Distributive Aronszajn trees

BUY

~ MELODRAMA

ON ITUNES

The 14th International Workshop on Set Theory
CIRM, Luminy, Marseille
10-October-2017

Assaf Rinot
Bar-1lan University

Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal.

2/26

Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.

2/26

Conventions
Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.

H,; denotes the collection of all sets of hereditary cardinality < .

2/26

Conventions
Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.
H,; denotes the collection of all sets of hereditary cardinality < .

K(x) denotes the collection of all x € P(k) such that x is a club
subset of sup(x).

2/26

Conventions
Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.
H,; denotes the collection of all sets of hereditary cardinality < .

K(x) denotes the collection of all x € P(k) such that x is a club
subset of sup(x).

Every set of ordinals C, splits into two:
» acc(C) :={ae C|sup(CNa)=a>0}
» nacc(C) := C \ acc(C).

2/26

Conventions
Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.
H,; denotes the collection of all sets of hereditary cardinality < .

K(x) denotes the collection of all x € P(k) such that x is a club
subset of sup(x).

Every set of ordinals C, splits into two:
» acc(C) :={ae C|sup(CNa)=a>0}
» nacc(C) := C \ acc(C).

When we write “there is a limit a < k", we mean "Ja € acc(k)".

2/26

Kk-trees

Definition
In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:

3/26

Kk-trees

Definition
In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;

3/26

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

3/26

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

To each T, we associate the notion of forcing P(T) := (T, D).

3/26

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

To each T, we associate the notion of forcing P(T) := (T, D).

Note
If T is a k-tree, then P(T) adds a cofinal branch through T. i.e.,
a sequence b: k — H, such that b a € T for all a < k.

3/26

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

To each T, we associate the notion of forcing P(T) := (T, D).
Definition
A k-tree T is Aronszajn iff it has no cofinal branches.

Note
If T is a k-tree, then P(T) adds a cofinal branch through T. i.e.,
a sequence b: k — H, such that b a € T for all a < k.

3/26

Kk-trees

Definition
In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;

2. forallao<kand t € T, thereisse T, suchthat tUs e T.
To each T, we associate the notion of forcing P(T) := (T, D).
Definition
A k-tree T is Aronszajn iff it has no cofinal branches.

Definition
A k-tree T is Souslin iff it is Aronszajn and P(T) has the k-cc.

3/26

AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree.

4/26

AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree. His proof shows:

Theorem (Jensen, 1972)
For all uncountable A, GCH + [, yields a A*-Souslin tree.

/26

AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree. His proof shows:

Theorem (Jensen, 1972)

For all uncountable A, GCH + [, yields a A*-Souslin tree.
This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/26

AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Jensen, 1972)

For all uncountable A, GCH + O, yields a AT-Souslin tree.
This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/26

AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Veli¢kovi¢, 1986)

For all uncountable \,]y yields a coherent *-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)
For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/26

AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Veli¢kovi¢, 1986)

For all uncountable \,]y yields a coherent *-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.
Even more recently:

Theorem (Brodsky-Rinot, 20100)
For all singular \, GCH + O(\") yields a coherent A*-Souslin tree.

/ 26

AT-Souslin trees

In this talk, | would like to discuss the techniques that go into the
proofs, and to report on progress made on a related problem.

This was recently improved:
Theorem (Rinot, 2017)
For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 20100)
For all singular A\, GCH + O(A\") yields a coherent A*-Souslin tree.

26

A related problem

Definition
A k-tree T is collapsing iff P(T) collapses cardinals.

26

A related problem

Definition

A k-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

26

A related problem

Definition
A k-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with CTP(Xy).

A related problem

Definition
A k-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property
CTP(k) asserts that the two hold:

1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with CTP(Xy).

Theorem (Laver-Shelah, 1981)
Assuming a weakly compact, CH is consistent with CTP(R3).

A related problem

Conjecture
For every uncountable cardinal A, GCH = —CTP(\™).

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with CTP(Xy).

Theorem (Laver-Shelah, 1981)
Assuming a weakly compact, CH is consistent with CTP(R3).

A related problem

Conjecture
For every uncountable cardinal A, GCH = —CTP(\™).

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

It is now inevitable to discuss square principles...

5/26

Square principles

-
g I

&
=
=
i

W

6/26

Square principles

Definition (Jensen, 1972)

Oa: exists a sequence (C, | a < A1) such that for every limit a:

1. C,is a club in a of order-type < A;
2. for all @ € acc(Cy), CaNa = Cs.

26

Square principles

Definition (Jensen, 1972)

Oa: exists a sequence (C, | a < A1) such that for every limit a:
1. C,is a club in a of order-type < A;
2. for all @ € acc(Cy), CaNa = Cs.

We generalize the preceding from a cardinal A to an ordinal &:
Definition
Ce: exists a sequence (C, | o < |€]T) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

7/26

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

We generalize the preceding from a cardinal A to an ordinal &:
Definition
Ce: exists a sequence (C, | o < |€]T) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

7/26

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.

We generalize the preceding from a cardinal A to an ordinal &:
Definition
Ce: exists a sequence (C, | o < |€]T) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

7/26

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.
Why? because the former allows {«a € Eg)‘+ | |Cal = |af} to be
stationary for any choice of a regular cardinal 6 < A.

Definition

Ce: exists a sequence (C, | o < |€]T) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

7/26

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.
Why? because the former allows {«a € Eg)‘+ | |Cal = |af} to be
stationary for any choice of a regular cardinal 6 < A.

Definition

O¢(k): exists a sequence (C, | @ < k) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

7/26

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.
Why? because the former allows {«a € Eg)‘+ | |Cal = |af} to be
stationary for any choice of a regular cardinal 6 < A.

Definition

O¢(k): exists a sequence (C, | @ < k) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CoNa = Ca;
3. for every club D C &, there is & € acc(D) with DNa # Cs.

7/26

Square principles

Definition

O¢(k, < p): exists a sequence (C, | o < k) such that for limit a:
1. C,is a club in « of order-type < &;
2. Co:={Csna|p < r,sup(Cgna) = a} has size < p;
3. for every club D C k, there is & € acc(D) with DN a ¢ Cs.

Definition

O¢(k): exists a sequence (C, | @ < k) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CoNa = Ca;
3. for every club D C &, there is & € acc(D) with DNa # Cs.

7/26

Square principles

Definition

O¢(k, < p): exists a sequence (C, | o < k) such that for limit a:
1. C,is a club in « of order-type < &;
2. Co:={CsnNa|p <k,sup(CgNa)=a} has size < ;
3. for every club D C k, there is & € acc(D) with DN a ¢ Cs.

Square principles and Aronszajn trees are closely related:

Theorem (Jensen, 1972)
Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

7/26

Square principles

Definition

O¢(k, < p): exists a sequence (C, | o < k) such that for limit a:
1. C,is a club in « of order-type < &;
2. Co:={CsnNa|p <k,sup(CgNa)=a} has size < ;
3. for every club D C k, there is & € acc(D) with DN a ¢ Cs.

Square principles and Aronszajn trees are closely related:

Theorem (Jensen, 1972)
Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

Theorem (Todorcevic, 1987)
Ok(k, < k) holds iff there exists a k-Aronszajn tree.

7/26

Square principles

Recall our conjecture
For every uncountable cardinal A\, GCH = —~CTP(A™).

Theorem (Jensen, 1972)

Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

Theorem (Todorcevic, 1987)
Ok(k, < k) holds iff there exists a k-Aronszajn tree.

26

Square principles

Recall our conjecture
For every uncountable cardinal A\, GCH = —~CTP(A™).

Equivalently

For every uncountable cardinal A, if GCH + O+ (AT, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Jensen, 1972)
Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

Theorem (Todorcevic, 1987)
Ok(k, < k) holds iff there exists a k-Aronszajn tree.

26

Square principles

Recall our conjecture
For every uncountable cardinal A\, GCH = —~CTP(A™).

Equivalently

For every uncountable cardinal A, if GCH + O+ (AT, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Ben-David and Shelah, 1986)

For every singular cardinal X, if GCH + O\(A1, < AT) holds,
then there is a \T-Aronszajn tree T s.t. P(T) is A-distributive.

7/26

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

8/26

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

8/26

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =)\, and we relaxed it to & = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og (AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that 0\(A™) yields a non-reflecting
stationary set S.

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =)\, and we relaxed it to & = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og (AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that TJy(A™) yields a non-reflecting
stationary set S. The definition of limit level T, for a € S
involves throwing away many canonical limits from U5<a Ts.

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + C¢(AT)
with &€ =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that TJy(A™) yields a non-reflecting
stationary set S. The definition of limit level T, for a € S

involves throwing away many canonical limits from U5<a Ts.

By &(S), this ensures the sealing of antichains.

26

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + C¢(AT)
with &€ =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that TJy(A™) yields a non-reflecting
stationary set S. The definition of limit level T, for a € S

involves throwing away many canonical limits from U5<a Ts.

By &(S), this ensures the sealing of antichains.
This does not jam the later stages of the construction, since
(one can arrange that) acc(C,) NS = 0 for all a.

26

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which {a < A1 | |C,| = ||} is nonstationary.

26

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all o < AT,

26

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all @ < AT
The definition of limit level T, involves throwing away one
canonical limit from (Js_,, T.

26

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(A1, < AT) with € = A,
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all @ < AT

The definition of limit level T, involves throwing away one
canonical limit from (Js_,, T.

By ¢(AT), this ensures the sealing of a cofinal branch.

8/26

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(A1, < AT) with € = A,
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all o < AT,

The definition of limit level T, involves throwing away a
potential limit from (Js_,, T

This does not jam the later stages of the construction, since
they build a A-splitting tree, while |C,| < A for all .

26

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially.

So, “relaxing & = X to & = A", in fact, amounts to finding a
different construction.

8/26

Same same, but different

9/26

Coherent Souslin trees

Exercise

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:

10/26

Coherent Souslin trees

Exercise

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:

» For every cofinal A C &, there is a limit @ < k such that
sup(nacc(Cy) NA) = a.

10/26

Coherent Souslin trees

Exercise
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every cofinal A C &, there is a limit @ < k such that
sup(nacc(Cy) NA) = a.
Then there exists a x-Souslin tree.

10/26

Coherent Souslin trees

Exercise
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every cofinal A C &, there is a limit @ < k such that
sup(nacc(Cy) NA) = a.
Then there exists a x-Souslin tree.

For a quick proof
See “How to construct a Souslin tree the right way” on my
webpage.

10/26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:

» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

10/26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

10/26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

Note
Wiog, the A;'s are pairwise disjoint. Therefore, |C,| = |a.

10/26

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

About the proof
Uses the microscopic approach for Souslin-tree constructions.

10/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)

Suppose that (k) holds, and there exists a [, (x, < k)-sequence
C = (Cy | @ < k) satisfying the following:

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Recall
Co ={CsNa|pf <k,sup(CsgNa)=al.

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that (k) holds, and there exists a [, (x, < k)-sequence
C = (Cy | @ < k) satisfying the following:

» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Then there exists a corresponding tree T(C) which is x-Aronszajn.

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
S_’uppose that {(k) holds, and there exists a O (k, < k)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is

a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is x-Aronszajn.
Note
Ben-David and Shelah used {)(k) to seal cofinal branches.

We use club-guessing, instead.
(Instead of throwing away canonical limits, we inject noise)

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that (k) holds, and there exists a [, (x, < k)-sequence
C = (Cy | @ < k) satisfying the following:

» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Then there exists a corresponding tree T(C) which is x-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit < & such that sup(nacc(C,) N A;) = «a for all i < 6.

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is x-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit < & such that sup(nacc(C,) N A;) = «a for all i < 6.

=,

Then T(C) is O-distributive.

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is k-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit @ < & such that sup(nacc(C,) N A;) = « for all i < 6.

=,

Then T(C) is f-distributive.

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Then there exists a corresponding tree T(C) which is k-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit @ < & such that sup(nacc(C,) N A;) = « for all i < 6.

=,

Then T(C) is f-distributive.

About the proof
Uses walks on ordinals.

11/26

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is k-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit @ < & such that sup(nacc(C,) N A;) = « for all i < 6.

=,

Then T(C) is O-distributive.

About the proof

Uses walks on ordinals. B
From C, we cook up D, and then the tree T(C) is T(p5).

11/26

To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

=,

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;

» Walks on ordinals.

12/26

To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

=,

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;
» Walks on ordinals.

Whether the outcome tree T(fl is Aronszajn/Souslin/Collapsing...
depends on further features of C.

12/26

To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;
» Walks on ordinals.

Whether the outcome tree T(f) is Aronszajn/Souslin/Collapsing...
depends on further features of C.

So, if we were to use these machines, then we have to find a way
to improve the C's.

12/26

Improve your square

13/26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

14 /26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition
® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

14 /26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition
® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Co | @ < K). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

By convention, let ®(x) := {sup(x)} for all x € P(x) \ K(k).

14 /26

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

By convention, let ®(x) := {sup(x)} for all x € P(x) \ K(k).

Lemma (Brodsky-Rinot, 20100)
IFC=(Cyla<k)isa O¢(k, < p)-sequence, and min{&, u} < &,
then C® := (&(C,) |a < k) isa O¢(k, < p)-sequence, as well.

14 /26

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

15/26

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®, and then to C®1°® and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

15/26

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®°, and then to C®1°%, and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

Our current practical record stands on n = 11.

15/26

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®°, and then to C®1°%, and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

Our current practical record stands on n = 11.

Question
What kind of postprocessing functions are there?

15/26

List of postprocessing functions

& Not logged in Talk Contributions Create account Log in

Article Talk | Read Viewsource Morew |Search Wikipedia Q

WIKIPEDIA List of

The Free Encyclopedia
Main page From Wikipedia, the free encyclopedia
Ccontents This is an old revision of this page, as edited by 88.236.55.132

(talk) at 15:50, 7 December 2012. The present address (URL) is

Featured content a permanent link to this revision, which may differ

Current events significantly from the current revision.

Random article (diff) « Previous revision | Latest revision (diff) | Newer revision — (diff)
Donate to Wikipedia

Wikipedia store This list is incomplete; you can help by expanding it.
Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file

16 /26

List of postprocessing functions

7 G
)
."F\v
¥ 00 o8
Y
\.",

WIKIPEDIA
The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file

& Not logged in Talk Contributions Create account Log in
Article Talk | Read Viewsource Morew |Search Wikipedia Q
List of serial killers by number

of victims

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 88.236.55.132
(talk) at 15:50, 7 December 2012. The present address (URL) is
a permanent link to this revision, which may differ
significantly from the current revision.

(diff) « Previous revision | Latest revision (diff) | Newer revision — (diff)

This list is incomplete; you can help by expanding it Please

do not expand the list by kiling people,
A serial killer is a person who murders two or more people, in
two or more separate events over a period of time, for primarily
psychological reasons.!!l There are gaps of time between the
Killings, which may range from a few hours to many years. This
list shows serial killers from the 20th century to present day by
number of victims (list of serial killers by victim before 1900). In
many cases, the exact number of victims assigned to a serial
Killer is not known, and even if that person is convicted of a few,
there can be the possibility that he/she killed many more.

boredpanda.com

/26

Postprocessing functions - example #1

Recall (postprocessing function)

A map ¢ : K(k) — K(r) satisfying for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).

17/26

Postprocessing functions - example #1

Recall (postprocessing function)

A map ¢ : (k) — K(r) satisfying for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(®(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).

Well, the preceding doesn't quite work. Here is how it's done:

O(x) == {aCC(X)7 if sup(acc(x)) = sup(x);

17 /26

Postprocessing functions - example #1

Recall (postprocessing function)

A map ¢ : (k) — K(r) satisfying for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(®(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).

Well, the preceding doesn't quite work. Here is how it's done:

x \ sup(acc(x)), otherwise.

O(x) == {aCC(X)7 if sup(acc(x)) = sup(x);

17/26

Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x |otp(xNa) > e}, if otp(f<) > €
X, otherwise.

18 /26

Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x| otp(xNa) > e}, if otp(f<) > €
X, otherwise.

More generally, for a fixed closed subset ¥ of «:

x \ (x(sup(X Notp(x)))), otherwise.

O(x) = {{a € x|otp(xNa) € X}, if otp(x) = sup(X Notp(x));

18 /26

Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x| otp(xNa) > e}, if otp(f<) > €
X, otherwise.

More generally, for a fixed closed subset ¥ of «:

O(x) = {{a € x|otp(xNa) € X}, if otp(x) = sup(X Notp(x));
| x\ (x(sup(Z Notp(x)))), otherwise.

Applications
A clever choice of X could transform a C¢(k, < u)-sequence into a
Oer(k, < p')-sequence with & < & or 1/ < p.

18 /26

Postprocessing functions - example #3

For some fixed club D C k:

(DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(DNx), otherwise.

19/26

Postprocessing functions - example #3

For some fixed club D C k:

(DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(D Nx), otherwise.

Another useful option:

O(x) = {sup(DNa) | a € x}, if sup(D Nsup(x)) = sup(x);
. x \ sup(D Nsup(x)), otherwise

19/26

Postprocessing functions - example #3

For some fixed club D C k:

(DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(DNx), otherwise.

Another useful option:

O(x) = {sup(DNa) | a € x}, if sup(D Nsup(x)) = sup(x);
. x \ sup(D Nsup(x)), otherwise

Applications

A clever choice of D could equip a C¢(r, < p1)-sequence with some
club-guessing features.

19/26

Postprocessing functions - example #4

For some fixed A C k:

O(x) = cl(nacc(x) N A), if sup(nacc(x) N A) = sup(x);
X \ sup(nacc(x) N A), otherwise.

20 /26

Postprocessing functions - example #4

For some fixed A C k:

O(x) = cl(nacc(x) N A), if sup(nacc(x) N A) = sup(x);
X \ sup(nacc(x) N A), otherwise.

Applications
A dichotomy argument could provide A that would transform a
O¢(k, < p)-sequence into a Og/(k, < p)-sequence with ' < &.

20/26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

21/26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:
1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).

21/26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2* = *, S C E} f(/\) is stationary, and (C, | a € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.
For every cofinal A C AT, there exist stationarily many oo € S s.t.:
1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).
Corollary (Shelah, 2010)

If 2% = A%, then {(S) holds for every stationary S C EJ_ f()\)

21/26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2* = *, S C E} f(/\) is stationary, and (C, | a € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(C,)) C A;
2. otp(P(C,)) = cf(a).

Corollary (Shelah, 2010)

If 2% = A%, then {(S) holds for every stationary S C EJ_ f()\)

Corollary (Zeman, 2010)

For A singular, if 22 = AT and [0} holds, then {>(S) holds for every
SC Ec’\fa) that reflects stationarily often.

21/26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).
Not enough for intended applications

Hitting a single cofinal set A is nice, but we need to hit many A;'s.

21/26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(C,)) C A;
2. otp(P(C,)) = cf(a).

Lemma (Brodsky-Rinot, 20100)

Assume (k). Then there is a postprocessing ® : K(k) — K(k)
such that every sequence (A; | i < k) of cofinal subsets of K may
be encoded by a single stationary set G.

21/26

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)
Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.
For every cofinal A C AT, there exist stationarily many oo € S s.t.:
1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).

Lemma (Brodsky-Rinot, 20100)

Assume (k). Then there is a postprocessing ® : K(k) — K(k)
such that every sequence (A; | i < k) of cofinal subsets of K may
be encoded by a single stationary set G. For all x € K(k):

If nacc(x) C G, then (®(x))(i + 1) € A; for all i < otp(x).

21/26

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Lemma (Brodsky-Rinot, 20100)

Assume (k). Then there is a postprocessing ® : K(k) — K(k)
such that every sequence (A; | i < k) of cofinal subsets of K may
be encoded by a single stationary set G. For all x € K(k):

If nacc(x) C G, then (®(x))(i + 1) € A; for all i < otp(x).

21/26

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Next problem
Each 0 has its own ®y. We need to integrate them together!

21/26

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Remark

A statement parallel to the preceding, obtained by replacing £ < &
with p < k holds true as well.

(The proof, however, is entirely different)

21/26

Mixing postprocessing functions

22/26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

23 /26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : K(k) — K(k)
such that, for cofinally many 6 € ©,

23 /26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.
Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : K(k) — K(k)
such that, for cofinally many 6 € ©,

Sp:={a € Sy | min(®(C,)) = 0} is stationary.

23 /26

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : K(k) — K(k)
such that, for cofinally many 6 € ©,

Sp:={a € Sy | min(®(C,)) = 0} is stationary.
This means
To each 0 such that Sy is stationary, we may find a corresponding

postprocessing function ®y, and then we can mix them together
letting ®'(x) = Py(x) iff min(P(x)) = 0.

23 /26

An application

Conjecture
For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.

24 /26

An application

Conjecture

For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.

Corollary

For every uncountable cardinal A, if GCH + O+ (AT, < A) holds,
then there is a AT-Aronszajn tree T s.t. P(T) is A-distributive.

24 /26

An application

Conjecture

For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.

An unrelated application of the mixing lemma

If O(x) holds, then any fat subset of x may be split into x many
fat sets.

24 /26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

25 /26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

25 /26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

25 /26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 20100)

Assume GCH, X is a singular cardinal, and there is a non-reflecting
stationary subset of E;;(/\).

25 /26

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 20100)

Assume GCH, X is a singular cardinal, and there is a non-reflecting
stationary subset of E;;(/\).

If (I} holds, then there is a Oy2(AT, < A1)-sequence 6 for which
the microscopic approach to Souslin-tree constructions produces a
AT-Souslin tree which is moreover free.

25 /26

Thank you!

