a \in A \mid (\exists n \geq 0) p^{n}a = 0 \}.$$

Fact

Furthermore, if $B = \bigoplus_{p \in P} B_p$ is a second countable torsion abelian group, then:

• $A \cong B$ iff $A_p \cong B_p$ for every prime p;

Fact

If *A* is a countable torsion abelian group, then $A = \bigoplus_{p \in P} A_p$ is the direct sum of its (possibly finite) *p*-primary components

$$A_{p} = \{ a \in A \mid (\exists n \geq 0) p^{n}a = 0 \}.$$

Fact

Furthermore, if $B = \bigoplus_{p \in P} B_p$ is a second countable torsion abelian group, then:

- $A \cong B$ iff $A_p \cong B_p$ for every prime p;
- *A*, *B* are bi-embeddable iff *A*_p, *B*_p are bi-embeddable for every prime *p*.

For each prime p,

- A_p is the space of countable abelian *p*-groups;
- \cong_{ρ} is the isomorphism relation on \mathcal{A}_{ρ} ;
- \equiv_{p} is the bi-embeddability relation on \mathcal{A}_{p} .

For each prime p,

- A_p is the space of countable abelian *p*-groups;
- \cong_{ρ} is the isomorphism relation on \mathcal{A}_{ρ} ;
- \equiv_{ρ} is the bi-embeddability relation on \mathcal{A}_{ρ} .

Theorem

 \cong_p and \equiv_p are incomparable with respect to Borel reducibility.

For each prime p,

- A_p is the space of countable abelian *p*-groups;
- \cong_{ρ} is the isomorphism relation on \mathcal{A}_{ρ} ;
- \equiv_{ρ} is the bi-embeddability relation on \mathcal{A}_{ρ} .

Hypothesis (RC)

There exists a Ramsey cardinal.

Theorem (RC)

 \cong_p is strictly more complex than \equiv_p with respect to Δ_2^1 reducibility.

イロト イポト イヨト イヨ

Comparing different primes

Simon Thomas (Rutgers)

Luminy 2017

12th October 2017

Comparing different primes

Theorem

If $p \neq q$ are distinct primes, then the isomorphism relations \cong_p and \cong_q are Δ_2^1 bireducible.

Theorem

If $p \neq q$ are distinct primes, then the bi-embeddability relations \equiv_p and \equiv_q are Δ_2^1 bireducible.

▲撮 ▶ ▲ 国 ▶ ▲ 国

Comparing different primes

Theorem

If $p \neq q$ are distinct primes, then the isomorphism relations \cong_p and \cong_q are Δ_2^1 bireducible.

Theorem

If $p \neq q$ are distinct primes, then the bi-embeddability relations \equiv_p and \equiv_q are Δ_2^1 bireducible.

Conjecture

If $p \neq q$ are distinct primes, then the isomorphism relations \cong_p and \cong_q are incomparable with respect to Borel reducibility.

Conjecture

If $p \neq q$ are distinct primes, then the bi-embeddability relations \equiv_p and \equiv_q are incomparable with respect to Borel reducibility.

Simon Thomas (Rutgers)

Simon Thomas (Rutgers)

Luminy 2017

12th October 2017

Definition

If A is a countable abelian p-group, then the α -th Ulm subgroup A^{α} is defined inductively by:

•
$$A^0 = A;$$

•
$$A^{\alpha+1} = \bigcap_{n < \omega} p^n A^{\alpha};$$

•
$$A^{\delta} = \bigcap_{\alpha < \delta} A^{\alpha}$$
, if δ is a limit ordinal.

Definition

If A is a countable abelian p-group, then the α -th UIm subgroup A^{α} is defined inductively by:

•
$$A^0 = A;$$

•
$$A^{\alpha+1} = \bigcap_{n < \omega} p^n A^{\alpha};$$

•
$$A^{\delta} = igcap_{lpha < \delta} A^{lpha}$$
, if δ is a limit ordinal.

Definition

The Ulm length $\tau(A)$ is the least ordinal τ such that $A^{\tau} = A^{\tau+1}$.

Definition

If A is a countable abelian p-group, then the α -th UIm subgroup A^{α} is defined inductively by:

•
$$A^0 = A;$$

•
$$A^{\alpha+1} = \bigcap_{n < \omega} p^n A^{\alpha};$$

•
$$A^{\delta} = igcap_{lpha < \delta} A^{lpha}$$
, if δ is a limit ordinal.

Definition

The Ulm length $\tau(A)$ is the least ordinal τ such that $A^{\tau} = A^{\tau+1}$.

Remarks/Definition

• $\tau(A)$ is a countable ordinal.

Simon Thomas (Rutgers)

Luminy 2017

12th October 2017

Definition

If A is a countable abelian p-group, then the α -th UIm subgroup A^{α} is defined inductively by:

•
$$A^0 = A;$$

•
$$A^{\alpha+1} = \bigcap_{n < \omega} p^n A^{\alpha};$$

•
$$A^{\delta} = igcap_{lpha < \delta} A^{lpha}$$
, if δ is a limit ordinal.

Definition

The Ulm length $\tau(A)$ is the least ordinal τ such that $A^{\tau} = A^{\tau+1}$.

Remarks/Definition

- $\tau(A)$ is a countable ordinal.
- $A^{\tau(A)}$ is the maximal divisible subgroup of A.

Definition

If A is a countable abelian p-group, then the α -th UIm subgroup A^{α} is defined inductively by:

•
$$A^0 = A;$$

•
$$A^{\alpha+1} = \bigcap_{n < \omega} p^n A^{\alpha};$$

•
$$A^{\delta} = igcap_{lpha < \delta} A^{lpha}$$
, if δ is a limit ordinal.

Definition

The Ulm length $\tau(A)$ is the least ordinal τ such that $A^{\tau} = A^{\tau+1}$.

Remarks/Definition

- $\tau(A)$ is a countable ordinal.
- $A^{\tau(A)}$ is the maximal divisible subgroup of A.
- A is reduced if $A^{\tau(A)} = 0$.

Definition

For each $\alpha < \tau(A)$, the α th Ulm factor is $A_{\alpha} = A^{\alpha}/A^{\alpha+1}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

For each $\alpha < \tau(A)$, the α th Ulm factor is $A_{\alpha} = A^{\alpha}/A^{\alpha+1}$.

Fact

Each Ulm factor A_{α} is a Σ -cyclic *p*-group; i.e.

$$A_{lpha} \cong \bigoplus_{n \ge 1} C_{p^n}^{(s_n)} = \bigoplus_{n \ge 1} \underbrace{C_{p^n} \oplus \cdots \oplus C_{p^n}}_{s_n \text{ times}}$$

where C_{p^n} is cyclic of order p^n and $s_n \in \omega \cup \{\omega\}$.

.

Theorem (Ulm)

If A and B are countable abelian p-groups, then $A \cong B$ iff the following conditions are satisfied:

(i) $\tau(A) = \tau(B);$

- (ii) $A_{\alpha} \cong B_{\alpha}$ for each $\alpha < \tau(A) = \tau(B)$;
- (ii) The (possibly trivial) divisible subgroups $A^{\tau(A)}$, $B^{\tau(B)}$ are isomorphic.

Theorem (Ulm)

If A and B are countable abelian p-groups, then $A \cong B$ iff the following conditions are satisfied:

(i) $\tau(A) = \tau(B);$

(ii) $A_{\alpha} \cong B_{\alpha}$ for each $\alpha < \tau(A) = \tau(B)$;

(ii) The (possibly trivial) divisible subgroups $A^{\tau(A)}$, $B^{\tau(B)}$ are isomorphic.

Remark

A^{τ(A)} is isomorphic to a direct sum of *d* copies of the quasi-cyclic group Z(p[∞]) for some *d* ∈ ω ∪ { ω }.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Ulm)

If A and B are countable abelian p-groups, then $A \cong B$ iff the following conditions are satisfied:

(i) $\tau(A) = \tau(B);$

(ii) $A_{\alpha} \cong B_{\alpha}$ for each $\alpha < \tau(A) = \tau(B)$;

(ii) The (possibly trivial) divisible subgroups $A^{\tau(A)}$, $B^{\tau(B)}$ are isomorphic.

Remark

- A^{τ(A)} is isomorphic to a direct sum of *d* copies of the quasi-cyclic group Z(p[∞]) for some *d* ∈ ω ∪ { ω }.
- We write $rk(A^{\tau(A)}) = d$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Zippin realization theorem

Simon Thomas (Rutgers)

12th October 2017

イロト イヨト イヨト

Theorem (Zippin)

Suppose that $0 < \tau < \omega_1$ and that ($C_{\alpha} \mid \alpha < \tau$) is a sequence of nontrivial countable (possibly finite) Σ -cyclic p-groups. Then the following statements are equivalent:

Theorem (Zippin)

Suppose that $0 < \tau < \omega_1$ and that ($C_{\alpha} \mid \alpha < \tau$) is a sequence of nontrivial countable (possibly finite) Σ -cyclic p-groups. Then the following statements are equivalent:

(i) There exists a countable reduced abelian p-group A with $\tau(A) = \tau$ such that $A_{\alpha} \cong C_{\alpha}$ for all $\alpha < \tau$.

Theorem (Zippin)

Suppose that $0 < \tau < \omega_1$ and that ($C_{\alpha} \mid \alpha < \tau$) is a sequence of nontrivial countable (possibly finite) Σ -cyclic p-groups. Then the following statements are equivalent:

- (i) There exists a countable reduced abelian p-group A with $\tau(A) = \tau$ such that $A_{\alpha} \cong C_{\alpha}$ for all $\alpha < \tau$.
- (ii) C_{α} is unbounded for each α such that $\alpha + 1 < \tau$.

Definition

A Σ -cyclic *p*-group $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ is bounded if there exists an integer $m \ge 0$ such that $s_n = 0$ for all $n \ge m$.

イロト イ団ト イヨト イヨト

If $A \in \mathcal{A}_{\rho}$, then $\mathbf{u}(A)$ denotes the corresponding UIm Invariant.

• • • • • • • • • • • • •

If $A \in \mathcal{A}_{\rho}$, then $\mathbf{u}(A)$ denotes the corresponding UIm Invariant.

Theorem

If $p \neq q$ are distinct primes, then the isomorphism relations \cong_p and \cong_q are Δ_2^1 bireducible.

Proof.

There exist Δ_2^1 maps

$$oldsymbol{A}\in\mathcal{A}_{oldsymbol{
ho}}\mapsto oldsymbol{\mathsf{u}}(oldsymbol{A})\mapstooldsymbol{A}'\in\mathcal{A}_{oldsymbol{q}}$$

such that $\mathbf{u}(A') = \mathbf{u}(A)$.

Bi-embeddability: the Barwise-Eklof analysis

Theorem

The countable abelian p-groups A, B are bi-embeddable iff either:

< ∃ >

The countable abelian p-groups A, B are bi-embeddable iff either:

(a)
$$\operatorname{rk}(A^{\tau(A)}) = \operatorname{rk}(B^{\tau(B)}) = \omega;$$

- 3 →

The countable abelian p-groups A, B are bi-embeddable iff either: (a) $rk(A^{\tau(A)}) = rk(B^{\tau(B)}) = \omega$; or (b) $rk(A^{\tau(A)}) = rk(B^{\tau(B)}) < \omega$ and the following conditions hold:

The countable abelian p-groups A, B are bi-embeddable iff either: (a) $rk(A^{\tau(A)}) = rk(B^{\tau(B)}) = \omega$; or (b) $rk(A^{\tau(A)}) = rk(B^{\tau(B)}) < \omega$ and the following conditions hold: (i) $\tau(A) = \tau(B)$;

The countable abelian p-groups A, B are bi-embeddable iff either:

(a)
$$\operatorname{rk}(A^{\tau(A)}) = \operatorname{rk}(B^{\tau(B)}) = \omega$$
; or

(b) $\operatorname{rk}(A^{\tau(A)}) = \operatorname{rk}(B^{\tau(B)}) < \omega$ and the following conditions hold:

(i)
$$\tau(A) = \tau(B)$$
;
(ii) if $\tau(A) = \tau(B) = \beta + 1$, then the final UIm factors A_{β} , B_{β} are bi-embeddable.

Bi-embeddability of countable Σ -cyclic *p*-groups

Observation

If $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ and $H = \bigoplus_{n \ge 1} C_{p^n}^{(t_n)}$, where each s_n , $t_n \in \omega \cup \{\omega\}$, then *G* and *H* are bi-embeddable iff one of the following holds:

Bi-embeddability of countable Σ -cyclic *p*-groups

Observation

If $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ and $H = \bigoplus_{n \ge 1} C_{p^n}^{(t_n)}$, where each s_n , $t_n \in \omega \cup \{\omega\}$, then G and H are bi-embeddable iff one of the following holds:

(i) G and H are both unbounded.

Observation

If $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ and $H = \bigoplus_{n \ge 1} C_{p^n}^{(t_n)}$, where each s_n , $t_n \in \omega \cup \{\omega\}$, then *G* and *H* are bi-embeddable iff one of the following holds:

- (i) G and H are both unbounded.
- (ii) G and H are both infinite bounded Σ -cyclic p-groups and

•
$$m_G = \max\{n \mid s_n = \omega\} = \max\{n \mid t_n = \omega\} = m_H;$$

•
$$s_n = t_n$$
 for all $n \ge m_G = m_H$.
If $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ and $H = \bigoplus_{n \ge 1} C_{p^n}^{(t_n)}$, where each s_n , $t_n \in \omega \cup \{\omega\}$, then *G* and *H* are bi-embeddable iff one of the following holds:

- (i) G and H are both unbounded.
- (ii) G and H are both infinite bounded Σ -cyclic p-groups and

•
$$m_G = \max\{n \mid s_n = \omega\} = \max\{n \mid t_n = \omega\} = m_H;$$

•
$$s_n = t_n$$
 for all $n \ge m_G = m_H$.

(iii) G and H are isomorphic finite p-groups.

If $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ and $H = \bigoplus_{n \ge 1} C_{p^n}^{(t_n)}$, where each s_n , $t_n \in \omega \cup \{\omega\}$, then *G* and *H* are bi-embeddable iff one of the following holds:

- (i) G and H are both unbounded.
- (ii) G and H are both infinite bounded Σ -cyclic p-groups and

•
$$m_G = \max\{ n \mid s_n = \omega \} = \max\{ n \mid t_n = \omega \} = m_H;$$

•
$$s_n = t_n$$
 for all $n \ge m_G = m_{H^2}$

(iii) G and H are isomorphic finite p-groups.

Remark

In particular, there are only countably many countable Σ -cyclic *p*-groups up to bi-embeddability.

A D M A A A M M

If $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ and $H = \bigoplus_{n \ge 1} C_{p^n}^{(t_n)}$, where each s_n , $t_n \in \omega \cup \{\omega\}$, then *G* and *H* are bi-embeddable iff one of the following holds:

- (i) G and H are both unbounded.
- (ii) G and H are both infinite bounded Σ -cyclic p-groups and

•
$$m_G = \max\{ n \mid s_n = \omega \} = \max\{ n \mid t_n = \omega \} = m_H;$$

•
$$s_n = t_n$$
 for all $n \ge m_G = m_{H^1}$

(iii) G and H are isomorphic finite p-groups.

Remark

Each bi-embeddability class countable Σ -cyclic *p*-groups contains a "maximal" isomorphism class.

A D M A A A M M

If $G = \bigoplus_{n \ge 1} C_{p^n}^{(s_n)}$ and $H = \bigoplus_{n \ge 1} C_{p^n}^{(t_n)}$, where each s_n , $t_n \in \omega \cup \{\omega\}$, then *G* and *H* are bi-embeddable iff one of the following holds:

- (i) G and H are both unbounded.
- (ii) G and H are both infinite bounded Σ -cyclic p-groups and

•
$$m_G = \max\{ n \mid s_n = \omega \} = \max\{ n \mid t_n = \omega \} = m_H;$$

•
$$s_n = t_n$$
 for all $n \ge m_G = m_{H^2}$

(iii) G and H are isomorphic finite p-groups.

Theorem

If $p \neq q$ are distinct primes, then the bi-embeddability relations \equiv_p and \equiv_q are Δ_2^1 bireducible.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The bi-embeddability relation \equiv_p is Δ_2^1 reducible to the isomorphism relation \cong_p .

The bi-embeddability relation \equiv_p is Δ_2^1 reducible to the isomorphism relation \cong_p .

Proof.

In fact, there exists a Δ_2^1 map which selects the maximal isomorphism class within each bi-embeddability class.

The bi-embeddability relation \equiv_p is not Borel reducible to the isomorphism relation \cong_p .

< 🗇 🕨 < 🖃 >

The bi-embeddability relation \equiv_p is not Borel reducible to the isomorphism relation \cong_p .

Proof.

•
$$D_{\infty} = \{ A \in \mathcal{A}_{\rho} \mid \mathsf{rk}(A^{\tau(A)}) = \omega \}$$
 is a single \equiv_{ρ} -class.

The bi-embeddability relation \equiv_p is not Borel reducible to the isomorphism relation \cong_p .

Proof.

•
$$D_{\infty} = \{ A \in \mathcal{A}_{\rho} \mid \mathsf{rk}(A^{\tau(A)}) = \omega \} \text{ is a single } \equiv_{\rho} \text{-class.}$$

• Every \cong_{ρ} -class is Borel.

< 🗇 🕨 < 🖃 >

The bi-embeddability relation \equiv_p is not Borel reducible to the isomorphism relation \cong_p .

Proof.

•
$$D_{\infty} = \{ A \in \mathcal{A}_{\rho} \mid \mathsf{rk}(A^{\tau(A)}) = \omega \} \text{ is a single } \equiv_{\rho} \text{-class.}$$

- Every \cong_{ρ} -class is Borel.
- Thus it is enough to prove that D_{∞} is not Borel.

D_{∞} is a complete analytic subset of \mathcal{A}_{ρ}

Simon Thomas (Rutgers)

12th October 2017

イロト イポト イヨト イヨ

For each infinite tree $T \subseteq \omega^{<\omega}$, let $G_p(T)$ be the abelian p-group generated by the elements { $a_t | t \in T$ } subject to the relations

•
$$p a_t - \ell = a_t$$

● *p a*_∅ = 0

For each infinite tree $T \subseteq \omega^{<\omega}$, let $G_p(T)$ be the abelian p-group generated by the elements $\{a_t \mid t \in T\}$ subject to the relations

•
$$p a_t - \ell = a_t$$

● *p a*_∅ = 0

Proof.

• $G_{\rho}(T)$ is reduced iff *T* is well-founded.

.

For each infinite tree $T \subseteq \omega^{<\omega}$, let $G_p(T)$ be the abelian p-group generated by the elements $\{a_t \mid t \in T\}$ subject to the relations

•
$$p a_t - \ell = a_t$$

● p a_∅ = 0

Proof.

- $G_{\rho}(T)$ is reduced iff *T* is well-founded.
- Let $G_p(T)^{(\omega)}$ be the direct sum of ω copies of $G_p(T)$.

For each infinite tree $T \subseteq \omega^{<\omega}$, let $G_p(T)$ be the abelian p-group generated by the elements $\{a_t \mid t \in T\}$ subject to the relations

•
$$p a_t - \ell = a_t$$

● p a_∅ = 0

Proof.

- $G_{\rho}(T)$ is reduced iff *T* is well-founded.
- Let $G_p(T)^{(\omega)}$ be the direct sum of ω copies of $G_p(T)$.
- $G_{\rho}(T)^{(\omega)} \in D_{\infty}$ iff *T* is not well-founded.

イロト イポト イヨト イヨ

Theorem

 \cong_p is not Borel reducible to \equiv_p .

Theorem

 \cong_p is not Borel reducible to \equiv_p .

Proof.

• Suppose that \cong_{p} is Borel reducible to \equiv_{p} .

- 3 >

Theorem

 \cong_p is not Borel reducible to \equiv_p .

Proof.

- Suppose that \cong_p is Borel reducible to \equiv_p .
- By Shoenfield Absoluteness, we can suppose that $2^{\omega} > \omega_1$.

Theorem

 \cong_p is not Borel reducible to \equiv_p .

Proof.

- Suppose that \cong_p is Borel reducible to \equiv_p .
- By Shoenfield Absoluteness, we can suppose that $2^{\omega} > \omega_1$.
- But there are 2^{ω} many \cong_{p} -classes and only ω_{1} many \equiv_{p} -classes.

Theorem

 \cong_p is not Borel reducible to \equiv_p .

Proof.

- Suppose that \cong_p is Borel reducible to \equiv_p .
- By Shoenfield Absoluteness, we can suppose that $2^{\omega} > \omega_1$.
- But there are 2^{ω} many \cong_{p} -classes and only ω_{1} many \equiv_{p} -classes.

Theorem (RC)

$$\cong_{p}$$
 is not Δ_{2}^{1} reducible to \equiv_{p} .

Proof.

By Martin-Solovay Absoluteness.

Fact

If *A* is a countable torsion abelian group, then $A = \bigoplus_{p \in P} A_p$ is the direct sum of its (possibly finite) *p*-primary components

$$A_{p} = \{ a \in A \mid (\exists n \geq 0) p^{n} a = 0 \}.$$

Fact

Furthermore, if $B = \bigoplus_{p \in P} B_p$ is a second countable torsion abelian group, then:

•
$$A \cong B \iff A_p \cong_p B_p$$
 for every prime p ;

•
$$A \equiv B \iff A_p \equiv_p B_p$$
 for every prime p .

Notation

- A_{tor} is the space of countable torsion abelian groups;
- \cong_{tor} is the isomorphism relation on \mathcal{A}_{tor} ;
- \equiv_{tor} is the bi-embeddability relation on \mathcal{A}_{tor} .

Notation

- A_{tor} is the space of countable torsion abelian groups;
- \cong_{tor} is the isomorphism relation on \mathcal{A}_{tor} ;
- \equiv_{tor} is the bi-embeddability relation on \mathcal{A}_{tor} .

Theorem

 \cong_{tor} and \equiv_{tor} are incomparable with respect to Borel reducibility.

Notation

- A_{tor} is the space of countable torsion abelian groups;
- \cong_{tor} is the isomorphism relation on \mathcal{A}_{tor} ;
- \equiv_{tor} is the bi-embeddability relation on \mathcal{A}_{tor} .

Theorem (RC)

 \cong_{tor} is strictly more complex than \equiv_{tor} with respect to Δ_2^1 reducibility.

The bi-embeddability relation \equiv_p is not Borel reducible to the isomorphism relation \cong_{tor} .

Proof.

 $D_{\infty} = \{ A \in \mathcal{A}_{p} \mid \mathsf{rk}(A^{\tau(A)}) = \omega \}$ is a complete analytic \equiv_{p} -class.

The bi-embeddability relation \equiv_p is not Borel reducible to the isomorphism relation \cong_{tor} .

Proof.

$$D_{\infty} = \{ A \in \mathcal{A}_{p} \mid \mathsf{rk}(A^{\tau(A)}) = \omega \}$$
 is a complete analytic \equiv_{p} -class.

Lemma

The bi-embeddability relation \equiv_{tor} is Δ_2^1 reducible to the isomorphism relation \cong_{tor} .

Proof.

There exists a Δ_2^1 map which selects an isomorphism class within each bi-embeddability class.

Simon Thomas (Rutgers)

Luminy 2017

12th October 2017

The same old same old ...

Theorem

 \cong_{p} is not Borel reducible to \equiv_{tor} .

Theorem (RC)

 \cong_{p} is not Δ_{2}^{1} reducible to \equiv_{tor} .

- 3 >

The same old same old ...

Theorem

 \cong_{p} is not Borel reducible to \equiv_{tor} .

Theorem (RC)

$$\cong_{\rho}$$
 is not Δ_2^1 reducible to \equiv_{tor} .

Proof.

Otherwise, we can pass to a suitable forcing extension

$$V[G] \models \omega_1^\omega < (2^\omega)^{<\omega_1}$$

and then apply absoluteness.

Simon Thomas	(Rutgers)
--------------	-----------

3

The same old same old ...

Theorem

 \cong_{p} is not Borel reducible to \equiv_{tor} .

Theorem (RC)

$$\cong_{\rho}$$
 is not Δ_2^1 reducible to \equiv_{tor} .

Proof.

Otherwise, we can pass to a suitable forcing extension

 $V[G] \models \omega_2^{\omega} < \mathbf{2}^{\omega_1}$

and then apply absoluteness.

Simon Thomas (H

< ロ > < 同 > < 回 > < 回 >

Simon Thomas (Rutgers)

Definition (Kanovei)

Let *E* be an analytic equivalence relation on the Polish space *X* and let \mathbb{P} be a forcing notion. Then a \mathbb{P} -name τ is *E*-pinned if:

•
$$\Vdash_{\mathbb{P}} \ au \in X^{V^{\mathbb{P}}}$$

• $\Vdash_{\mathbb{P} imes \mathbb{P}} \ au_{left} \ E^{V^{\mathbb{P} imes \mathbb{P}}} \ au_{right}$

Here τ_{left} , τ_{right} are the $(\mathbb{P} \times \mathbb{P})$ -names such that if $G \times H$ is $(\mathbb{P} \times \mathbb{P})$ -generic, then $\tau_{left}[G \times H] = \tau[G]$ and $\tau_{right}[G \times H] = \tau[H]$.

.

• Let E_{cntble} be the Borel equivalence relation on \mathbb{R}^{ω} defined by

$$z \in E_{cntble} z' \iff \{z(n) \mid n \in \omega\} = \{z'(n) \mid n \in \omega\}.$$

A (10) A (10) A (10)

• Let E_{cntble} be the Borel equivalence relation on \mathbb{R}^{ω} defined by

$$z \ \mathcal{E}_{\textit{cntble}} \ z' \quad \Longleftrightarrow \quad \{z(n) \mid n \in \omega\} = \{z'(n) \mid n \in \omega\}.$$

• Let \mathbb{P} consist of all finite partial functions $p: \omega \to \mathbb{R}$.

< ∃ >

• Let E_{cntble} be the Borel equivalence relation on \mathbb{R}^{ω} defined by

$$z \in \mathcal{E}_{cntble} z' \iff \{z(n) \mid n \in \omega\} = \{z'(n) \mid n \in \omega\}.$$

• Let \mathbb{P} consist of all finite partial functions $p: \omega \to \mathbb{R}$.

• Let $G \subseteq \mathbb{P}$ be generic and let $g = \bigcup G$.

• Let E_{cntble} be the Borel equivalence relation on \mathbb{R}^{ω} defined by

$$z E_{cntble} z' \iff \{z(n) \mid n \in \omega\} = \{z'(n) \mid n \in \omega\}.$$

- Let \mathbb{P} consist of all finite partial functions $p: \omega \to \mathbb{R}$.
- Let $G \subseteq \mathbb{P}$ be generic and let $g = \bigcup G$.
- If τ is the canonical \mathbb{P} -name of g, then τ is E_{cntble} -pinned.

Definition (Zapletal)

Let *E* be an analytic equivalence relation on the Polish space *X* and let \mathbb{P} be a forcing notion. Then we can extend *E* to the class $X(\mathbb{P}, E)$ of *E*-pinned \mathbb{P} -names by defining

$$\sigma \mathrel{\textit{E}} \sigma' \iff \Vdash_{\mathbb{P} \times \mathbb{P}} \sigma_{\mathit{left}} \mathrel{\textit{E}} \sigma'_{\mathit{right}}$$
Definition (Zapletal)

Let *E* be an analytic equivalence relation on the Polish space *X* and let \mathbb{P} be a forcing notion. Then we can extend *E* to the class $X(\mathbb{P}, E)$ of *E*-pinned \mathbb{P} -names by defining

$$\sigma \mathsf{E} \sigma' \iff \Vdash_{\mathbb{P} \times \mathbb{P}} \sigma_{\mathit{left}} \mathsf{E} \sigma'_{\mathit{right}}$$

Let $\lambda_{\mathbb{P}}(E)$ be the number of *E*-pinned \mathbb{P} -names up to *E*-equivalence.

Definition (Zapletal)

Let *E* be an analytic equivalence relation on the Polish space *X* and let \mathbb{P} be a forcing notion. Then we can extend *E* to the class $X(\mathbb{P}, E)$ of *E*-pinned \mathbb{P} -names by defining

$$\sigma \mathsf{E} \sigma' \iff \Vdash_{\mathbb{P} \times \mathbb{P}} \sigma_{\mathit{left}} \mathsf{E} \sigma'_{\mathit{right}}$$

Let $\lambda_{\mathbb{P}}(E)$ be the number of *E*-pinned \mathbb{P} -names up to *E*-equivalence.

Theorem

If E, F are analytic equivalence relations and $E \leq_B F$, then $\lambda_{\mathbb{P}}(E) \leq \lambda_{\mathbb{P}}(F)$.

Definition (Zapletal)

Let *E* be an analytic equivalence relation on the Polish space *X* and let \mathbb{P} be a forcing notion. Then we can extend *E* to the class $X(\mathbb{P}, E)$ of *E*-pinned \mathbb{P} -names by defining

$$\sigma \ \mathsf{E} \ \sigma' \iff \Vdash_{\mathbb{P} \times \mathbb{P}} \ \sigma_{\mathit{left}} \ \mathsf{E} \ \sigma'_{\mathit{right}}$$

Let $\lambda_{\mathbb{P}}(E)$ be the number of *E*-pinned \mathbb{P} -names up to *E*-equivalence.

Theorem

Suppose that κ is a Ramsey cardinal and that $|\mathbb{P}| < \kappa$. If *E*, *F* are analytic equivalence relations and *E* is Δ_2^1 reducible to *F*, then $\lambda_{\mathbb{P}}(E) \leq \lambda_{\mathbb{P}}(F)$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Counting pinned names

Simon Thomas (Rutgers)

・ロト ・ 日 ト ・ 目 ト ・

Let \mathbb{P} be the notion of forcing consisting of all finite partial functions $p: \omega \to \omega_1$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let \mathbb{P} be the notion of forcing consisting of all finite partial functions $p: \omega \to \omega_1$.

Proposition

$$\lambda_{\mathbb{P}}(\equiv_{tor}) = \omega_2^{\omega}.$$

< □ > < □ > < □ > < □ >

Let \mathbb{P} be the notion of forcing consisting of all finite partial functions $p: \omega \to \omega_1$.

Proposition

$$\lambda_{\mathbb{P}}(\equiv_{tor}) = \omega_2^{\omega}.$$

Proposition

 $\lambda_{\mathbb{P}}(\cong_{\rho}) = 2^{\omega_1}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathbb{P} be the notion of forcing consisting of all finite partial functions $p: \omega \to \omega_1$.

Proposition

$$\lambda_{\mathbb{P}}(\equiv_{tor}) = \omega_2^{\omega}.$$

Proposition

$$\lambda_{\mathbb{P}}(\cong_{
ho})=2^{\omega_1}.$$

The End