On models generated by uncountable indiscernible sequences

Hiroshi Sakai

Kobe University

14th International Workshop in Set Theory CIRM October 9–13. 2017

Models generated by indiscernible sequences

Let $\mathcal{M} = \langle M, \ldots \rangle$ be a first order structure and $\mathcal{A} = \langle A, \langle A \rangle$ be a linearly ordered set (LO for short) with $A \subseteq M$.

• \mathcal{A} is called an **indiscernible sequence** in \mathcal{M} if for any formula $\varphi(v_0, \ldots, v_{n-1})$ and any increasing sequences $\bar{a} = \langle a_i \mid i < n \rangle$ and $\bar{b} = \langle b_i \mid i < n \rangle$ in \mathcal{A} ,

 $\mathcal{M} \models \varphi(\bar{a}) \iff \mathcal{M} \models \varphi(\bar{b}).$

• We say that \mathcal{M} is **generated** by \mathcal{A} if for any $x \in M$ there are a term $t(v_0, \ldots, v_{n-1})$ and a sequence $\bar{a} = \langle a_i \mid i < n \rangle$ in \mathcal{A} such that $x = t^{\mathcal{M}}(\bar{a})$.

Theorem (Ehrenfeucht-Mostowski)

Let T be a theory with built-in Skolem functions which has an infinite model. Then for any infinite LO \mathcal{A} there is a model of T which is generated by an indiscernible sequence isomorphic to \mathcal{A} .

- We only discuss models of countable languages generated by uncountable indiscernible sequences. In this talk, "a structure" and "a model" mean those of countable languages.
- If \mathcal{M} is generated by an indiscernible sequence \mathcal{A} , then \mathcal{M} is somewhat "similar" as \mathcal{A} . We will observe this phenomenon by investigating what kinds of uncountable LO's are embeddable into relations definable in \mathcal{M} . In particular, we will discuss the embeddability of the following basic LO's:
 - ω_1 and ω_1^* .
 - uncountable suborders of \mathbb{R} .
 - Aronszajn lines, i.e. uncountable LO's into which none of ω₁, ω₁^{*} and uncountable suborders of ℝ are embeddable.
- For an LO \mathcal{A} , let \mathcal{A}^* denote the reversal of \mathcal{A} .
- For an LO A = ⟨A, <_A⟩ and a binary relation R on a set B, we say that A is embeddable into ⟨B, R⟩ if there is an injection e : A → B such that

 $a <_{\mathcal{A}} b \iff R(e(a), e(b))$

for all $a, b \in A$.

・ロン ・留と ・ ほと ・ ほど …… ほ

Embeddability into LO

First, we discuss the embeddability into definable linear orderings of the universe:

Theorem 1

Let $\mathcal{M} = \langle M, \ldots \rangle$ be a structure generated by an uncountable indiscernible sequence \mathcal{A} , and let R be an LO of M which is definable in \mathcal{M} . If an uncountable LO \mathcal{X} is embeddable into $\langle M, R \rangle$, then there is an uncountable $\mathcal{B} \subseteq \mathcal{A}$ such that either \mathcal{B} or \mathcal{B}^* is embeddable into \mathcal{X} .

Corollary 2

Let \mathcal{M} , \mathcal{A} and R be as in Theorem 1.

- If $\mathcal{A} \cong \omega_1$, then neither uncountable suborders of \mathbb{R} nor Aronszajn lines are embeddable into $\langle M, R \rangle$.
- If $\mathcal{A} \cong \mathbb{R}$, then none of ω_1 , ω_1^* and Aronszajn lines are embeddable into ⟨*M*, *R*⟩.
- If \mathcal{A} is an Aronszajn line, then none of ω_1 , ω_1^* and uncountable suborders of \mathbb{R} are embeddable in $\langle M, R \rangle$, that is, $\langle M, R \rangle$ is an Aronszajn line.

Outline of proof of Theorem 1

Let $\mathcal{M} = \langle M, \ldots \rangle$ be a structure generated by an uncountable indiscernible sequence $\mathcal{A} = \langle A, <_{\mathcal{A}} \rangle$, and let R be an LO of M which is definable in \mathcal{M} . For simplicity, we assume R is definable without parameters.

Theorem 1 easily follows from the next theorem. (The uncountability of A is not necessary for the following theorem.)

Theorem (Hodges)

Let $t(v_0, \ldots, v_{n-1})$ be a term. Then there are an LO \triangleleft of n and a function $s: n \rightarrow \{-1, 1\}$ for which the following hold:

Suppose $\bar{a} = \langle a_i | i < n \rangle$, $\bar{b} = \langle b_i | i < n \rangle$ are increasing sequences in A, and $t^{\mathcal{M}}(\bar{a}) \neq t^{\mathcal{M}}(\bar{b})$. Let j be the \lhd -largest i < n such that $a_i \neq b_i$. Then

$$R(t^{\mathcal{M}}(\bar{a}), t^{\mathcal{M}}(\bar{b})) \iff a_j <^{s(j)}_{\mathcal{A}} b_j ,$$

where $<^1_{\mathcal{A}}:=<_{\mathcal{A}}$ and $<^{-1}_{\mathcal{A}}:=<^*_{\mathcal{A}}$.

Now we prove Theorem 1:

- Suppose X ⊆ M is uncountable. It suffices to find an uncountable B ⊆ A such that either B or B* is embeddable into (X, R).
- For each $x \in X$, take a term $t_x(v_0, \ldots, v_{n_x-1})$ and a sequence $\bar{a}_x = \langle a_i^x \mid i < n_x \rangle$ in \mathcal{A} such that $x = t_x^{\mathcal{M}}(\bar{a}_x)$.
- There are an uncountable $Y \subseteq X$, a term $t(v_0, \ldots, v_{n-1})$ and $I \subseteq n$ s.t.
 - $t_x = t$ for all $x \in Y$, • $a_i^x = a_i^y$ for all $x, y \in Y$ and $i \in I$,
 - $a_i^x \neq a_i^y$ for all distinct $x, y \in Y$ and $i \in n \setminus I$.
- Let \triangleleft and $s : n \rightarrow \{-1, 1\}$ be as in Hodges Theorem. Take the \triangleleft -largest $j \in n \setminus I$. Let $B := \{a_j^x \mid x \in Y\}$ and $\mathcal{B} := \langle B, <_{\mathcal{A}} \rangle$.
- Then $x \mapsto a_j^x$ is an isomorphism from $\langle Y, R \rangle$ to \mathcal{B} if s(j) = 1 and to \mathcal{B}^* if s(j) = -1. So either \mathcal{B} or \mathcal{B}^* is embeddable into $\langle X, R \rangle$.

<ロ> (四) (四) (三) (三) (三) (三)

Question

Can we generalize Theorem 1 and Corollary 2 to the embeddability into a binary relation which may not be an LO?

In this general setting, we have the following:

Theorem 4

Let $\mathcal{M} = \langle M, \ldots \rangle$ be a structure generated by an uncountable indiscernible sequence \mathcal{A} , and let R be a binary relation on M which is definable in \mathcal{M} .

- If neither ω₁ nor ω₁^{*} is embeddable into A, then neither ω₁ nor ω₁^{*} is embeddable into (M, R).
- If no uncountable suborders of ℝ are embeddable into A, then no uncountable suborders of ℝ are embeddable into ⟨M, R⟩.
- If no Aronszajn lines are embeddable into A, then no Aronszajn lines are embeddable into ⟨M, R⟩.

Let $\mathcal{M} = \langle M, \ldots \rangle$ be a structure generated by an uncountable indiscernible sequence \mathcal{A} , and let R be a binary relation on M which is definable in \mathcal{M} . For simplicity, we assume R is definable without parameters.

Suppose neither ω_1 nor ω_1^* is embeddable into \mathcal{A} . We prove that neither ω_1 nor ω_1^* is embeddable into $\langle M, R \rangle$.

By the assumption, \mathcal{A} has the following tree representation:

Lemma

There is a tree $\mathcal{T} = \langle A, <_{\mathcal{T}} \rangle$ of height $\leq \omega_1$ such that

- ${\mathcal T}$ is countably branching,
- ${\mathcal T}$ does not have a branch of length ω_1 ,
- <_{\mathcal{A}} coincides with a lexicographic ordering of \mathcal{T} .

・ロン ・四 と ・ ヨン ・ ヨン

• Suppose $e: \omega_1 \to M$ is injective. We prove that e is not monotone w.r.t. R. That is, there are $\xi_0 < \xi_1 < \xi_2 < \omega_1$ such that

 $R(e(\xi_0), e(\xi_1)) \Leftrightarrow R(e(\xi_2), e(\xi_1)).$

• By shrinking the domain of *e* if necessary, we may assume the following: There are a term $t(v_0, \ldots, v_{n-1})$ and an increasing seq. $\bar{a}^{\xi} = \langle a_i^{\xi} | i < n \rangle$ in \mathcal{A} for each $\xi < \omega_1$ such that

•
$$e(\xi) = t^{\mathcal{M}}(\bar{a}_{\xi})$$
 for all $\xi < \omega_1$.

• $\langle \{a_i^{\xi} \mid i < n\} \mid \xi < \omega_1 \rangle$ is a Δ -system.

For simplicity, we assume that $\langle \{a_i^{\xi} \mid i < n\} \mid \xi < \omega_1 \rangle$ is pairwise disjoint.

• Since A is indiscernible, it suffices to find $\xi_0 < \xi_1 < \xi_2 < \omega_1$ such that for every i, j < n,

$$a_i^{\xi_0} <_{\mathcal{A}} a_j^{\xi_1} \iff a_i^{\xi_2} <_{\mathcal{A}} a_j^{\xi_1}.$$

- Take a sufficiently large regular cardinal θ and a countable N ≺ H_θ containing all relevant objects.
- Take $\xi_1 \in \omega_1 \setminus N$.

Lemma

There are an uncountable $P \subseteq \omega_1$ with $P \in N$ and $\{b_i \mid i < n\}, \{c_{ii} \mid i, j < n\} \subseteq A \cap N$ such that

-
$$b_i <_{\mathcal{T}} a_i^{\xi}$$
 for every $\xi \in P$ and $i < n$.

-
$$c_{ij} <_{\mathcal{T}} a_i^{\xi_1}$$
 for every $i,j < n$.

- b_i and c_{ij} are incomparable in \mathcal{T} for every i, j < n.
- We can take ξ₀, ξ₂ ∈ P such that ξ₀ ∈ N (so ξ₀ < ξ₁) and ξ₁ < ξ₂, since P belongs to N and is uncountable.
- \bullet Since $<_{\mathcal{A}}$ is a lexicographic order of $\mathcal{T},$ we have

$$a_i^{\xi_0} <_{\mathcal{A}} a_j^{\xi_1} \iff b_i <_{\mathcal{A}} c_{ij} \iff a_i^{\xi_2} <_{\mathcal{A}} a_j^{\xi_1}$$
 .

for all i, j < n.

イロト イポト イヨト イヨー

Generalization of Corollary 2 is immediate from Theorem 4.

Corollary 5

- Let \mathcal{M} , \mathcal{A} and R be as in Theorem 4.
 - If A ≅ ω₁, then neither uncountble suborders of ℝ nor Aronszajn lines are embeddable into ⟨M, R⟩.
 - ② If $A \cong \mathbb{R}$, then none of ω_1 , ω_1^* and Aronszajn lines are embeddable into $\langle M, R \rangle$.
 - If \mathcal{A} is an Aronszajn line, then none of ω_1 , ω_1^* and uncountable suborders of \mathbb{R} are embeddable in $\langle M, R \rangle$.

Generalization of Theorem 1 under PFA

Recall Moore's Five Element Basis Theorem:

Five Element Basis Theorem (Moore)

Assume PFA. Let \mathcal{R} be a suborder of \mathbb{R} of size \aleph_1 and \mathcal{C} be a Countryman line. Then for any uncountable LO \mathcal{X} , one of the following is embeddable into \mathcal{X} :

 ω_1 , ω_1^* , \mathcal{R} , \mathcal{C} , \mathcal{C}^*

Recall also that a Countryman line is an Aronszajn line.

Theorem 4 together with Five Element Basis Theorem easily implies the following generalization of Theorem 1:

Corollary 6

Assume PFA. Let \mathcal{M} , \mathcal{A} and R be as in Theorem 4. If an uncountable LO \mathcal{X} is embeddable into $\langle M, R \rangle$, then there is an uncountable $\mathcal{B} \subseteq \mathcal{A}$ such that either \mathcal{B} or \mathcal{B}^* is embeddable into \mathcal{X} .

・ロン ・四 と ・ ヨン ・ ヨン

Question

Is the generalization of Theorem 1 provable in ZFC?

Under \diamondsuit_{ω_1} , the generalization of Theorem 1 fails:

Theorem 7

Assume \Diamond_{ω_1} . Then there are a structure $\mathcal{M} = \langle M, R, \dots \rangle$ generated by some uncountable indiscernible sequence \mathcal{A} and an uncountable LO \mathcal{X} such that

- **(**) *R* is a binary relation on *M*, and \mathcal{X} is embeddable into $\langle M, R \rangle$,
- **(2)** for any uncountable $\mathcal{B} \subseteq \mathcal{A}$, neither \mathcal{B} nor \mathcal{B}^* is embeddable into \mathcal{X} .

Idea of Proof of Theorem 7

We use the following relation by the majority rule:

For an LO $\mathcal{A} = \langle A, \langle_{\mathcal{A}} \rangle$, let $R_{\text{mai}}^{\mathcal{A}}$ be the following relation on A^3 :

 $R^{\mathcal{A}}_{\mathrm{maj}}((a_0, a_1, a_2), (b_0, b_1, b_2)) \stackrel{\mathsf{def}}{\Leftrightarrow} |\{i < 3 \mid a_i <_{\mathcal{A}} b_i\}| \geq 2.$

- $R_{\text{mai}}^{\mathcal{A}}$ is not an LO. In fact, it is not transitive.
- Each of 3 coordinates equally contributes to $R_{maj}^{\mathcal{A}}$. This avoids Hodges Thm.

Proposition 8

Assume \Diamond_{ω_1} . Then there are an Aronszajn line $\mathcal{A} = \langle \mathcal{A}, <_{\mathcal{A}} \rangle$ and an uncountable $X \subseteq \mathcal{A}^3$ such that

$$(X, R_{\rm maj}^{\mathcal{A}}) \text{ is an LO,}$$

2 for any uncountable $\mathcal{B} \subseteq \mathcal{A}$, neither \mathcal{B} nor \mathcal{B}^* is embeddable into $\langle X, R_{\text{mai}}^{\mathcal{A}} \rangle$.

Proof of Theorem 7 using Proposition 8

Let L = ⟨L, <_L⟩ be an infinite LO. Take a bijection f': L³ → L, and define a binary relation R' on L by

 $R'(f'(a_0, a_1, a_2), f'(b_0, b_1, b_2)) \stackrel{\text{def}}{\Leftrightarrow} R^{\mathcal{L}}_{\text{maj}}((a_0, a_1, a_2), (b_0, b_1, b_2)) \; .$

Let \mathcal{M}' be a countable expansion of $\langle L, <_{\mathcal{L}}, f', R' \rangle$ which has built-in Skolem funcitons.

- Let A and X be as in Prop. 8, and let X := ⟨X, R^A_{maj}⟩. Then X is an LO, and for any uncountable B ⊆ A, neither B nor B* is embeddable into X.
- By Ehrenfeucht-Mostowski Thm, we can take a structure $\mathcal{M} = \langle M, <_{\mathcal{M}}, f, R, \dots \rangle$ such that
 - \mathcal{M} is elementary equivalent to \mathcal{M}' ,
 - \mathcal{A} is an indiscernible sequence in \mathcal{M} and generates \mathcal{M} .

Then $f \upharpoonright X$ is an embedding from \mathcal{X} to $\langle M, R \rangle$.

Theorem 1, which is on the embeddability into definable LO's, is provable in ZFC, but Theorem 1 for definable binary relations is not provable in ZFC.

Question

For what kinds of binary relations can we prove Theorem 1 in ZFC? How about partial orderings?

(日) (同) (日) (日)