Monochromatic sumsets for colourings of ${\mathbb R}$

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

Supported in part by FWF Grant 11921.

D. T. Soukup (KGRC)

Monochromatic sumsets

CIRM, October 2017

1 / 12

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

- How does this fit into the theory of partition relations?
- What goes into the proof of this result?
- Joint result with P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, and Z. Vidnyánszky.

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

- How does this fit into the theory of partition relations?
- What goes into the proof of this result?
- Joint result with P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, and Z. Vidnyánszky.

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

- How does this fit into the theory of partition relations?
- What goes into the proof of this result?
- Joint result with P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, and Z. Vidnyánszky.

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

- How does this fit into the theory of partition relations?
- What goes into the proof of this result?
- Joint result with P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, and Z. Vidnyánszky.

if $f : \mathbb{R} \to r$ with $r \in \omega$ then there is an infinite $X \subseteq \mathbb{R}$ so that $f \upharpoonright X + X$ is constant.

- How does this fit into the theory of partition relations?
- What goes into the proof of this result?
- Joint result with P. Komjáth, I. Leader, P. Russell, S. Shelah, D. T. Soukup, and Z. Vidnyánszky.

... an incomplete overview ...

э

If $f: \omega \to r$ then there is an infinite $X \subset \omega$ with $f \upharpoonright X$ constant.

If $f: [\omega]^k \to r$ then there is an infinite $X \subset \omega$ with $f \upharpoonright [X]^k$ constant.

There is $f: [2^{\aleph_0}]^2 \to 2$ so that $f''[X]^2 = 2$ for any uncountable $X \subset 2^{\aleph_0}$.

D. T. Soukup (KGRC)

CIRM, October 2017 3 / 12

$FinSum(X) = \{x_0 + x_1 + \dots + x_\ell : x_0 < \dots < x_\ell \in X\} \text{ i.e. no repetitions.}$

Erdős, Rado 1956 $(2^{2^{m^{2^{0}}}})^+ \rightarrow (\omega_1)_r^k$ for all $r < \omega$. N. Hindman, 1974 if $f : \mathbb{N} \rightarrow r$ then there is some infinite $X \subseteq \mathbb{N}$

so that $f \upharpoonright FinSum(X)$ is constant.

There is $f : [\aleph_1]^2 \to \aleph_1$ so that $f''[X]^2 = \aleph_1$ for any uncountable $X \subset \aleph_1$.

D. T. Soukup (KGRC)

Monochromatic sumsets

CIRM, October 2017 3 / 12

If $f: [2^{\aleph_0}]^2 \to 3$ then there is an uncountable $X \subset 2^{\aleph_0}$ with $|f''[X]^2| \le 2$.

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

ullet if $X\subset \mathbb{N}$ and $g\restriction [X]^2$ is constant then $f\restriction X\oplus X$ is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

4 / 12

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

ullet if $X\subset \mathbb{N}$ and $g\restriction [X]^2$ is constant then $f\restriction X\oplus X$ is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

4 / 12

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. Proof:

if f : N → r then let g : [N]² → r defined by g(x, y) = f(x + y),
 if X ⊂ N and g | [X]² is constant then f | X ⊕ X is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f : \mathbb{N} \to r$ then let $g : [\mathbb{N}]^2 \to r$ defined by g(x, y) = f(x + y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

4 / 12

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

• if $f:\mathbb{N} \to r$ then let $g:[\mathbb{N}]^2 \to r$ defined by g(x,y) = f(x+y),

• if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

4 / 12

 $f \upharpoonright X \oplus X$ is constant.

Here $X \oplus X = \{x + y : x \neq y \in X\}$ i.e. repetitions are not allowed. **Proof**:

- if $f:\mathbb{N} \to r$ then let $g:[\mathbb{N}]^2 \to r$ defined by g(x,y) = f(x+y),
- if $X \subset \mathbb{N}$ and $g \upharpoonright [X]^2$ is constant then $f \upharpoonright X \oplus X$ is constant too.

[Owings, Hindman 1970s] What happens if we allow repetition?

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f:\mathbb{N} ightarrow$ 4 without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f:\mathbb{N} ightarrow 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

- Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.
- $|\log_{\sqrt{2}}(x) \log_{\sqrt{2}}(x+y)| < 1$,
- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

- $|f(x) f(x + y)| \le 1 \mod 4$.
- $f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$ so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

5 / 12

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

•
$$|f(x) - f(x + y)| \le 1 \mod 4$$
.

•
$$f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$$
 so $f(2x) \neq f(x+y)$.

$X + X = X \oplus X \cup \{2x : x \in X\}.$

There is $f : \mathbb{N} \to 4$ without infinite monochromatic sumsets:

$$f(x) = \lfloor \log_{\sqrt{2}}(x) \rfloor \mod 4.$$

• Suppose that $X \subseteq \mathbb{N}$ is infinite and take $y \ll X \in X$.

•
$$|\log_{\sqrt{2}}(x) - \log_{\sqrt{2}}(x+y)| < 1$$
,

•
$$|f(x) - f(x + y)| \le 1 \mod 4$$
.

•
$$f(2x) = \lfloor \log_{\sqrt{2}}(x) + 2 \rfloor = f(x) + 2 \mod 4$$
 so $f(2x) \neq f(x+y)$.

Can we do this with 2 colours???

5 / 12

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f:\mathbb{R}
ightarrow 2$ so that

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

```
There is an f: \mathbb{R} \to 2 so that
```

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f:\mathbb{R}
ightarrow$ 2 so that

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f : \mathbb{R} \to 2$ so that

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

If $f : \mathbb{R} \to r$ is Baire/Lebesgue measurable then there is a perfect $\emptyset \neq X \subseteq \mathbb{R}$ so that

 $f \upharpoonright X + X$ is constant.

Without definability?

There is an $f:\mathbb{R} o 2$ so that

 $f''X \oplus X = 2$ for every uncountable $X \subset \mathbb{R}$.

• [HLS] using CH, [Komjáth, DTS, Weiss] in ZFC, and consistently the number of colours is best possible.

Continued by [Fernandez-Breton, Rinot 2016]:

- how to realize more colours on sets of the form FinSum(X) (no repetitions),
- general theorems on uncountable, commutative, cancellative semigroups G.

Bottom line: without definabilty,

Strongest possible result on \mathbb{R} : infinite sumsets with repetition allowed.

Continued by [Fernandez-Breton, Rinot 2016]:

- how to realize more colours on sets of the form FinSum(X) (no repetitions),
- general theorems on uncountable, commutative, cancellative semigroups G.

Bottom line: without definabilty,

Strongest possible result on \mathbb{R} : infinite sumsets with repetition allowed.
- how to realize more colours on sets of the form FinSum(X) (no repetitions),
- general theorems on uncountable, commutative, cancellative semigroups G.

Bottom line: without definabilty,

Strongest possible result on \mathbb{R} : infinite sumsets with repetition allowed.

- how to realize more colours on sets of the form *FinSum(X)* (no repetitions),
- general theorems on uncountable, commutative, cancellative semigroups G.

Bottom line: without definabilty,

Strongest possible result on \mathbb{R} : infinite sumsets with repetition allowed.

- how to realize more colours on sets of the form *FinSum(X)* (no repetitions),
- general theorems on uncountable, commutative, cancellative semigroups G.

Bottom line: without definabilty,

Strongest possible result on \mathbb{R} : infinite sumsets with repetition allowed.

- how to realize more colours on sets of the form *FinSum(X)* (no repetitions),
- general theorems on uncountable, commutative, cancellative semigroups G.

Bottom line: without definabilty,

Strongest possible result on \mathbb{R} : infinite sumsets with repetition allowed.

Recall: $\exists f : \mathbb{N} \to 4$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset \mathbb{N}$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

D. T. Soukup (KGRC)

Monochromatic sumsets

Recall: $\exists f : \mathbb{N} \to 4$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset \mathbb{N}$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

D. T. Soukup (KGRC)

Monochromatic sumsets

If $f: G(\kappa) \to r$ then $f \upharpoonright X + X$ is constant for some infinite $X \subset G(\kappa)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$. Notation:

 $G(\kappa) \stackrel{+}{
ightarrow} (\aleph_0)_r$

D. T. Soukup (KGRC)

Monochromatic sumsets

 $\exists f: G(\kappa) \to r \text{ so that } f \upharpoonright X + X \text{ is$ **not constant** $for an infinite <math>X \subset G(\kappa)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$. Notation:

$$G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)_r \text{ e.g. } \mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_4$$

D. T. Soukup (KGRC)

Monochromatic sumsets

 $\exists f: G(\kappa) \to r \text{ so that } f \upharpoonright X + X \text{ is$ **not constant** $for an infinite <math>X \subset G(\kappa)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

 $\exists f : \mathbb{Q} \to 72$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset \mathbb{Q}$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss] • $\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$.

 $\exists f: G(m) \to 72$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset G(m)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

•
$$\mathbb{Q} \xrightarrow{+}{\not\rightarrow} (\aleph_0)_{72}$$
.

•
$$G(m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$$
 for $m < \omega$.

 $\exists f: G(\aleph_0) \to 144$ so that $f \upharpoonright X + X$ is **not constant** for an infinite $X \subset G(\aleph_0)$.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

•
$$\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$$
.

•
$$G(m) \stackrel{+}{
earrow} (\aleph_0)_{72}$$
 for $m < \omega$.

• $G(\aleph_0) \xrightarrow{+}{\not\rightarrow} (\aleph_0)_{144}$

 $\exists f: G(\aleph_m) \to 2^m \cdot 144$ so that $f \upharpoonright X + X$ is **not constant** for an infinite X.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

- $\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$.
- $G(m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$ for $m < \omega$.
- $G(\aleph_0) \xrightarrow{+}{\not\rightarrow} (\aleph_0)_{144}$
- $G(\aleph_m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{2^m \cdot 144}$ for $m < \omega$.

 $\exists f : \mathbb{R} \to r \text{ so that } f \upharpoonright X + X \text{ is$ **not constant**for an infinite X.

Let $G(\kappa) = \bigoplus_{\kappa} \mathbb{Q}$ i.e. $x : \kappa \to \mathbb{Q}$ with $|supp(x)| < \omega$. E.g. $G(2^{\aleph_0}) \approx \mathbb{R}$.

[Hindman, Leader, Strauss]

• $\mathbb{Q} \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}.$

•
$$G(m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{72}$$
 for $m < \omega$.

•
$$G(\aleph_0) \stackrel{+}{\not\rightarrow} (\aleph_0)_{144}$$

•
$$G(\aleph_m) \stackrel{+}{\not\rightarrow} (\aleph_0)_{2^m \cdot 144}$$
 for $m < \omega$.

Corollary If $2^{\aleph_0} < \aleph_\omega$ then $\mathbb{R} \xrightarrow{+}{\not\rightarrow} (\aleph_0)_r$ for some $r < \omega$.

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i) Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W.$

by supp(x) = a and x(a(i)) = s(i). Suppose that $c : \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c : [w1^{[s]} \to 2$ by

$$c_s(a)=c(s*a).$$

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i) Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i). Suppose that $c: \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let

 $c_s: [\kappa]^{|s|}
ightarrow 2$ by

$$c_s(a)=c(s*a).$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W.$

by supp(x) = a and x(a(i)) = s(i).

Suppose that $c : \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s : [\kappa]^{|s|} \to 2$ by

$$c_s(a)=c(s*a).$$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$

Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i). Suppose that $c : \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let

 $c_s(a)=c(s*a).$

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Assume to $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$

Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

by supp(x) = a and x(a(i)) = s(i). Suppose that $c : \bigoplus_{\kappa} \mathbb{Q} \to 2$, and let $c_s : [\kappa]^{|s|} \to 2$ by

$$c_s(a)=c(s*a).$$

$$s_0 = (4, 4)$$
 $s_1 = (2, 2, 4)$
 $s_2 = (2, 2, 2, 2)$

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

D. T. Soukup (KGRC)

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

Assume that c_{s_1} and c_{s_2} are both constant 0.

Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$.

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). $\alpha \beta \gamma_0 \gamma_1 \gamma_2$ Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$ If κ is large enough then there is a

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ 1 by supp(x) = a and x(a(i)) = s(i). $\alpha \beta \gamma_0$ Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ 1 by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ γ_1 Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ γ_2 Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ 1 ••••••••• by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_{s}(a) = c(s * a).$ $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on *W* for i = 0, 1, 2.

D. T. Soukup (KGRC)

 γ_2

Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let $x = s * a \in \bigoplus_{\kappa} \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by $c_s(a) = c(s * a).$ $\mathbf{s}_{0} = (4, 4) \quad \mathbf{s}_{1} = (2, 2, 4) \quad \mathbf{s}_{2} = (2, 2, 2, 2) \quad 2 \quad \mathbf{s}_{1} = (2, 2, 4) \quad \mathbf{s}_{2} = (2, 2, 2, 2) \quad \mathbf{s}_{1} = (2, 2, 2, 2) \quad \mathbf{s}_{2} = (2, 2, 2, 2) \quad \mathbf{s}_{1} = (2, 2, 2, 2) \quad \mathbf{s}_{2} = (2, 2, 2, 2) \quad \mathbf{s}_{3} = (2, 2, 2, 2) \quad \mathbf{s}_{4} = (2, 2, 2) \quad \mathbf{s}_{4} = (2$

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on W for i = 0, 1, 2.

Assume that c_{s_1} and c_{s_2} are both constant 0. Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. ² 1 ·····**↑**···· $\alpha \beta$ γ_2 Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus \mathbb{Q}$ by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ γ_2 Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_s(a) = c(s * a).$ $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$ $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$ $\alpha \beta$ $\alpha \beta \gamma_i$ γ_i

If κ is large enough then there is a large $W \subseteq \kappa$ so that c_{s_i} are constant on *W* for i = 0, 1, 2.

A B F A B F

 γ_i

Assume that c_{s_1} and c_{s_2} are both constant 0. Given $s \in \mathbb{Q}^{<\omega}$ and $a \in [\kappa]^{|s|}$, let Let $\alpha < \beta < \gamma_0 < \gamma_1 < \cdots \in W$. $x = s * a \in \bigoplus \mathbb{Q}$ X_2 by supp(x) = a and x(a(i)) = s(i). $\alpha \beta$ γ_2 Suppose that $c: \bigoplus_{\nu} \mathbb{Q} \to 2$, and let $c_s: [\kappa]^{|s|} \to 2$ by Let $a_i = \{\alpha, \beta, \gamma_i\}$ and $x_i = \frac{1}{2}s_1 * a_i$. $c_s(a) = c(s * a).$ $c(2x_i) = c_{s_1}(a_i) = 0 = c_{s_2}(a_i \cup a_i) = c(x_i + x_i).$ 2x_i 4 x_i , $s_0 = (4, 4)$ $s_1 = (2, 2, 4)$ $s_2 = (2, 2, 2, 2)$ If κ is large enough then there is a $\alpha \beta$ γ_i $\alpha \beta$ γ_i

> If c_{s_0}, c_{s_2} have the same constant then we need $tp(W) = \omega + \omega$.

on *W* for i = 0, 1, 2.

large $W \subseteq \kappa$ so that c_{s_i} are constant

9 / 12

 γ_i

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r \text{ where } \kappa = \beth_{2r-1}(\aleph_0),$ $\Rightarrow G(\aleph_\omega) \xrightarrow{+} (\aleph_0)_r \text{ for } r < \omega \text{ under GCH.}$ • using the Erdős-Rado theorem.

 $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_\omega) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

• using the Erdős-Rado theorem.

[DTS, Vidnyánszky]

 $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{ o} (leph_0)_2$,

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_\omega) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- $[\mathsf{DTS}, \mathsf{Vidnyánszky}] \\ \Rightarrow G(\mathfrak{c}^+) \xrightarrow{+} (\aleph_0)_2,$

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ where } \kappa = \beth_{2r-1}(\aleph_0),$ $\Rightarrow G(\aleph_\omega) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ under GCH.}$

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky] $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$

• using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and **[Leader, Russell]** independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_\omega) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky]
- $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$
 - using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_\omega) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky]
- $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$
 - using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.
Corollaries

[Komjáth] and [Leader, Russell] independently $\Rightarrow G(\kappa) \xrightarrow{+} (\aleph_0)_r$ where $\kappa = \beth_{2r-1}(\aleph_0)$, $\Rightarrow G(\aleph_\omega) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ under GCH.

- using the Erdős-Rado theorem.
- [DTS, Vidnyánszky]
- $\Rightarrow G(\mathfrak{c}^+) \stackrel{+}{\rightarrow} (\aleph_0)_2,$
 - using polarized partition relations instead.

 $\Rightarrow G(\aleph_{\omega}) \stackrel{+}{\rightarrow} (\aleph_0)_r \text{ for } r < \omega \text{ consistently from a measurable,} \\ \text{ with } \mathbf{CH and } 2^{\aleph_1} = \aleph_{\omega+1},$

• using a version of [Todorcevic, di Prisco] polarized relation for \aleph_{ω} with σ -closed forcing.

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \stackrel{+}{ o} (leph_0)_r$ for any $r < \omega.$

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and

۲

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and

۲

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under MA_{ℵ1}(Knaster), and

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under MA_{ℵ1}(Knaster), and

۲

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and

Recall: if $2^{\aleph_0} < \aleph_{\omega}$ then $\mathbb{R} \xrightarrow{+}{\not\to} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and
- [S. Shelah, 2017]

"...you can suppose the coloring is continuous, right?"

Recall: if $2^{\aleph_0} < \aleph_\omega$ then $\mathbb{R} \stackrel{+}{\not\rightarrow} (\aleph_0)_r$ for some $r < \omega$.

Consistently, modulo an ω_1 -Erdős cardinal,

 $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ for any $r < \omega$.

The main ingredients are

- the position invariance from previous proofs, but
- polarized relations under $MA_{\aleph_1}(Knaster)$, and
- [S. Shelah, 1988] Consistently, modulo an ω_1 -Erdős cardinal, if $f: [2^{\aleph_0}]^{<\omega} \to r$ then there is an uncountable X and $F: X \to 2^{\omega}$ so that $f(\bar{x})$ only depends on the type of the finite tree $F[\bar{x}]$.

[Owings, 1974]

• $\mathbb{N} \stackrel{+}{\not\rightarrow} (\aleph_0)_2 ???$

Connected to our results:

• $\mathbb{R} \stackrel{+}{\rightarrow} (\aleph_0)_2$ in ZFC??

- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \stackrel{+}{ o} (leph_0)$, without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is
$$2^{leph_0} > \lambda o [leph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \stackrel{+}{
 ightarrow} (leph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, **Vidnyánszky]** There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is
$$2^{leph_0} > \lambda o [leph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \xrightarrow{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (leph_0),$ for a particular κ (finite, or $leph_m)$??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, **Vidnyánszky]** There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

- Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (leph_0),$ for a particular κ (finite, or $leph_m)$??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, **Vidnyánszky]** There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

- Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\rightarrow^+ (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (leph_0),$ for a particular κ (finite, or $leph_m)$??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

- Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

- Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?

• unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (\aleph_0)_r$ for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is
$$2^{leph_0} > \lambda o [leph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{
ot \to} (\aleph_0)$, for a particular κ (finite, or $\aleph_m)$?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

- Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

- Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)??

Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, **Vidnyánszky]** There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

- Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???
- Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, **Vidnyánszky]** There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is
$$2^{\aleph_0} > \lambda o [\aleph_1]_3^2$$
 consistent???

[Owings, 1974]

• $\mathbb{N} \not\xrightarrow{+} (\aleph_0)_2 ???$

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

```
[Shelah, 1988]
```

• Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \xrightarrow{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)_r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is $2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$ consistent???

[Owings, 1974]

• $\mathbb{N} \xrightarrow{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \to [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is
$$2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$$
 consistent???

Various open problems - Thank you for your attention!

[Owings, 1974]

• $\mathbb{N} \xrightarrow{+}{\not\rightarrow} (\aleph_0)_2$???

Connected to our results:

- $\mathbb{R} \xrightarrow{+} (\aleph_0)_2$ in ZFC??
- $G(\aleph_{\omega}) \xrightarrow{+} (\aleph_0)_r$ for $r < \omega$ in ZFC???
- $\mathbb{R} \xrightarrow{+} (\aleph_0)_r$ without large cardinals?
- unbalanced sumsets X + Y (or $X \oplus Y$)?

What is the smallest r so that $G(\kappa) \stackrel{+}{\not\rightarrow} (\aleph_0)r$ for a particular κ (finite, or \aleph_m)?? Monochromatic k-sumsets: $X + X + \cdots + X$?

[HLS] There is a finite colouring of $G(\aleph_n)$ with no infinite monochromatic k-sumsets $(n < \omega)$,

[DS, Vidnyánszky] There is a finite coloring of \mathbb{R} with no infinite monochromatic *k*-sumsets for $k \geq 3$.

We are far from a complete picture.

[Shelah, 1988]

• Is $2^{\aleph_0} = \aleph_m \rightarrow [\aleph_1]_3^2$ consistent for some $m < \omega$???

• Is
$$2^{\aleph_0} > \lambda \rightarrow [\aleph_1]_3^2$$
 consistent???