Embedding theorem and regularity properties under AD⁺

Itay Neeman

Department of Mathematics University of California Los Angeles Los Angeles, CA 90095

www.math.ucla.edu/~ineeman

Luminy, October 2017

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

There is a long line of absoluteness results for concrete (within the realm of determinacy) statements on reals and ordinals, assuming large cardinals.

We present a specific absoluteness result, similar to the embedding theorem of Neeman-Zapletal.

We prove the absoluteness result under large cardinals, and under AD^+ . We present several applications, for example proving that AD^+ implies that there are no (infinite) MAD families.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

MAD

Recall (infinite) $A \subseteq [\omega]^{\omega}$ is almost disjoint if $(\forall x, y \in A)$ $x \cap y$ is finite. A is maximal almost disjoint (MAD) if A is maximal with this property.

Under the axiom of choice, MAD families exist using Zorn's lemma. But:

Theorem (Mathias '70s)

- 1. There are no analytic MAD families.
- If κ is Mahlo, and G is generic for Col(ω, < κ), then in L(ℝ)^{V[G]} (the Solovay model at κ) there are no MAD families.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (Mathias '70s)

- 1. There are no analytic MAD families.
- If κ is Mahlo, and G is generic for Col(ω, < κ), then in L(ℝ)^{V[G]} (the Solovay model at κ) there are no MAD families.

Raises several questions:

Is the Mahlo needed?

What about projective sets beyond analytic assuming large cardinals? all sets in $L(\mathbb{R})$?

Does AD imply no MAD families?

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Theorem (Mathias '70s)

- 1. There are no analytic MAD families.
- If κ is Mahlo, and G is generic for Col(ω, < κ), then in L(ℝ)^{V[G]} (the Solovay model at κ) there are no MAD families.

Raises several questions:

Is the Mahlo needed? No, Tornquist (2015) in Solovay model assuming inaccessible, Horowitz-Shelah (2016) in other models assuming ZFC.

What about projective sets beyond analytic assuming large cardinals? all sets in $L(\mathbb{R})$?

Does AD imply no MAD families?

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Theorem (Mathias '70s)

- 1. There are no analytic MAD families.
- If κ is Mahlo, and G is generic for Col(ω, < κ), then in L(ℝ)^{V[G]} (the Solovay model at κ) there are no MAD families.

Raises several questions:

Is the Mahlo needed? No, Tornquist (2015) in Solovay model assuming inaccessible, Horowitz-Shelah (2016) in other models assuming ZFC.

What about projective sets beyond analytic assuming large cardinals? all sets in $L(\mathbb{R})$? Holds, Todorcevic (<1998).

Does AD imply no MAD families?

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (Mathias '70s)

- 1. There are no analytic MAD families.
- If κ is Mahlo, and G is generic for Col(ω, < κ), then in L(ℝ)^{V[G]} (the Solovay model at κ) there are no MAD families.

Raises several questions:

Is the Mahlo needed? No, Tornquist (2015) in Solovay model assuming inaccessible, Horowitz-Shelah (2016) in other models assuming ZFC.

What about projective sets beyond analytic assuming large cardinals? all sets in $L(\mathbb{R})$? Holds, Todorcevic (<1998).

Does AD imply no MAD families? Open.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Нарру

Mathias's proof had combinatorial content beyond the inexistence of MAD families.

Definition (Mathias '70s)

 $\emptyset \neq H \subseteq [\omega]^{\omega}$ is happy (aka selective co-ideal) if:

- **1.** (Upward closure) $y \in H \land z \supseteq y \rightarrow z \in H$.
- **2.** (*Pigeonhole*) $y_0 \cup \cdots \cup y_n \in H \rightarrow (\exists i) y_i \in H$.
- **3.** (Selectivity) If $y_0 \supseteq y_1 \supseteq y_2 \ldots$ all in *H*, then $(\exists y_{\infty} \in H)$ so that $(\forall m \in y_{\infty})y_{\infty} (m+1) \subseteq y_m$. Such y_{∞} diagonalizes $\langle y_m | m < \omega \rangle$.

If *A* is almost disjoint, then $H = \{y \mid y \not\subseteq^* x_1 \cup \cdots \cup x_k \text{ for any } x_1, \ldots, x_k \in A\}$ satisfies upward closure, pigeonhole.

If *A* is MAD, then *H* is also selective, hence happy. To see this, note (for MAD *A*) that $y \in H$ iff *y* has infinite intersection with infinitely many $x \in A$.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Happy (cont.)

Definition $X \subseteq [\omega]^{\omega}$ is *H*-Ramsey if there is $y \in H$ so that either $[y]^{\omega} \subseteq X$ or $[y]^{\omega} \subseteq [\omega]^{\omega} - X$.

For H as above, assuming A is MAD, H is not H-Ramsey.

Theorem (Mathias '70s)

- 1. If H is happy, then every analytic X is H-Ramsey.
- **2.** Let κ be Mahlo and let G be generic for $\operatorname{Col}(\omega, < \kappa)$. If $H \in V[G]$ is happy, then every $X \in L(\mathbb{R})^{V[G]}$ is H-Ramsey.

Proved using Mathias forcing.

Gives the results on inexistence of MAD families.

Mahlo needed here (Eisworth 1999).

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Happy (cont.)

Definition $X \subseteq [\omega]^{\omega}$ is *H*-Ramsey if there is $y \in H$ so that either $[y]^{\omega} \subseteq X$ or $[y]^{\omega} \subseteq [\omega]^{\omega} - X$.

For H as above, assuming A is MAD, H is not H-Ramsey.

Theorem (Mathias '70s)

- 1. If H is happy, then every analytic X is H-Ramsey.
- **2.** Let κ be Mahlo and let G be generic for $Col(\omega, < \kappa)$. If $H \in V[G]$ is happy, then every $X \in L(\mathbb{R})^{V[G]}$ is H-Ramsey.

Proved using Mathias forcing.

Gives the results on inexistence of MAD families.

Mahlo needed here (Eisworth 1999).

For $H \in L(\mathbb{R})$, an inaccessible is enough (N-Norwood), gives Tornquist's result through Mathias's methods.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Equivalence relations with simple classes

Definition (Zapletal)

Given a σ -ideal I on ω^{ω} , let \mathbb{P}_I be the forcing notion consisting of Borel sets in I⁺ ordered by inclusion mod I, that is $B \leq A$ iff $B - A \in I$.

Zapletal (2000s) initiated a program of studying ideals for which \mathbb{P}_l is proper, under determinacy or large cardinal assumptions.

Theorem (Chan, Chan-Magidor 2016)

- (Assuming sharps.) Let E be an analytic (or co-analytic) equivalence relation with Borel classes. Let I be a σ-ideal on ω^ω so that P_I is proper. Then there is C ∈ I⁺ so that E ↾ C is Borel.
- **2.** (Assuming Woodin cardinals.) The same is true for $E \in L(\mathbb{R})$. Also true replacing Borel with analytic, co-analytic.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Absoluteness

Theorem (Woodin '80s)

Assuming large cardinals, the theory of $L(\mathbb{R})$ with real parameters cannot be changed by forcing.

Theorem (Foreman-Magidor 1995)

Assuming large cardinals, proper (or reasonable) forcing does not change the length of projective prewellorderings on reals (or prewellorderings in $L(\mathbb{R})$).

Theorem (Neeman-Zapletal embedding theorem 1998)

Assuming large cardinals, if \mathbb{P} is proper (reasonable) and *G* is generic for \mathbb{P} , then there is an elementary embedding $j: L(\mathbb{R}) \to L(\mathbb{R}^{V[G]})$ which fixes reals and ordinals.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Absoluteness, cont.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Absoluteness, cont.

The embedding theorem is proved using Woodin's genericity iterations.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Absoluteness, cont.

The embedding theorem is proved using Woodin's genericity iterations.

Let Q be a fully iterable class model, suppose Q has ω Woodin cardinals, with supremum δ_Q , and $\mathcal{P}(\delta_Q) \cap Q$ countable in V. Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

The embedding theorem is proved using Woodin's genericity iterations.

Let *Q* be a fully iterable class model, suppose *Q* has ω Woodin cardinals, with supremum δ_Q , and $\mathcal{P}(\delta_Q) \cap Q$ countable in *V*.

Using Woodin's methods can iterate Q to some Q^* , and find g generic for $\operatorname{Col}(\omega, < \delta_{Q^*})$, so that $L(\mathbb{R}^V)$ is the Solovay model for Q^* at δ_{Q^*} using g.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

The embedding theorem is proved using Woodin's genericity iterations.

Let *Q* be a fully iterable class model, suppose *Q* has ω Woodin cardinals, with supremum δ_Q , and $\mathcal{P}(\delta_Q) \cap Q$ countable in *V*.

Using Woodin's methods can iterate Q to some Q^* , and find g generic for $\operatorname{Col}(\omega, < \delta_{Q^*})$, so that $L(\mathbb{R}^V)$ is the Solovay model for Q^* at δ_{Q^*} using g.

Can do the same in V[G] to get $L(\mathbb{R}^{V[G]})$.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

The embedding theorem is proved using Woodin's genericity iterations.

Let Q be a fully iterable class model, suppose Q has ω Woodin cardinals, with supremum δ_Q , and $\mathcal{P}(\delta_Q) \cap Q$ countable in V.

Using Woodin's methods can iterate Q to some Q^* , and find g generic for $\operatorname{Col}(\omega, < \delta_{Q^*})$, so that $L(\mathbb{R}^V)$ is the Solovay model for Q^* at δ_{Q^*} using g.

Can do the same in V[G] to get $L(\mathbb{R}^{V[G]})$.

Key to the embedding theorem is finding an iteration Q^* which works simultaneously for \mathbb{R}^V and $\mathbb{R}^{V[G]}$.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

A triangular embedding theorem

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

A triangular embedding theorem

A similar proof, but done over a countable *M* embedded in V_{θ} , gives the following:

Theorem (N-Norwood)

(Assuming large cardinals.) Let $\pi : M \to V_{\theta}$ be elementary, M countable. Let \mathbb{P} be proper in M, G generic for \mathbb{P} over M.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

A triangular embedding theorem

A similar proof, but done over a countable *M* embedded in V_{θ} , gives the following:

Theorem (N-Norwood)

(Assuming large cardinals.) Let $\pi : M \to V_{\theta}$ be elementary, M countable. Let \mathbb{P} be proper in M, G generic for \mathbb{P} over M.

Then there is $j: L(\mathbb{R}^M) \to L(\mathbb{R}^{M[G]})$ which fixes reals and ordinals, and $\hat{\pi}: L(\mathbb{R}^{M[G]}) \to L(\mathbb{R})^{V_{\theta}}$, both elementary, with $\pi = \hat{\pi} \circ j$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

To prove (following Mathias), force over a countable substructure *M* with Mathias forcing relative to $H \cap M$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

To prove (following Mathias), force over a countable substructure *M* with Mathias forcing relative to $H \cap M$.

Using happiness of *H*, can find *M*-generic $g \in H$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

To prove (following Mathias), force over a countable substructure *M* with Mathias forcing relative to $H \cap M$.

Using happiness of *H*, can find *M*-generic $g \in H$.

Wlog *g* belongs to reinterpretation of *X* over $L(\mathbb{R})^{M[g]}$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

To prove (following Mathias), force over a countable substructure *M* with Mathias forcing relative to $H \cap M$.

Using happiness of *H*, can find *M*-generic $g \in H$.

Wlog *g* belongs to reinterpretation of *X* over $L(\mathbb{R})^{M[g]}$.

By Mathias property, every $\bar{g} \subseteq g$ also generic.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

To prove (following Mathias), force over a countable substructure *M* with Mathias forcing relative to $H \cap M$.

Using happiness of *H*, can find *M*-generic $g \in H$.

Wlog *g* belongs to reinterpretation of *X* over $L(\mathbb{R})^{M[g]}$.

By Mathias property, every $\bar{g} \subseteq g$ also generic. By Prikry property for Mathias forcing still forced into reinterpretation of *X* over $L(\mathbb{R})^{M[\bar{g}]}$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

To prove (following Mathias), force over a countable substructure *M* with Mathias forcing relative to $H \cap M$.

Using happiness of *H*, can find *M*-generic $g \in H$.

Wlog *g* belongs to reinterpretation of *X* over $L(\mathbb{R})^{M[g]}$.

By Mathias property, every $\overline{g} \subseteq g$ also generic. By Prikry property for Mathias forcing still forced into reinterpretation of *X* over $L(\mathbb{R})^{M[\overline{g}]}$.

By embedding theorem, reinterpretation is $X \cap M[\bar{g}]$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

As first application we obtain the following theorem of Todorcevic 1998 (reducing large cardinal assumptions).

Theorem

(Assuming large cardinals.) Every $X \subseteq [\omega]^{\omega}$ in $L(\mathbb{R})$ is *H*-Ramsey for every happy family *H*.

To prove (following Mathias), force over a countable substructure *M* with Mathias forcing relative to $H \cap M$.

Using happiness of *H*, can find *M*-generic $g \in H$.

Wlog g belongs to reinterpretation of X over $L(\mathbb{R})^{M[g]}$.

By Mathias property, every $\bar{g} \subseteq g$ also generic. By Prikry property for Mathias forcing still forced into reinterpretation of *X* over $L(\mathbb{R})^{M[\bar{g}]}$.

By embedding theorem, reinterpretation is $X \cap M[\bar{g}]$.

So $\bar{g} \in X$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

 AD^+ is a strengthening of AD due to Woodin.

It adds the following:

1. $DC_{\mathbb{R}}$;

- 2. all sets of reals are ∞ -Borel;
- **3.** for every $\lambda < \Theta$, continuous $f: \lambda^{\omega} \to \omega^{\omega}$, and $A \subseteq \omega^{\omega}$, $f^{-1}{}''A$ is determined.

Every known model of AD in fact satisfies AD⁺.

It is open whether the two are equivalent.

AD⁺ allows finding nice witnesses for Σ_1^2 statements.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

AD^+ is a strengthening of AD due to Woodin.

It adds the following:

1. $DC_{\mathbb{R}}$;

- **2.** all sets of reals are ∞ -Borel;
- **3.** for every $\lambda < \Theta$, continuous $f \colon \lambda^{\omega} \to \omega^{\omega}$, and $A \subseteq \omega^{\omega}$, $f^{-1}{}''A$ is determined.

Every known model of AD in fact satisfies AD⁺.

It is open whether the two are equivalent.

AD⁺ allows finding nice witnesses for Σ_1^2 statements.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Inner model theory has progressed enough that (assuming AD^+) if a Σ_1^2 statement is true, then one can find a witness F for the Σ_1^2 statement, a countable model Q with ω Woodin cardinals, with supremum δ_Q say, a $Col(\omega, < \delta_Q)$ -name $F \in Q$, and an iteration strategy for Q which move F to names with interpretations that agree with F.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Inner model theory has progressed enough that (assuming AD^+) if a Σ_1^2 statement is true, then one can find a witness F for the Σ_1^2 statement, a countable model Q with ω Woodin cardinals, with supremum δ_Q say, a $Col(\omega, < \delta_Q)$ -name $F \in Q$, and an iteration strategy for Q which move F to names with interpretations that agree with F.

Can run the proof of the triangular embedding theorem, replacing the Solovay model $L(\mathbb{R}^*)$, where \mathbb{R}^* are the reals added by g over $Q|\delta_Q$, with $L(\mathbb{R}^*, \dot{F}[g])$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Inner model theory has progressed enough that (assuming AD^+) if a Σ_1^2 statement is true, then one can find a witness F for the Σ_1^2 statement, a countable model Q with ω Woodin cardinals, with supremum δ_Q say, a $Col(\omega, < \delta_Q)$ -name $\dot{F} \in Q$, and an iteration strategy for Q which move \dot{F} to names with interpretations that agree with F.

Can run the proof of the triangular embedding theorem, replacing the Solovay model $L(\mathbb{R}^*)$, where \mathbb{R}^* are the reals added by g over $Q|\delta_Q$, with $L(\mathbb{R}^*, \dot{F}[g])$.

Get the embedding theorem for $L(\mathbb{R}, F)$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Inner model theory has progressed enough that (assuming AD⁺) if a Σ_1^2 statement is true, then one can find a witness F for the Σ_1^2 statement, a countable model Q with ω Woodin cardinals, with supremum δ_Q say, a $\operatorname{Col}(\omega, < \delta_Q)$ -name $F \in Q$, and an iteration strategy for Qwhich move F to names with interpretations that agree with F.

Can run the proof of the triangular embedding theorem, replacing the Solovay model $L(\mathbb{R}^*)$, where \mathbb{R}^* are the reals added by g over $Q|\delta_Q$, with $L(\mathbb{R}^*, \dot{F}[g])$.

Get the embedding theorem for $L(\mathbb{R}, F)$.

Phrase the theorem so that its failure is a Σ_1^2 statement; then get that it holds.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Some care with meaning of properness. Need properness in models of choice generated by the iteration strategies.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Some care with meaning of properness. Need properness in models of choice generated by the iteration strategies.

Definition (N-Norwood)

(In ZF.) A poset $\mathbb{P} \subseteq \mathbb{R}$ is absolutely proper if there is a club $C \subseteq \mathcal{P}_{<\omega_1}(\mathbb{R})$ and $A \subseteq \mathbb{R}$ so that for all $U \in C$ and all transitive $N \models$ ZFC with $\mathbb{R}^N = U$ and $\mathbb{P} \cap U, A \cap U \in N$, $\mathbb{P} \cap U$ is proper in N.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Some care with meaning of properness. Need properness in models of choice generated by the iteration strategies.

Definition (N-Norwood)

(In ZF.) A poset $\mathbb{P} \subseteq \mathbb{R}$ is absolutely proper if there is a club $C \subseteq \mathcal{P}_{<\omega_1}(\mathbb{R})$ and $A \subseteq \mathbb{R}$ so that for all $U \in C$ and all transitive $N \models$ ZFC with $\mathbb{R}^N = U$ and $\mathbb{P} \cap U, A \cap U \in N$, $\mathbb{P} \cap U$ is proper in N.

If \mathbb{P} is proper by a sufficiently absolute proof, can run the proof in any *N* as above, and get absolute properness.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Some care with meaning of properness. Need properness in models of choice generated by the iteration strategies.

Definition (N-Norwood)

(In ZF.) A poset $\mathbb{P} \subseteq \mathbb{R}$ is absolutely proper if there is a club $C \subseteq \mathcal{P}_{<\omega_1}(\mathbb{R})$ and $A \subseteq \mathbb{R}$ so that for all $U \in C$ and all transitive $N \models$ ZFC with $\mathbb{R}^N = U$ and $\mathbb{P} \cap U, A \cap U \in N$, $\mathbb{P} \cap U$ is proper in N.

If \mathbb{P} is proper by a sufficiently absolute proof, can run the proof in any *N* as above, and get absolute properness.

In particular Mathias forcing is absolutely proper.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD^+ .) For every $\alpha < \Theta$, every $A \subseteq \mathbb{R}$, stationarily many $Z \preceq L_{\alpha}(\mathbb{R}, A)$, every absolutely proper \mathbb{P} in the transitive collapse M of Z, Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD^+ .) For every $\alpha < \Theta$, every $A \subseteq \mathbb{R}$, stationarily many $Z \preceq L_{\alpha}(\mathbb{R}, A)$, every absolutely proper \mathbb{P} in the transitive collapse M of Z,

there is a transitive $N \models \text{ZFC}$ with $\mathbb{R}^N = \mathbb{R}^M$, $A \cap M \in N$, $\bar{\alpha} = M \cap \text{Ord} \in N$, and a \mathbb{P} -name $A^* \in N$,

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD^+ .) For every $\alpha < \Theta$, every $A \subseteq \mathbb{R}$, stationarily many $Z \preceq L_{\alpha}(\mathbb{R}, A)$, every absolutely proper \mathbb{P} in the transitive collapse M of Z,

there is a transitive $N \models \mathsf{ZFC}$ with $\mathbb{R}^N = \mathbb{R}^M$, $A \cap M \in N$, $\bar{\alpha} = M \cap \operatorname{Ord} \in N$, and a \mathbb{P} -name $A^* \in N$,

so that for every G generic for \mathbb{P} over N

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) For every $\alpha < \Theta$, every $A \subseteq \mathbb{R}$, stationarily many $Z \preceq L_{\alpha}(\mathbb{R}, A)$, every absolutely proper \mathbb{P} in the transitive collapse M of Z,

there is a transitive $N \models \mathsf{ZFC}$ with $\mathbb{R}^N = \mathbb{R}^M$, $A \cap M \in N$, $\bar{\alpha} = M \cap \operatorname{Ord} \in N$, and a \mathbb{P} -name $A^* \in N$,

so that for every G generic for \mathbb{P} over N

there are embeddings $j: M \to L_{\bar{\alpha}}(\mathbb{R}^{N[G]}, \dot{A}^*[G])$ fixing reals and ordinals, and $\hat{\pi}: L_{\bar{\alpha}}(\mathbb{R}^{N[G]}, \dot{A}^*[G]) \to L_{\alpha}(\mathbb{R}, A)$ commuting with the anticollapse $\pi: M \to L_{\alpha}(\mathbb{R}, A)$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) For every $\alpha < \Theta$, every $A \subseteq \mathbb{R}$, stationarily many $Z \preceq L_{\alpha}(\mathbb{R}, A)$, every absolutely proper \mathbb{P} in the transitive collapse M of Z,

there is a transitive $N \models \mathsf{ZFC}$ with $\mathbb{R}^N = \mathbb{R}^M$, $A \cap M \in N$, $\bar{\alpha} = M \cap \operatorname{Ord} \in N$, and a \mathbb{P} -name $A^* \in N$,

so that for every G generic for \mathbb{P} over N

there are embeddings $j: M \to L_{\bar{\alpha}}(\mathbb{R}^{N[G]}, \dot{A}^*[G])$ fixing reals and ordinals, and $\hat{\pi}: L_{\bar{\alpha}}(\mathbb{R}^{N[G]}, \dot{A}^*[G]) \to L_{\alpha}(\mathbb{R}, A)$ commuting with the anticollapse $\pi: M \to L_{\alpha}(\mathbb{R}, A)$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD^+ .) For every $\alpha < \Theta$, every $A \subseteq \mathbb{R}$, stationarily many $Z \preceq L_{\alpha}(\mathbb{R}, A)$, every absolutely proper \mathbb{P} in the transitive collapse M of Z,

there is a transitive $N \models \text{ZFC}$ with $\mathbb{R}^N = \mathbb{R}^M$, $A \cap M \in N$, $\bar{\alpha} = M \cap \text{Ord} \in N$, and a \mathbb{P} -name $\dot{A}^* \in N$,

so that for every G generic for P over N

there are embeddings $j: M \to L_{\bar{\alpha}}(\mathbb{R}^{N[G]}, \dot{A}^*[G])$ fixing reals and ordinals, and $\hat{\pi}: L_{\bar{\alpha}}(\mathbb{R}^{N[G]}, \dot{A}^*[G]) \to L_{\alpha}(\mathbb{R}, A)$ commuting with the anticollapse $\pi: M \to L_{\alpha}(\mathbb{R}, A)$.

Emb. thm. and regularity under AD⁺

I.Neeman

listory

A new embedding theorem

Applications using large cardinals

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Theorem (N-Norwood)

(Assuming AD⁺.) Let I be a σ -ideal on ω^{ω} so that \mathbb{P}_{I} is absolutely proper. Let Γ be closed under Borel substitutions, with a universal set. Let E be an equivalence relation with Γ classes (respectively $\Gamma \cap \check{\Gamma}$). Then there is $C \in I^{+}$ so that $E \upharpoonright C$ is in Γ (respectively $\Gamma \cap \check{\Gamma}$). Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Let I be a σ -ideal on ω^{ω} so that \mathbb{P}_{I} is absolutely proper. Let Γ be closed under Borel substitutions, with a universal set. Let E be an equivalence relation with Γ classes (respectively $\Gamma \cap \check{\Gamma}$). Then there is $C \in I^{+}$ so that $E \upharpoonright C$ is in Γ (respectively $\Gamma \cap \check{\Gamma}$).

An AD⁺ strengthening of the Chan-Magidor result.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Let I be a σ -ideal on ω^{ω} so that \mathbb{P}_{I} is absolutely proper. Let Γ be closed under Borel substitutions, with a universal set. Let E be an equivalence relation with Γ classes (respectively $\Gamma \cap \check{\Gamma}$). Then there is $C \in I^{+}$ so that $E \upharpoonright C$ is in Γ (respectively $\Gamma \cap \check{\Gamma}$).

An AD⁺ strengthening of the Chan-Magidor result.

To prove (the Γ case), take a universal U, force over a countable substructure M.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Let I be a σ -ideal on ω^{ω} so that \mathbb{P}_{I} is absolutely proper. Let Γ be closed under Borel substitutions, with a universal set. Let E be an equivalence relation with Γ classes (respectively $\Gamma \cap \check{\Gamma}$). Then there is $C \in I^{+}$ so that $E \upharpoonright C$ is in Γ (respectively $\Gamma \cap \check{\Gamma}$).

An AD⁺ strengthening of the Chan-Magidor result.

To prove (the Γ case), take a universal U, force over a countable substructure M. For generic x, embedding theorem allows recovering y so that $[x]_E = U_y$ in a Borel manner from x

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Let I be a σ -ideal on ω^{ω} so that \mathbb{P}_{I} is absolutely proper. Let Γ be closed under Borel substitutions, with a universal set. Let E be an equivalence relation with Γ classes (respectively $\Gamma \cap \check{\Gamma}$). Then there is $C \in I^{+}$ so that $E \upharpoonright C$ is in Γ (respectively $\Gamma \cap \check{\Gamma}$).

An AD⁺ strengthening of the Chan-Magidor result.

To prove (the Γ case), take a universal U, force over a countable substructure M. For generic x, embedding theorem allows recovering y so that $[x]_E = U_y$ in a Borel manner from x (because there is a name for y in M).

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Let I be a σ -ideal on ω^{ω} so that \mathbb{P}_{I} is absolutely proper. Let Γ be closed under Borel substitutions, with a universal set. Let E be an equivalence relation with Γ classes (respectively $\Gamma \cap \check{\Gamma}$). Then there is $C \in I^{+}$ so that $E \upharpoonright C$ is in Γ (respectively $\Gamma \cap \check{\Gamma}$).

An AD⁺ strengthening of the Chan-Magidor result.

To prove (the Γ case), take a universal U, force over a countable substructure M. For generic x, embedding theorem allows recovering y so that $[x]_E = U_y$ in a Borel manner from x.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Let I be a σ -ideal on ω^{ω} so that \mathbb{P}_{I} is absolutely proper. Let Γ be closed under Borel substitutions, with a universal set. Let E be an equivalence relation with Γ classes (respectively $\Gamma \cap \check{\Gamma}$). Then there is $C \in I^{+}$ so that $E \upharpoonright C$ is in Γ (respectively $\Gamma \cap \check{\Gamma}$).

An AD⁺ strengthening of the Chan-Magidor result.

To prove (the Γ case), take a universal U, force over a countable substructure M. For generic x, embedding theorem allows recovering y so that $[x]_E = U_y$ in a Borel manner from x. So restriction of E to generic reals is in Γ .

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Theorem (N-Norwood)

(Assuming AD⁺.) Every $X \subseteq [\omega]^{\omega}$ is H-Ramsey for every happy family H. Consequently there are no MAD families.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under ${\rm AD}^+$

Theorem (N-Norwood)

(Assuming AD⁺.) Every $X \subseteq [\omega]^{\omega}$ is H-Ramsey for every happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using the AD^+ embedding theorem.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Every $X \subseteq [\omega]^{\omega}$ is H-Ramsey for every happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using the ${\rm AD}^+$ embedding theorem.

Since AD implies AD^+ in $L(\mathbb{R})$, gives for example that $AD^{L(\mathbb{R})}$ implies no MAD families in $L(\mathbb{R})$.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Every $X \subseteq [\omega]^{\omega}$ is H-Ramsey for every happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using the ${\rm AD}^+$ embedding theorem.

Since AD implies AD⁺ in $L(\mathbb{R})$, gives for example that AD^{$L(\mathbb{R})$} implies no MAD families in $L(\mathbb{R})$.

Same in all known models of AD....

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Theorem (N-Norwood)

(Assuming AD⁺.) Every $X \subseteq [\omega]^{\omega}$ is H-Ramsey for every happy family H. Consequently there are no MAD families.

Proof is similar to the one under large cardinals, but using the ${\rm AD}^+$ embedding theorem.

Since AD implies AD⁺ in $L(\mathbb{R})$, gives for example that AD^{$L(\mathbb{R})$} implies no MAD families in $L(\mathbb{R})$.

Same in all known models of AD....

But still open under AD.

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. and regularity under AD⁺

I.Neeman

History

A new embedding theorem

Applications using large cardinals

Emb. thm. under AD^+

Thank you!