
Distributive Aronszajn trees

The 14th International Workshop on Set Theory
CIRM, Luminy, Marseille

10-October-2017

Assaf Rinot
Bar-Ilan University

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ
denotes an uncountable cardinal.

Often times, κ = λ+.

Hκ denotes the collection of all sets of hereditary cardinality < κ.

K(κ) denotes the collection of all x ∈ P(κ) such that x is a club
subset of sup(x).

Every set of ordinals C , splits into two:

I acc(C) := {α ∈ C | sup(C ∩ α) = α > 0};
I nacc(C) := C \ acc(C).

When we write “there is a limit α < κ”, we mean “∃α ∈ acc(κ)”.

2 / 26

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ
denotes an uncountable cardinal. Often times, κ = λ+.

Hκ denotes the collection of all sets of hereditary cardinality < κ.

K(κ) denotes the collection of all x ∈ P(κ) such that x is a club
subset of sup(x).

Every set of ordinals C , splits into two:

I acc(C) := {α ∈ C | sup(C ∩ α) = α > 0};
I nacc(C) := C \ acc(C).

When we write “there is a limit α < κ”, we mean “∃α ∈ acc(κ)”.

2 / 26

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ
denotes an uncountable cardinal. Often times, κ = λ+.

Hκ denotes the collection of all sets of hereditary cardinality < κ.

K(κ) denotes the collection of all x ∈ P(κ) such that x is a club
subset of sup(x).

Every set of ordinals C , splits into two:

I acc(C) := {α ∈ C | sup(C ∩ α) = α > 0};
I nacc(C) := C \ acc(C).

When we write “there is a limit α < κ”, we mean “∃α ∈ acc(κ)”.

2 / 26

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ
denotes an uncountable cardinal. Often times, κ = λ+.

Hκ denotes the collection of all sets of hereditary cardinality < κ.

K(κ) denotes the collection of all x ∈ P(κ) such that x is a club
subset of sup(x).

Every set of ordinals C , splits into two:

I acc(C) := {α ∈ C | sup(C ∩ α) = α > 0};
I nacc(C) := C \ acc(C).

When we write “there is a limit α < κ”, we mean “∃α ∈ acc(κ)”.

2 / 26

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ
denotes an uncountable cardinal. Often times, κ = λ+.

Hκ denotes the collection of all sets of hereditary cardinality < κ.

K(κ) denotes the collection of all x ∈ P(κ) such that x is a club
subset of sup(x).

Every set of ordinals C , splits into two:

I acc(C) := {α ∈ C | sup(C ∩ α) = α > 0};
I nacc(C) := C \ acc(C).

When we write “there is a limit α < κ”, we mean “∃α ∈ acc(κ)”.

2 / 26

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ
denotes an uncountable cardinal. Often times, κ = λ+.

Hκ denotes the collection of all sets of hereditary cardinality < κ.

K(κ) denotes the collection of all x ∈ P(κ) such that x is a club
subset of sup(x).

Every set of ordinals C , splits into two:

I acc(C) := {α ∈ C | sup(C ∩ α) = α > 0};
I nacc(C) := C \ acc(C).

When we write “there is a limit α < κ”, we mean “∃α ∈ acc(κ)”.

2 / 26

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset T ⊆ <κHκ, satisfying:

1. for all α < κ, the set Tα := T ∩ αHκ has size < κ;

2. for all α < κ and t ∈ T , there is s ∈ Tα such that t ∪ s ∈ T .

To each T , we associate the notion of forcing P(T) := (T ,⊇).

3 / 26

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset T ⊆ <κHκ, satisfying:

1. for all α < κ, the set Tα := T ∩ αHκ has size < κ;

2. for all α < κ and t ∈ T , there is s ∈ Tα such that t ∪ s ∈ T .

To each T , we associate the notion of forcing P(T) := (T ,⊇).

3 / 26

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset T ⊆ <κHκ, satisfying:

1. for all α < κ, the set Tα := T ∩ αHκ has size < κ;

2. for all α < κ and t ∈ T , there is s ∈ Tα such that t ∪ s ∈ T .

To each T , we associate the notion of forcing P(T) := (T ,⊇).

3 / 26

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset T ⊆ <κHκ, satisfying:

1. for all α < κ, the set Tα := T ∩ αHκ has size < κ;

2. for all α < κ and t ∈ T , there is s ∈ Tα such that t ∪ s ∈ T .

To each T , we associate the notion of forcing P(T) := (T ,⊇).

3 / 26

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset T ⊆ <κHκ, satisfying:

1. for all α < κ, the set Tα := T ∩ αHκ has size < κ;

2. for all α < κ and t ∈ T , there is s ∈ Tα such that t ∪ s ∈ T .

To each T , we associate the notion of forcing P(T) := (T ,⊇).

Note
If T is a κ-tree, then P(T) adds a cofinal branch through T . i.e.,
a sequence b : κ→ Hκ such that b � α ∈ T for all α < κ.

3 / 26

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset T ⊆ <κHκ, satisfying:

1. for all α < κ, the set Tα := T ∩ αHκ has size < κ;

2. for all α < κ and t ∈ T , there is s ∈ Tα such that t ∪ s ∈ T .

To each T , we associate the notion of forcing P(T) := (T ,⊇).

Definition
A κ-tree T is Aronszajn iff it has no cofinal branches.

Note
If T is a κ-tree, then P(T) adds a cofinal branch through T . i.e.,
a sequence b : κ→ Hκ such that b � α ∈ T for all α < κ.

3 / 26

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset T ⊆ <κHκ, satisfying:

1. for all α < κ, the set Tα := T ∩ αHκ has size < κ;

2. for all α < κ and t ∈ T , there is s ∈ Tα such that t ∪ s ∈ T .

To each T , we associate the notion of forcing P(T) := (T ,⊇).

Definition
A κ-tree T is Aronszajn iff it has no cofinal branches.

Definition
A κ-tree T is Souslin iff it is Aronszajn and P(T) has the κ-cc.

3 / 26

λ+-Souslin trees

Jensen proved that, in L, for all (regular uncountable) κ that is not
weakly compact, there is a κ-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable λ, GCH +�(λ+) yields a λ+-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 201∞)

For all singular λ, GCH +�(λ+) yields a coherent λ+-Souslin tree.

4 / 26

λ+-Souslin trees

Jensen proved that, in L, for all (regular uncountable) κ that is not
weakly compact, there is a κ-Souslin tree. His proof shows:

Theorem (Jensen, 1972)

For all uncountable λ, GCH +�λ yields a λ+-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable λ, GCH +�(λ+) yields a λ+-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 201∞)

For all singular λ, GCH +�(λ+) yields a coherent λ+-Souslin tree.

4 / 26

λ+-Souslin trees

Jensen proved that, in L, for all (regular uncountable) κ that is not
weakly compact, there is a κ-Souslin tree. His proof shows:

Theorem (Jensen, 1972)

For all uncountable λ, GCH +�λ yields a λ+-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable λ, GCH +�(λ+) yields a λ+-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 201∞)

For all singular λ, GCH +�(λ+) yields a coherent λ+-Souslin tree.

4 / 26

λ+-Souslin trees

A tree T is coherent iff {α ∈ dom(s) ∩ dom(t) | s(α) 6= t(α)} is
finite for all s, t ∈ T .

Theorem (Jensen, 1972)

For all uncountable λ, GCH +�λ yields a λ+-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable λ, GCH +�(λ+) yields a λ+-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 201∞)

For all singular λ, GCH +�(λ+) yields a coherent λ+-Souslin tree.

4 / 26

λ+-Souslin trees

A tree T is coherent iff {α ∈ dom(s) ∩ dom(t) | s(α) 6= t(α)} is
finite for all s, t ∈ T .

Theorem (Veličković, 1986)

For all uncountable λ, ♦ λ yields a coherent λ+-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable λ, GCH +�(λ+) yields a λ+-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 201∞)

For all singular λ, GCH +�(λ+) yields a coherent λ+-Souslin tree.

4 / 26

λ+-Souslin trees

A tree T is coherent iff {α ∈ dom(s) ∩ dom(t) | s(α) 6= t(α)} is
finite for all s, t ∈ T .

Theorem (Veličković, 1986)

For all uncountable λ, ♦ λ yields a coherent λ+-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable λ, GCH +�(λ+) yields a λ+-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 201∞)

For all singular λ, GCH +�(λ+) yields a coherent λ+-Souslin tree.

4 / 26

λ+-Souslin trees

In this talk, I would like to discuss the techniques that go into the
proofs, and to report on progress made on a related problem.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable λ, GCH +�(λ+) yields a λ+-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 201∞)

For all singular λ, GCH +�(λ+) yields a coherent λ+-Souslin tree.

4 / 26

A related problem

Definition
A κ-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property

CTP(κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;

2. every κ-Aronszajn tree is collapsing.

5 / 26

A related problem

Definition
A κ-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property

CTP(κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;

2. every κ-Aronszajn tree is collapsing.

5 / 26

A related problem

Definition
A κ-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property

CTP(κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;

2. every κ-Aronszajn tree is collapsing.

Theorem (Jensen, 1970’s)

GCH is consistent with CTP(ℵ1).

5 / 26

A related problem

Definition
A κ-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property

CTP(κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;

2. every κ-Aronszajn tree is collapsing.

Theorem (Jensen, 1970’s)

GCH is consistent with CTP(ℵ1).

Theorem (Laver-Shelah, 1981)

Assuming a weakly compact, CH is consistent with CTP(ℵ2).

5 / 26

A related problem

Conjecture

For every uncountable cardinal λ, GCH =⇒ ¬CTP(λ+).

Collapsing Tree Property

CTP(κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;

2. every κ-Aronszajn tree is collapsing.

Theorem (Jensen, 1970’s)

GCH is consistent with CTP(ℵ1).

Theorem (Laver-Shelah, 1981)

Assuming a weakly compact, CH is consistent with CTP(ℵ2).

5 / 26

A related problem

Conjecture

For every uncountable cardinal λ, GCH =⇒ ¬CTP(λ+).

Collapsing Tree Property

CTP(κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;

2. every κ-Aronszajn tree is collapsing.

It is now inevitable to discuss square principles...

5 / 26

Square principles

6 / 26

Square principles

Definition (Jensen, 1972)

�λ: exists a sequence 〈Cα | α < λ+〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ λ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ.

7 / 26

Square principles

Definition (Jensen, 1972)

�λ: exists a sequence 〈Cα | α < λ+〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ λ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ.

We generalize the preceding from a cardinal λ to an ordinal ξ:

Definition
�ξ: exists a sequence 〈Cα | α < |ξ|+〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ.

7 / 26

Square principles

Wait a minute!
But for all ξ ∈ [λ, λ+), �ξ is equivalent to �λ.

We generalize the preceding from a cardinal λ to an ordinal ξ:

Definition
�ξ: exists a sequence 〈Cα | α < |ξ|+〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ.

7 / 26

Square principles

Wait a minute!
But for all ξ ∈ [λ, λ+), �ξ is equivalent to �λ.

It’s true, but we nevertheless claim that �λ2 is superior over �λ.

We generalize the preceding from a cardinal λ to an ordinal ξ:

Definition
�ξ: exists a sequence 〈Cα | α < |ξ|+〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ.

7 / 26

Square principles

Wait a minute!
But for all ξ ∈ [λ, λ+), �ξ is equivalent to �λ.

It’s true, but we nevertheless claim that �λ2 is superior over �λ.
Why? because the former allows {α ∈ Eλ

+

θ | |Cα| = |α|} to be
stationary for any choice of a regular cardinal θ ≤ λ.

Definition
�ξ: exists a sequence 〈Cα | α < |ξ|+〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ.

7 / 26

Square principles

Wait a minute!
But for all ξ ∈ [λ, λ+), �ξ is equivalent to �λ.

It’s true, but we nevertheless claim that �λ2 is superior over �λ.
Why? because the former allows {α ∈ Eλ

+

θ | |Cα| = |α|} to be
stationary for any choice of a regular cardinal θ ≤ λ.

Definition
�ξ(κ): exists a sequence 〈Cα | α < κ〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ.

7 / 26

Square principles

Wait a minute!
But for all ξ ∈ [λ, λ+), �ξ is equivalent to �λ.

It’s true, but we nevertheless claim that �λ2 is superior over �λ.
Why? because the former allows {α ∈ Eλ

+

θ | |Cα| = |α|} to be
stationary for any choice of a regular cardinal θ ≤ λ.

Definition
�ξ(κ): exists a sequence 〈Cα | α < κ〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ;

3. for every club D ⊆ κ, there is ᾱ ∈ acc(D) with D ∩ ᾱ 6= Cᾱ.

7 / 26

Square principles

Definition
�ξ(κ,< µ): exists a sequence 〈Cα | α < κ〉 such that for limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. Cα := {Cβ ∩ α | β < κ, sup(Cβ ∩ α) = α} has size < µ;

3. for every club D ⊆ κ, there is ᾱ ∈ acc(D) with D ∩ ᾱ /∈ Cᾱ.

Definition
�ξ(κ): exists a sequence 〈Cα | α < κ〉 such that for every limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. for all ᾱ ∈ acc(Cα), Cα ∩ ᾱ = Cᾱ;

3. for every club D ⊆ κ, there is ᾱ ∈ acc(D) with D ∩ ᾱ 6= Cᾱ.

7 / 26

Square principles

Definition
�ξ(κ,< µ): exists a sequence 〈Cα | α < κ〉 such that for limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. Cα := {Cβ ∩ α | β < κ, sup(Cβ ∩ α) = α} has size < µ;

3. for every club D ⊆ κ, there is ᾱ ∈ acc(D) with D ∩ ᾱ /∈ Cᾱ.

Square principles and Aronszajn trees are closely related:

Theorem (Jensen, 1972)

�λ(λ+, < λ+) holds iff there exists a special λ+-Aronszajn tree.

7 / 26

Square principles

Definition
�ξ(κ,< µ): exists a sequence 〈Cα | α < κ〉 such that for limit α:

1. Cα is a club in α of order-type ≤ ξ;

2. Cα := {Cβ ∩ α | β < κ, sup(Cβ ∩ α) = α} has size < µ;

3. for every club D ⊆ κ, there is ᾱ ∈ acc(D) with D ∩ ᾱ /∈ Cᾱ.

Square principles and Aronszajn trees are closely related:

Theorem (Jensen, 1972)

�λ(λ+, < λ+) holds iff there exists a special λ+-Aronszajn tree.

Theorem (Todorcevic, 1987)

�κ(κ,< κ) holds iff there exists a κ-Aronszajn tree.

7 / 26

Square principles

Recall our conjecture

For every uncountable cardinal λ, GCH =⇒ ¬CTP(λ+).

Theorem (Jensen, 1972)

�λ(λ+, < λ+) holds iff there exists a special λ+-Aronszajn tree.

Theorem (Todorcevic, 1987)

�κ(κ,< κ) holds iff there exists a κ-Aronszajn tree.

7 / 26

Square principles

Recall our conjecture

For every uncountable cardinal λ, GCH =⇒ ¬CTP(λ+).

Equivalently

For every uncountable cardinal λ, if GCH +�λ+(λ+, < λ+) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Jensen, 1972)

�λ(λ+, < λ+) holds iff there exists a special λ+-Aronszajn tree.

Theorem (Todorcevic, 1987)

�κ(κ,< κ) holds iff there exists a κ-Aronszajn tree.

7 / 26

Square principles

Recall our conjecture

For every uncountable cardinal λ, GCH =⇒ ¬CTP(λ+).

Equivalently

For every uncountable cardinal λ, if GCH +�λ+(λ+, < λ+) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Ben-David and Shelah, 1986)

For every singular cardinal λ, if GCH +�λ(λ+, < λ+) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) is λ-distributive.

7 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Jensen exploits the fact that �λ(λ+) yields a non-reflecting
stationary set S .

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Jensen exploits the fact that �λ(λ+) yields a non-reflecting
stationary set S . The definition of limit level Tα for α ∈ S
involves throwing away many canonical limits from

⋃
β<α Tβ.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Jensen exploits the fact that �λ(λ+) yields a non-reflecting
stationary set S . The definition of limit level Tα for α ∈ S
involves throwing away many canonical limits from

⋃
β<α Tβ.

By ♦(S), this ensures the sealing of antichains.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Jensen exploits the fact that �λ(λ+) yields a non-reflecting
stationary set S . The definition of limit level Tα for α ∈ S
involves throwing away many canonical limits from

⋃
β<α Tβ.

By ♦(S), this ensures the sealing of antichains.
This does not jam the later stages of the construction, since
(one can arrange that) acc(Cα) ∩ S = ∅ for all α.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Ben-David and Shelah exploits the fact that for λ singular,
�λ(λ+, < λ+) may be witnessed by a sequence 〈Cα | α < λ+〉
for which {α < λ+ | |Cα| = |α|} is nonstationary.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Ben-David and Shelah exploits the fact that for λ singular,
�λ(λ+, < λ+) may be witnessed by a sequence 〈Cα | α < λ+〉
for which |Cα| < λ for all α < λ+.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Ben-David and Shelah exploits the fact that for λ singular,
�λ(λ+, < λ+) may be witnessed by a sequence 〈Cα | α < λ+〉
for which |Cα| < λ for all α < λ+.
The definition of limit level Tα involves throwing away one
canonical limit from

⋃
β<α Tβ.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Ben-David and Shelah exploits the fact that for λ singular,
�λ(λ+, < λ+) may be witnessed by a sequence 〈Cα | α < λ+〉
for which |Cα| < λ for all α < λ+.
The definition of limit level Tα involves throwing away one
canonical limit from

⋃
β<α Tβ.

By ♦(λ+), this ensures the sealing of a cofinal branch.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially:

I Ben-David and Shelah exploits the fact that for λ singular,
�λ(λ+, < λ+) may be witnessed by a sequence 〈Cα | α < λ+〉
for which |Cα| < λ for all α < λ+.
The definition of limit level Tα involves throwing away a
potential limit from

⋃
β<α Tβ.

This does not jam the later stages of the construction, since
they build a λ-splitting tree, while |Cα| < λ for all α.

8 / 26

To sum up

A problem of a similar flavor

I Jensen constructed a λ+-Souslin tree from GCH +�ξ(λ+)
with ξ = λ, and we relaxed it to ξ = λ+.

I Ben-David and Shelah constructed a non-collapsing
λ+-Aronszajn tree from GCH +�ξ(λ+, < λ+) with ξ = λ,
and we want to relax it to ξ = λ+.

The constructions under ξ = λ use this assumption crucially.

So, “relaxing ξ = λ to ξ = λ+”, in fact, amounts to finding a
different construction.

8 / 26

Same same, but different

9 / 26

Coherent Souslin trees

Exercise

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

10 / 26

Coherent Souslin trees

Exercise

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

I For every cofinal A ⊆ κ, there is a limit α < κ such that
sup(nacc(Cα) ∩ A) = α.

10 / 26

Coherent Souslin trees

Exercise

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

I For every cofinal A ⊆ κ, there is a limit α < κ such that
sup(nacc(Cα) ∩ A) = α.

Then there exists a κ-Souslin tree.

10 / 26

Coherent Souslin trees

Exercise

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

I For every cofinal A ⊆ κ, there is a limit α < κ such that
sup(nacc(Cα) ∩ A) = α.

Then there exists a κ-Souslin tree.

For a quick proof

See “How to construct a Souslin tree the right way” on my
webpage.

10 / 26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

I For every sequence 〈Ai | i < κ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < α.

10 / 26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

I For every sequence 〈Ai | i < κ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < α.

Then there exists a coherent κ-Souslin tree.

10 / 26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

I For every sequence 〈Ai | i < κ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < α.

Then there exists a coherent κ-Souslin tree.

Note
Wlog, the Ai ’s are pairwise disjoint. Therefore, |Cα| = |α|.

10 / 26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)

Suppose that ♦(κ) holds, and there exists a �κ(κ)-sequence
〈Cα | α < κ〉 satisfying the following:

I For every sequence 〈Ai | i < κ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < α.

Then there exists a coherent κ-Souslin tree.

About the proof

Uses the microscopic approach for Souslin-tree constructions.

10 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Recall
Cα := {Cβ ∩ α | β < κ, sup(Cβ ∩ α) = α}.

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Then there exists a corresponding tree T (~C) which is κ-Aronszajn.

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Then there exists a corresponding tree T (~C) which is κ-Aronszajn.

Note
Ben-David and Shelah used ♦(κ) to seal cofinal branches.
We use club-guessing, instead.
(Instead of throwing away canonical limits, we inject noise)

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Then there exists a corresponding tree T (~C) which is κ-Aronszajn.
Furthermore, for every cardinal θ, if the following holds:

I For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < θ.

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Then there exists a corresponding tree T (~C) which is κ-Aronszajn.
Furthermore, for every cardinal θ, if the following holds:

I For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < θ.

Then T (~C) is θ-distributive.

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Then there exists a corresponding tree T (~C) which is κ-Aronszajn.
Furthermore, for every cardinal θ, if the following holds:

I For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < θ.

Then T (~C) is θ-distributive.

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Then there exists a corresponding tree T (~C) which is κ-Aronszajn.
Furthermore, for every cardinal θ, if the following holds:

I For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < θ.

Then T (~C) is θ-distributive.

About the proof

Uses walks on ordinals.

11 / 26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201∞)

Suppose that ♦(κ) holds, and there exists a �κ(κ,< κ)-sequence
~C = 〈Cα | α < κ〉 satisfying the following:

I For every club E ⊆ κ, there is
a limit α < κ such that sup(nacc(C) ∩ E) = α for all C ∈ Cα.

Then there exists a corresponding tree T (~C) which is κ-Aronszajn.
Furthermore, for every cardinal θ, if the following holds:

I For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there is
a limit α < κ such that sup(nacc(Cα) ∩ Ai) = α for all i < θ.

Then T (~C) is θ-distributive.

About the proof

Uses walks on ordinals.
From ~C , we cook up ~D, and then the tree T (~C) is T (ρ

~D
0).

11 / 26

To sum up

There are a few machines that take �ξ(κ,< µ)-sequences ~C as

inputs, and produce corresponding trees T (~C) as outputs.
We already mentioned two:

I The microscopic approach for Souslin-tree constructions;

I Walks on ordinals.

Whether the outcome tree T (~C) is Aronszajn/Souslin/Collapsing...
depends on further features of ~C .
So, if we were to use these machines, then we have to find a way
to improve the ~C ’s.

12 / 26

To sum up

There are a few machines that take �ξ(κ,< µ)-sequences ~C as

inputs, and produce corresponding trees T (~C) as outputs.
We already mentioned two:

I The microscopic approach for Souslin-tree constructions;

I Walks on ordinals.

Whether the outcome tree T (~C) is Aronszajn/Souslin/Collapsing...
depends on further features of ~C .

So, if we were to use these machines, then we have to find a way
to improve the ~C ’s.

12 / 26

To sum up

There are a few machines that take �ξ(κ,< µ)-sequences ~C as

inputs, and produce corresponding trees T (~C) as outputs.
We already mentioned two:

I The microscopic approach for Souslin-tree constructions;

I Walks on ordinals.

Whether the outcome tree T (~C) is Aronszajn/Souslin/Collapsing...
depends on further features of ~C .
So, if we were to use these machines, then we have to find a way
to improve the ~C ’s.

12 / 26

Improve your square

13 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

14 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

14 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

Recall
x ∈ K(κ) iff x is a club in some limit ordinal α ≤ κ.

14 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

Recall
x ∈ K(κ) iff x is a club in some limit ordinal α ≤ κ.

14 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

Recall
x ∈ K(κ) iff x is a club in some limit ordinal α ≤ κ.

14 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

Recall
x ∈ K(κ) iff x is a club in some limit ordinal α ≤ κ.

14 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

By convention, let Φ(x) := {sup(x)} for all x ∈ P(κ) \ K(κ).

14 / 26

Postprocessing functions

So, someone provides us with a raw �ξ(κ,< µ)-sequence
〈Cα | α < κ〉. How do we proceed?

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

By convention, let Φ(x) := {sup(x)} for all x ∈ P(κ) \ K(κ).

Lemma (Brodsky-Rinot, 201∞)

If ~C = 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, and min{ξ, µ} < κ,

then ~CΦ := 〈Φ(Cα) | α < κ〉 is a �ξ(κ,< µ)-sequence, as well.

14 / 26

Postprocessing functions (cont.)

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence ~C ;
then move to ~CΦ0 , and then to ~CΦ1◦Φ0 , and hopefully, after finitely
many steps, we will end up with a useful sequence ~CΦn◦···◦Φ0 .
Our current practical record stands on n = 11.

Question
What kind of postprocessing functions are there?

15 / 26

Postprocessing functions (cont.)

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.
This means that we can start with an arbitrary square sequence ~C ;
then move to ~CΦ0 , and then to ~CΦ1◦Φ0 , and hopefully, after finitely
many steps, we will end up with a useful sequence ~CΦn◦···◦Φ0 .

Our current practical record stands on n = 11.

Question
What kind of postprocessing functions are there?

15 / 26

Postprocessing functions (cont.)

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.
This means that we can start with an arbitrary square sequence ~C ;
then move to ~CΦ0 , and then to ~CΦ1◦Φ0 , and hopefully, after finitely
many steps, we will end up with a useful sequence ~CΦn◦···◦Φ0 .
Our current practical record stands on n = 11.

Question
What kind of postprocessing functions are there?

15 / 26

Postprocessing functions (cont.)

Definition
Φ : K(κ)→ K(κ) is a postprocessing function iff for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.
This means that we can start with an arbitrary square sequence ~C ;
then move to ~CΦ0 , and then to ~CΦ1◦Φ0 , and hopefully, after finitely
many steps, we will end up with a useful sequence ~CΦn◦···◦Φ0 .
Our current practical record stands on n = 11.

Question
What kind of postprocessing functions are there?

15 / 26

List of postprocessing functions

16 / 26

List of postprocessing functions

16 / 26

Postprocessing functions - example #1

Recall (postprocessing function)

A map Φ : K(κ)→ K(κ) satisfying for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

For all x ∈ K(κ), let:

Φ(x) := acc(x).

Well, the preceding doesn’t quite work. Here is how it’s done:

Φ(x) :=

{
acc(x), if sup(acc(x)) = sup(x);

x \ sup(acc(x)), otherwise.

17 / 26

Postprocessing functions - example #1

Recall (postprocessing function)

A map Φ : K(κ)→ K(κ) satisfying for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

For all x ∈ K(κ), let:

Φ(x) := acc(x).

Well, the preceding doesn’t quite work. Here is how it’s done:

Φ(x) :=

{
acc(x), if sup(acc(x)) = sup(x);

x \ sup(acc(x)), otherwise.

17 / 26

Postprocessing functions - example #1

Recall (postprocessing function)

A map Φ : K(κ)→ K(κ) satisfying for all x ∈ K(κ):

I Φ(x) is a club in sup(x);

I acc(Φ(x)) ⊆ acc(x);

I for every ᾱ ∈ acc(Φ(x)), Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ).

For all x ∈ K(κ), let:

Φ(x) := acc(x).

Well, the preceding doesn’t quite work. Here is how it’s done:

Φ(x) :=

{
acc(x), if sup(acc(x)) = sup(x);

x \ sup(acc(x)), otherwise.

17 / 26

Postprocessing functions - example #2

For some fixed ε < κ:

Φ(x) :=

{
{α ∈ x | otp(x ∩ α) > ε}, if otp(x) > ε;

x , otherwise.

More generally, for a fixed closed subset Σ of κ:

Φ(x) :=

{
{α ∈ x | otp(x ∩ α) ∈ Σ}, if otp(x) = sup(Σ ∩ otp(x));

x \ (x(sup(Σ ∩ otp(x)))), otherwise.

Applications

A clever choice of Σ could transform a �ξ(κ,< µ)-sequence into a
�ξ′(κ,< µ′)-sequence with ξ′ < ξ or µ′ < µ.

18 / 26

Postprocessing functions - example #2

For some fixed ε < κ:

Φ(x) :=

{
{α ∈ x | otp(x ∩ α) > ε}, if otp(x) > ε;

x , otherwise.

More generally, for a fixed closed subset Σ of κ:

Φ(x) :=

{
{α ∈ x | otp(x ∩ α) ∈ Σ}, if otp(x) = sup(Σ ∩ otp(x));

x \ (x(sup(Σ ∩ otp(x)))), otherwise.

Applications

A clever choice of Σ could transform a �ξ(κ,< µ)-sequence into a
�ξ′(κ,< µ′)-sequence with ξ′ < ξ or µ′ < µ.

18 / 26

Postprocessing functions - example #2

For some fixed ε < κ:

Φ(x) :=

{
{α ∈ x | otp(x ∩ α) > ε}, if otp(x) > ε;

x , otherwise.

More generally, for a fixed closed subset Σ of κ:

Φ(x) :=

{
{α ∈ x | otp(x ∩ α) ∈ Σ}, if otp(x) = sup(Σ ∩ otp(x));

x \ (x(sup(Σ ∩ otp(x)))), otherwise.

Applications

A clever choice of Σ could transform a �ξ(κ,< µ)-sequence into a
�ξ′(κ,< µ′)-sequence with ξ′ < ξ or µ′ < µ.

18 / 26

Postprocessing functions - example #3

For some fixed club D ⊆ κ:

Φ(x) :=

{
D ∩ x , if sup(D ∩ x) = sup(x);

x \ sup(D ∩ x), otherwise.

Another useful option:

Φ(x) :=

{
{sup(D ∩ α) | α ∈ x}, if sup(D ∩ sup(x)) = sup(x);

x \ sup(D ∩ sup(x)), otherwise

Applications

A clever choice of D could equip a �ξ(κ,< µ)-sequence with some
club-guessing features.

19 / 26

Postprocessing functions - example #3

For some fixed club D ⊆ κ:

Φ(x) :=

{
D ∩ x , if sup(D ∩ x) = sup(x);

x \ sup(D ∩ x), otherwise.

Another useful option:

Φ(x) :=

{
{sup(D ∩ α) | α ∈ x}, if sup(D ∩ sup(x)) = sup(x);

x \ sup(D ∩ sup(x)), otherwise

Applications

A clever choice of D could equip a �ξ(κ,< µ)-sequence with some
club-guessing features.

19 / 26

Postprocessing functions - example #3

For some fixed club D ⊆ κ:

Φ(x) :=

{
D ∩ x , if sup(D ∩ x) = sup(x);

x \ sup(D ∩ x), otherwise.

Another useful option:

Φ(x) :=

{
{sup(D ∩ α) | α ∈ x}, if sup(D ∩ sup(x)) = sup(x);

x \ sup(D ∩ sup(x)), otherwise

Applications

A clever choice of D could equip a �ξ(κ,< µ)-sequence with some
club-guessing features.

19 / 26

Postprocessing functions - example #4

For some fixed A ⊆ κ:

Φ(x) :=

{
cl(nacc(x) ∩ A), if sup(nacc(x) ∩ A) = sup(x);

x \ sup(nacc(x) ∩ A), otherwise.

Applications

A dichotomy argument could provide A that would transform a
�ξ(κ,< µ)-sequence into a �ξ′(κ,< µ)-sequence with ξ′ < ξ.

20 / 26

Postprocessing functions - example #4

For some fixed A ⊆ κ:

Φ(x) :=

{
cl(nacc(x) ∩ A), if sup(nacc(x) ∩ A) = sup(x);

x \ sup(nacc(x) ∩ A), otherwise.

Applications

A dichotomy argument could provide A that would transform a
�ξ(κ,< µ)-sequence into a �ξ′(κ,< µ)-sequence with ξ′ < ξ.

20 / 26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 201∞)

Suppose that 2λ = λ+, S ⊆ Eλ
+

6=cf(λ) is stationary, and 〈Cα | α ∈ S〉
is a sequence such that each Cα is a club in α of order-type < α.
Then there exists a postprocessing function Φ : K(λ+)→ K(λ+)
satisfying the following.

21 / 26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 201∞)

Suppose that 2λ = λ+, S ⊆ Eλ
+

6=cf(λ) is stationary, and 〈Cα | α ∈ S〉
is a sequence such that each Cα is a club in α of order-type < α.
Then there exists a postprocessing function Φ : K(λ+)→ K(λ+)
satisfying the following.
For every cofinal A ⊆ λ+, there exist stationarily many α ∈ S s.t.:

1. nacc(Φ(Cα)) ⊆ A;

2. otp(Φ(Cα)) = cf(α).

21 / 26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 201∞)

Suppose that 2λ = λ+, S ⊆ Eλ
+

6=cf(λ) is stationary, and 〈Cα | α ∈ S〉
is a sequence such that each Cα is a club in α of order-type < α.
Then there exists a postprocessing function Φ : K(λ+)→ K(λ+)
satisfying the following.
For every cofinal A ⊆ λ+, there exist stationarily many α ∈ S s.t.:

1. nacc(Φ(Cα)) ⊆ A;

2. otp(Φ(Cα)) = cf(α).

Corollary (Shelah, 2010)

If 2λ = λ+, then ♦(S) holds for every stationary S ⊆ Eλ
+

6=cf(λ).

21 / 26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 201∞)

Suppose that 2λ = λ+, S ⊆ Eλ
+

6=cf(λ) is stationary, and 〈Cα | α ∈ S〉
is a sequence such that each Cα is a club in α of order-type < α.
Then there exists a postprocessing function Φ : K(λ+)→ K(λ+)
satisfying the following.
For every cofinal A ⊆ λ+, there exist stationarily many α ∈ S s.t.:

1. nacc(Φ(Cα)) ⊆ A;

2. otp(Φ(Cα)) = cf(α).

Corollary (Shelah, 2010)

If 2λ = λ+, then ♦(S) holds for every stationary S ⊆ Eλ
+

6=cf(λ).

Corollary (Zeman, 2010)

For λ singular, if 2λ = λ+ and �∗λ holds, then ♦(S) holds for every

S ⊆ Eλ
+

cf(λ) that reflects stationarily often.

21 / 26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 201∞)

Suppose that 2λ = λ+, S ⊆ Eλ
+

6=cf(λ) is stationary, and 〈Cα | α ∈ S〉
is a sequence such that each Cα is a club in α of order-type < α.
Then there exists a postprocessing function Φ : K(λ+)→ K(λ+)
satisfying the following.
For every cofinal A ⊆ λ+, there exist stationarily many α ∈ S s.t.:

1. nacc(Φ(Cα)) ⊆ A;

2. otp(Φ(Cα)) = cf(α).

Not enough for intended applications

Hitting a single cofinal set A is nice, but we need to hit many Ai ’s.

21 / 26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 201∞)

Suppose that 2λ = λ+, S ⊆ Eλ
+

6=cf(λ) is stationary, and 〈Cα | α ∈ S〉
is a sequence such that each Cα is a club in α of order-type < α.
Then there exists a postprocessing function Φ : K(λ+)→ K(λ+)
satisfying the following.
For every cofinal A ⊆ λ+, there exist stationarily many α ∈ S s.t.:

1. nacc(Φ(Cα)) ⊆ A;

2. otp(Φ(Cα)) = cf(α).

Lemma (Brodsky-Rinot, 201∞)

Assume ♦(κ). Then there is a postprocessing Φ : K(κ)→ K(κ)
such that every sequence 〈Ai | i < κ〉 of cofinal subsets of κ may
be encoded by a single stationary set G.

21 / 26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 201∞)

Suppose that 2λ = λ+, S ⊆ Eλ
+

6=cf(λ) is stationary, and 〈Cα | α ∈ S〉
is a sequence such that each Cα is a club in α of order-type < α.
Then there exists a postprocessing function Φ : K(λ+)→ K(λ+)
satisfying the following.
For every cofinal A ⊆ λ+, there exist stationarily many α ∈ S s.t.:

1. nacc(Φ(Cα)) ⊆ A;

2. otp(Φ(Cα)) = cf(α).

Lemma (Brodsky-Rinot, 201∞)

Assume ♦(κ). Then there is a postprocessing Φ : K(κ)→ K(κ)
such that every sequence 〈Ai | i < κ〉 of cofinal subsets of κ may
be encoded by a single stationary set G. For all x ∈ K(κ):
If nacc(x) ⊆ G, then (Φ(x))(i + 1) ∈ Ai for all i < otp(x).

21 / 26

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 201∞)

Suppose 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, and 2|ξ| = κ.
For cofinally many θ < |ξ|, there exists a postprocessing function
Φθ : K(κ)→ K(κ) satisfying the following.
For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there are
stat. many α < κ s.t. sup(nacc(Φθ(Cα)) ∩ Ai) = α for all i < θ.

Lemma (Brodsky-Rinot, 201∞)

Assume ♦(κ). Then there is a postprocessing Φ : K(κ)→ K(κ)
such that every sequence 〈Ai | i < κ〉 of cofinal subsets of κ may
be encoded by a single stationary set G. For all x ∈ K(κ):
If nacc(x) ⊆ G, then (Φ(x))(i + 1) ∈ Ai for all i < otp(x).

21 / 26

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 201∞)

Suppose 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, and 2|ξ| = κ.
For cofinally many θ < |ξ|, there exists a postprocessing function
Φθ : K(κ)→ K(κ) satisfying the following.
For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there are
stat. many α < κ s.t. sup(nacc(Φθ(Cα)) ∩ Ai) = α for all i < θ.

Next problem

Each θ has its own Φθ. We need to integrate them together!

21 / 26

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 201∞)

Suppose 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, and 2|ξ| = κ.
For cofinally many θ < |ξ|, there exists a postprocessing function
Φθ : K(κ)→ K(κ) satisfying the following.
For every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, there are
stat. many α < κ s.t. sup(nacc(Φθ(Cα)) ∩ Ai) = α for all i < θ.

Remark
A statement parallel to the preceding, obtained by replacing ξ < κ
with µ < κ holds true as well.
(The proof, however, is entirely different)

21 / 26

Mixing postprocessing functions

22 / 26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here’s one.

Mixing lemma (Brodsky-Rinot, 201∞)

Suppose 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, min{ξ, µ} < κ.
For every Θ ⊆ κ and every sequence 〈Sθ | θ ∈ Θ〉 of stationary
subsets of κ, there is a postprocessing function Φ : K(κ)→ K(κ)
such that, for cofinally many θ ∈ Θ,

Ŝθ := {α ∈ Sθ | min(Φ(Cα)) = θ} is stationary.

This means
To each θ such that Ŝθ is stationary, we may find a corresponding
postprocessing function Φθ, and then we can mix them together
letting Φ′(x) = Φθ(x) iff min(Φ(x)) = θ.

23 / 26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here’s one.

Mixing lemma (Brodsky-Rinot, 201∞)

Suppose 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, min{ξ, µ} < κ.
For every Θ ⊆ κ and every sequence 〈Sθ | θ ∈ Θ〉 of stationary
subsets of κ, there is a postprocessing function Φ : K(κ)→ K(κ)
such that, for cofinally many θ ∈ Θ,

Ŝθ := {α ∈ Sθ | min(Φ(Cα)) = θ} is stationary.

This means
To each θ such that Ŝθ is stationary, we may find a corresponding
postprocessing function Φθ, and then we can mix them together
letting Φ′(x) = Φθ(x) iff min(Φ(x)) = θ.

23 / 26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here’s one.

Mixing lemma (Brodsky-Rinot, 201∞)

Suppose 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, min{ξ, µ} < κ.
For every Θ ⊆ κ and every sequence 〈Sθ | θ ∈ Θ〉 of stationary
subsets of κ, there is a postprocessing function Φ : K(κ)→ K(κ)
such that, for cofinally many θ ∈ Θ,

Ŝθ := {α ∈ Sθ | min(Φ(Cα)) = θ} is stationary.

This means
To each θ such that Ŝθ is stationary, we may find a corresponding
postprocessing function Φθ, and then we can mix them together
letting Φ′(x) = Φθ(x) iff min(Φ(x)) = θ.

23 / 26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here’s one.

Mixing lemma (Brodsky-Rinot, 201∞)

Suppose 〈Cα | α < κ〉 is a �ξ(κ,< µ)-sequence, min{ξ, µ} < κ.
For every Θ ⊆ κ and every sequence 〈Sθ | θ ∈ Θ〉 of stationary
subsets of κ, there is a postprocessing function Φ : K(κ)→ K(κ)
such that, for cofinally many θ ∈ Θ,

Ŝθ := {α ∈ Sθ | min(Φ(Cα)) = θ} is stationary.

This means
To each θ such that Ŝθ is stationary, we may find a corresponding
postprocessing function Φθ, and then we can mix them together
letting Φ′(x) = Φθ(x) iff min(Φ(x)) = θ.

23 / 26

An application

Conjecture

For every uncountable cardinal λ, if GCH +�λ+(λ+, < λ+) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 201∞)

For every singular cardinal λ, if GCH +�λ+(λ+, < λ) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) is λ-distributive.

24 / 26

An application

Conjecture

For every uncountable cardinal λ, if GCH +�λ+(λ+, < λ+) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 201∞)

For every singular cardinal λ, if GCH +�λ+(λ+, < λ) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) is λ-distributive.

Corollary

For every uncountable cardinal λ, if GCH +�λ+(λ+, < λ) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) is λ-distributive.

24 / 26

An application

Conjecture

For every uncountable cardinal λ, if GCH +�λ+(λ+, < λ+) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 201∞)

For every singular cardinal λ, if GCH +�λ+(λ+, < λ) holds,
then there is a λ+-Aronszajn tree T s.t. P(T) is λ-distributive.

An unrelated application of the mixing lemma

If �(κ) holds, then any fat subset of κ may be split into κ many
fat sets.

24 / 26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(Φ(x)) ⊆ acc(x)” prevents
us from blowing-up the order-type of elements of a square.
For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 201∞)

Assume GCH, λ is a singular cardinal, and there is a non-reflecting
stationary subset of Eλ

+

6=cf(λ).

If �∗λ holds, then there is a �λ2(λ+, < λ+)-sequence ~C , for which
the microscopic approach to Souslin-tree constructions produces a
λ+-Souslin tree which is moreover free.

25 / 26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.
Most promimently, the requirement “acc(Φ(x)) ⊆ acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 201∞)

Assume GCH, λ is a singular cardinal, and there is a non-reflecting
stationary subset of Eλ

+

6=cf(λ).

If �∗λ holds, then there is a �λ2(λ+, < λ+)-sequence ~C , for which
the microscopic approach to Souslin-tree constructions produces a
λ+-Souslin tree which is moreover free.

25 / 26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.
Most promimently, the requirement “acc(Φ(x)) ⊆ acc(x)” prevents
us from blowing-up the order-type of elements of a square.
For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 201∞)

Assume GCH, λ is a singular cardinal, and there is a non-reflecting
stationary subset of Eλ

+

6=cf(λ).

If �∗λ holds, then there is a �λ2(λ+, < λ+)-sequence ~C , for which
the microscopic approach to Souslin-tree constructions produces a
λ+-Souslin tree which is moreover free.

25 / 26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.
Most promimently, the requirement “acc(Φ(x)) ⊆ acc(x)” prevents
us from blowing-up the order-type of elements of a square.
For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 201∞)

Assume GCH, λ is a singular cardinal, and there is a non-reflecting
stationary subset of Eλ

+

6=cf(λ).

If �∗λ holds, then there is a �λ2(λ+, < λ+)-sequence ~C , for which
the microscopic approach to Souslin-tree constructions produces a
λ+-Souslin tree which is moreover free.

25 / 26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.
Most promimently, the requirement “acc(Φ(x)) ⊆ acc(x)” prevents
us from blowing-up the order-type of elements of a square.
For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 201∞)

Assume GCH, λ is a singular cardinal, and there is a non-reflecting
stationary subset of Eλ

+

6=cf(λ).

If �∗λ holds, then there is a �λ2(λ+, < λ+)-sequence ~C , for which
the microscopic approach to Souslin-tree constructions produces a
λ+-Souslin tree which is moreover free.

25 / 26

Thank you!

26 / 26

