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There is a long line of absoluteness results for concrete
(within the realm of determinacy) statements on reals and
ordinals, assuming large cardinals.

We present a specific absoluteness result, similar to the
embedding theorem of Neeman-Zapletal.

We prove the absoluteness result under large cardinals,
and under AD". We present several applications, for
example proving that AD™ implies that there are no
(infinite) MAD families.
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History

Recall (infinte) A C [w]“ is almost disjoint if (Vx, y € A)
x Ny is finite. Ais maximal almost disjoint (MAD) if A is
maximal with this property.

Under the axiom of choice, MAD families exist using
Zorn’s lemma. But:

Theorem (Mathias *70s)

1. There are no analytic MAD families.

2. If s is Mahlo, and G is generic for Col(w, < k), then in
L(R)"I€ (the Solovay model at r) there are no MAD
families.
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History

Raises several questions:

Is the Mahlo needed?

What about projective sets beyond analytic assuming
large cardinals? all sets in L(R)?

Does AD imply no MAD families?
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Raises several questions:

Is the Mahlo needed? No, Tornquist (2015) in Solovay
model assuming inaccessible, Horowitz-Shelah (2016) in
other models assuming ZFC.

What about projective sets beyond analytic assuming
large cardinals? all sets in L(R)?

Does AD imply no MAD families?
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History

Raises several questions:

Is the Mahlo needed? No, Tornquist (2015) in Solovay
model assuming inaccessible, Horowitz-Shelah (2016) in
other models assuming ZFC.

What about projective sets beyond analytic assuming
large cardinals? all sets in L(IR)? Holds, Todorcevic
(<1998).

Does AD imply no MAD families? Open.
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inexistence of MAD families.

History

Definition (Mathias ’70s)

) # H C [w]¥ is happy (aka selective co-ideal) if:
1. (Upward closure)y e HANzD y — z € H.
2. (Pigeonhole) yg U ---Uy, € H— (3i)y; € H.

3. (Selectivity) If yo O y1 2 yo... allin H, then
(F¥ € H) so that (VM € Yoo )Yoo — (M+1) C ypm.
Such y, diagonalizes (ym | m < w).

If Ais almost disjoint,then H={y | y Z* xy U---U xi for
any xi,...,Xx € A} satisfies upward closure, pigeonhole.

If Ais MAD, then H is also selective, hence happy. To see
this, note (for MAD A) that y € H iff y has infinite
intersection with infinitely many x € A.
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X C [w]* is H-Ramsey if there is y € H so that either
[yI* € Xor[y]” C [w]* = X,

History

For H as above, assuming A is MAD, H is not H-Ramsey.

Theorem (Mathias '70s)

1. If H is happy, then every analytic X is H-Ramsey.

2. Let k be Mahlo and let G be generic for Col(w, < k).
If H € V[G] is happy, then every X e L(R)VIC js
H-Ramsey.

Proved using Mathias forcing.
Gives the results on inexistence of MAD families.
Mahlo needed here (Eisworth 1999).
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X C [w]* is H-Ramsey if there is y € H so that either
[yI* € Xor[y]” C [w]* = X,

History

For H as above, assuming A is MAD, H is not H-Ramsey.

Theorem (Mathias '70s)

1. If H is happy, then every analytic X is H-Ramsey.

2. Let k be Mahlo and let G be generic for Col(w, < k).
If H € V[G] is happy, then every X e L(R)VIC js
H-Ramsey.

Proved using Mathias forcing.
Gives the results on inexistence of MAD families.
Mahlo needed here (Eisworth 1999).

For H € L(R), an inaccessible is enough (N-Norwood),
gives Tornquist’s result through Mathias’s methods.
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Given a o-ideal | on w*, let P, be the forcing notion
consisting of Borel sets in I ordered by inclusion mod |,
thatisB< AiffB—Ac I.

History

Zapletal (2000s) initiated a program of studying ideals for
which P, is proper, under determinacy or large cardinal
assumptions.

Theorem (Chan, Chan-Magidor 2016)

1. (Assuming sharps.) Let E be an analytic (or
co-analytic) equivalence relation with Borel classes.
Let | be a o-ideal on w* so that P, is proper. Then
there is C € I so that E | C is Borel.

2. (Assuming Woodin cardinals.) The same is true for
E € L(R). Also true replacing Borel with analytic,
co-analytic.
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Theorem (Woodin 80s) History

Assuming large cardinals, the theory of L(R) with real
parameters cannot be changed by forcing.

Theorem (Foreman-Magidor 1995)

Assuming large cardinals, proper (or reasonable) forcing
does not change the length of projective prewellorderings
on reals (or prewellorderings in L(R)).

Theorem (Neeman-Zapletal embedding theorem 1998)
Assuming large cardinals, if P is proper (reasonable) and
G is generic for P, then there is an elementary embedding
j: L(R) — L(RVICl) which fixes reals and ordinals.
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History

The embedding theorem is proved using Woodin’s
genericity iterations.

Let Q be a fully iterable class model, suppose Q has w
Woodin cardinals, with supremum dq, and P(dq) N Q
countable in V.
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The embedding theorem is proved using Woodin’s —
genericity iterations.

Let Q be a fully iterable class model, suppose Q has w
Woodin cardinals, with supremum dq, and P(dq) N Q
countable in V.

Using Woodin’s methods can iterate Q to some Q*, and
find g generic for Col(w, < dg-), so that L(R") is the
Solovay model for Q* at do- using g.
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The embedding theorem is proved using Woodin’s —
genericity iterations.

Let Q be a fully iterable class model, suppose Q has w
Woodin cardinals, with supremum dq, and P(dq) N Q
countable in V.

Using Woodin’s methods can iterate Q to some Q*, and
find g generic for Col(w, < dg-), so that L(R") is the
Solovay model for Q* at do- using g.

Can do the same in V[G] to get L(RVI4]).
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The embedding theorem is proved using Woodin’s —
genericity iterations.

Let Q be a fully iterable class model, suppose Q has w
Woodin cardinals, with supremum dq, and P(dq) N Q
countable in V.

Using Woodin’s methods can iterate Q to some Q*, and
find g generic for Col(w, < dg-), so that L(R") is the
Solovay model for Q* at do- using g.

Can do the same in V[G] to get L(RVI4]).

Key to the embedding theorem is finding an iteration Q*
which works simultaneously for RY and R V€.
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A triangular embedding theorem

A similar proof, but done over a countable M embedded
in Vjy, gives the following:

Theorem (N-Norwood)

(Assuming large cardinals.) Let m: M — V, be
elementary, M countable. Let P be proper in M, G generic
for P over M.
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A triangular embedding theorem AT
AD™
A similar proof, but done over a countable M embedded HNeeman
in Vjy, gives the following:

A new

Theorem (N-Norwood) embedding

(Assuming large cardinals.) Let t: M — Vj, be e
elementary, M countable. Let P be proper in M, G generic

for P over M.

Then there is j: L(RM) — L(RMICl) which fixes reals and

ordinals, and #: L(RMC) — L(R)Y?, both elementary,

withm = 7 o J.
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As first application we obtain the following theorem of
Todorcevic 1998 (reducing large cardinal assumptions).
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Todorcevic 1998 (reducing large cardinal assumptions).

Theorem
(Assuming large cardinals.) Every X C [w]¥ in L(R) is
H-Ramsey for every happy family H.
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As first application we obtain the following theorem of
Todorcevic 1998 (reducing large cardinal assumptions).

Theorem
(Assuming large cardinals.) Every X C [w]¥ in L(R) is
H-Ramsey for every happy family H.

To prove (following Mathias), force over a countable
substructure M with Mathias forcing relative to H N M.
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To prove (following Mathias), force over a countable
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Using happiness of H, can find M-generic g € H.
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To prove (following Mathias), force over a countable
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Todorcevic 1998 (reducing large cardinal assumptions).

Theorem
(Assuming large cardinals.) Every X C [w]¥ in L(R) is
H-Ramsey for every happy family H.

To prove (following Mathias), force over a countable
substructure M with Mathias forcing relative to H N M.

Using happiness of H, can find M-generic g € H.
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By Mathias property, every g C g also generic.
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Ramsey property for happy families

As first application we obtain the following theorem of
Todorcevic 1998 (reducing large cardinal assumptions).

Theorem
(Assuming large cardinals.) Every X C [w]¥ in L(R) is
H-Ramsey for every happy family H.

To prove (following Mathias), force over a countable
substructure M with Mathias forcing relative to H N M.

Using happiness of H, can find M-generic g € H.
Wiog g belongs to reinterpretation of X over L(R)Md].

By Mathias property, every g C g also generic. By Prikry
property for Mathias forcing still forced into
reinterpretation of X over L(R)MIdl,
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Ramsey property for happy families
As first application we obtain the following theorem of
Todorcevic 1998 (reducing large cardinal assumptions).

Theorem
(Assuming large cardinals.) Every X C [w]¥ in L(R) is
H-Ramsey for every happy family H.

To prove (following Mathias), force over a countable
substructure M with Mathias forcing relative to H N M.

Using happiness of H, can find M-generic g € H.
Wiog g belongs to reinterpretation of X over L(R)Md].

By Mathias property, every g C g also generic. By Prikry
property for Mathias forcing still forced into
reinterpretation of X over L(R)MIdl,

By embedding theorem, reinterpretation is X N M[g].
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Ramsey property for happy families

As first application we obtain the following theorem of
Todorcevic 1998 (reducing large cardinal assumptions).

Theorem
(Assuming large cardinals.) Every X C [w]¥ in L(R) is
H-Ramsey for every happy family H.

To prove (following Mathias), force over a countable
substructure M with Mathias forcing relative to H N M.

Using happiness of H, can find M-generic g € H.
Wiog g belongs to reinterpretation of X over L(R)Md].

By Mathias property, every g C g also generic. By Prikry
property for Mathias forcing still forced into
reinterpretation of X over L(R)MIdl,

By embedding theorem, reinterpretation is X N M[g].
So g e X.
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ADT is a strengthening of AD due to Woodin.

It adds the following:
1. DCR;
2. all sets of reals are oco-Borel;

3. for every A\ < ©, continuous f: \* — w*,and A C w¥,
f~1"Ais determined.

Every known model of AD in fact satisfies AD™.
It is open whether the two are equivalent.

AD™ allows finding nice witnesses for X2 statements.
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ADT is a strengthening of AD due to Woodin.

Emb. thm. under
ADT

Every known model of AD in fact satisfies AD™.
It is open whether the two are equivalent.

AD™ allows finding nice witnesses for X2 statements.
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Embedding theorem under AD™, cont.

Inner model theory has progressed enough that
(assuming AD™) if a X2 statement is true, then one can
find a witness F for the Z? statement, a countable model
Q with w Woodin cardinals, with supremum §q say, a
Col(w, < g)-name F € Q, and an iteration strategy for Q
which move F to names with interpretations that agree
with F.
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Inner model theory has progressed enough that
(assuming AD™) if a X2 statement is true, then one can
find a witness F for the Z? statement, a countable model
Q with w Woodin cardinals, with supremum §q say, a
Col(w, < g)-name F € Q, and an iteration strategy for Q
which move F to names with interpretations that agree
with F.

Can run the proof of the triangular embedding theorem,
replacing the Solovay model L(R*), where R* are the
reals added by g over Q|dq, with L(R*, F[g]).
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Inner model theory has progressed enough that
(assuming AD™) if a X2 statement is true, then one can
find a witness F for the Z? statement, a countable model
Q with w Woodin cardinals, with supremum §q say, a
Col(w, < g)-name F € Q, and an iteration strategy for Q
which move F to names with interpretations that agree
with F.

Can run the proof of the triangular embedding theorem,
replacing the Solovay model L(R*), where R* are the
reals added by g over Q|dq, with L(R*, F[g]).

Get the embedding theorem for L(R, F).
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Embedding theorem under AD™, cont.

Inner model theory has progressed enough that
(assuming AD™) if a X2 statement is true, then one can
find a witness F for the Z? statement, a countable model
Q with w Woodin cardinals, with supremum §q say, a
Col(w, < g)-name F € Q, and an iteration strategy for Q
which move F to names with interpretations that agree
with F.

Can run the proof of the triangular embedding theorem,
replacing the Solovay model L(R*), where R* are the
reals added by g over Q|dq, with L(R*, F[g]).

Get the embedding theorem for L(R, F).

Phrase the theorem so that its failure is a £2 statement;
then get that it holds.
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Some care with meaning of properness. Need
properness in models of choice generated by the iteration
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Some care with meaning of properness. Need
properness in models of choice generated by the iteration
strategies.

Definition (N-Norwood)

(In ZF.) A poset P C R is absolutely proper if there is a
club C C P..,(R) and A C R so that for all U € C and all
transitive N |= ZFC withRN = U andPnU,An U € N,
PN U is properin N.
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Some care with meaning of properness. Need
properness in models of choice generated by the iteration
strategies.

Definition (N-Norwood)

(In ZF.) A poset P C R is absolutely proper if there is a
club C C P..,(R) and A C R so that for all U € C and all
transitive N |= ZFC withRN = U andPnU,An U € N,
PN U is properin N.

If P is proper by a sufficiently absolute proof, can run the
proof in any N as above, and get absolute properness.
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Embedding theorem under AD™, cont.

Some care with meaning of properness. Need
properness in models of choice generated by the iteration
strategies.

Definition (N-Norwood)

(In ZF.) A poset P C R is absolutely proper if there is a
club C C P..,(R) and A C R so that for all U € C and all
transitive N |= ZFC withRN = U andPnU,An U € N,
PN U is properin N.

If P is proper by a sufficiently absolute proof, can run the
proof in any N as above, and get absolute properness.

In particular Mathias forcing is absolutely proper.
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Theorem (N-Norwood)

(Assuming AD".) For every o < ©, every AC R,
stationarily many Z < L,(R, A), every absolutely proper P
in the transitive collapse M of Z,
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(Assuming AD".) For every o < ©, every AC R,
stationarily many Z < L,(R, A), every absolutely proper P
in the transitive collapse M of Z,

there is a transitive N = ZFC with RN =RM, AnM e N,
a=MnOrd € N, and alP-name A* € N,
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stationarily many Z < L,(R, A), every absolutely proper P
in the transitive collapse M of Z,

there is a transitive N = ZFC with RN =RM, AnM e N,
a=MnOrd € N, and alP-name A* € N,

so that for every G generic for P over N
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Embedding theorem under AD™, cont.

Theorem (N-Norwood)

(Assuming AD".) For every o < ©, every AC R,
stationarily many Z < L,(R, A), every absolutely proper P
in the transitive collapse M of Z,

there is a transitive N = ZFC with RN =RM, AnM e N,
a=MnOrd € N, and alP-name A* € N,

so that for every G generic for P over N

there are embeddings j: M — Lz(RMCl, A*[G]) fixing
reals and ordinals, and # : L5z(RNC A*[G]) — L.(R, A)
commuting with the anticollapse 7: M — L, (R, A).
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(Assuming AD".) For every o < ©, every AC R,

stationarily many Z < L,(R, A), every absolutely proper P
in the transitive collapse M of Z,

there is a transitive N = ZFC with RN =RM, AnM e N,
a=MnOrd € N, and alP-name A* € N,
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there are embeddings j: M — Lz(RMCl, A*[G]) fixing
reals and ordinals, and # : L5z(RNC A*[G]) — L.(R, A)
commuting with the anticollapse 7: M — L, (R, A).

L,(R,A)

m —— La(V9, A°[G))
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Theorem (N-Norwood)

(Assuming AD".) For every o < ©, every AC R,
stationarily many Z < L,(R, A), every absolutely proper P
in the transitive collapse M of Z,

for every G generic for P
there are embeddings j: M — Lz(RMCl, A*[G]) fixing
reals and ordinals, and # : L5z(RNC A*[G]) — L.(R, A)
commuting with the anticollapse m: M — L, (R, A).

L,(R,A)

M ; La(RME, A*[G])
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Applications under AD*

Theorem (N-Norwood)

(Assuming AD".) Let | be a o-ideal on w* so that P, is
absolutely proper. LetT be closed under Borel
substitutions, with a universal set. Let E be an

equivalence relation with T classes (respectively T N T).

Then thereis C € I sothat E | C isinT (respectively
rnr).
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Theorem (N-Norwood)

(Assuming AD".) Let | be a o-ideal on w* so that P, is
absolutely proper. LetT be closed under Borel
substitutions, with a universal set. Let E be an

equivalence relation with T classes (respectively T N T).

Then thereis C € I sothat E | C isinT (respectively
rnr).

An AD™ strengthening of the Chan-Magidor result.
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Theorem (N-Norwood)

(Assuming AD".) Let | be a o-ideal on w* so that P, is
absolutely proper. LetT be closed under Borel
substitutions, with a universal set. Let E be an

equivalence relation with T classes (respectively T N T).

Then thereis C € I sothat E | C isinT (respectively
rnr).
An AD™ strengthening of the Chan-Magidor result.

To prove (the I case), take a universal U, force over a
countable substructure M.
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Theorem (N-Norwood)

(Assuming AD".) Let | be a o-ideal on w* so that P, is
absolutely proper. LetT be closed under Borel
substitutions, with a universal set. Let E be an
equivalence relation with T classes (respectively T N T).
Then thereis C € It sothat E | CisinT (respectively
rnr).

An AD™ strengthening of the Chan-Magidor result.

To prove (the I case), take a universal U, force over a
countable substructure M. For generic x, embedding
theorem allows recovering y so that [x]g = Uy in a Borel
manner from x
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Applications under AD*

Theorem (N-Norwood)

(Assuming AD".) Let | be a o-ideal on w* so that P, is
absolutely proper. LetT be closed under Borel
substitutions, with a universal set. Let E be an
equivalence relation with T classes (respectively T N T).
Then thereis C € It sothat E | CisinT (respectively
rnr).

An AD™ strengthening of the Chan-Magidor result.

To prove (the I case), take a universal U, force over a
countable substructure M. For generic x, embedding
theorem allows recovering y so that [x]g = Uy in a Borel
manner from x (because there is a name for y in M).
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Theorem (N-Norwood)

(Assuming AD™".) Let | be a o-ideal on w* so that P, is
absolutely proper. LetT be closed under Borel
substitutions, with a universal set. Let E be an
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Then thereis C € It sothat E | CisinT (respectively
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An AD™ strengthening of the Chan-Magidor result.
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Applications under AD*

Theorem (N-Norwood)

(Assuming AD™".) Let | be a o-ideal on w* so that P, is
absolutely proper. LetT be closed under Borel
substitutions, with a universal set. Let E be an
equivalence relation with T classes (respectively T N T).
Then thereis C € It sothat E | CisinT (respectively
rnr).

An AD™ strengthening of the Chan-Magidor result.

To prove (the I case), take a universal U, force over a
countable substructure M. For generic x, embedding
theorem allows recovering y so that [x]g = Uy in a Borel
manner from x. So restriction of E to generic reals isin T.
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Theorem (N-Norwood)
(Assuming AD".) Every X C [w]” is H-Ramsey for every
happy family H. Consequently there are no MAD families.
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Theorem (N-Norwood)
(Assuming AD".) Every X C [w]” is H-Ramsey for every
happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using
the AD' embedding theorem.
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Theorem (N-Norwood)
(Assuming AD".) Every X C [w]¥ is H-Ramsey for every
happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using
the AD' embedding theorem.

Since AD implies AD™ in L(R), gives for example that
AD!®) implies no MAD families in L(R).
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Theorem (N-Norwood)
(Assuming AD".) Every X C [w]¥ is H-Ramsey for every
happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using
the AD' embedding theorem.

Since AD implies AD™ in L(R), gives for example that
AD!®) implies no MAD families in L(R).

Same in all known models of AD....
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Applications under AD™, cont.

Theorem (N-Norwood)
(Assuming AD".) Every X C [w]¥ is H-Ramsey for every
happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using
the AD' embedding theorem.

Since AD implies AD™ in L(R), gives for example that
AD!®) implies no MAD families in L(R).

Same in all known models of AD....
But still open under AD.
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Thank you!
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