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The spectrum problem

Given a complete countable first-order theory T , the spectrum problem for
T consists in determining the number

I(κ, T )

of isomorphism types of models of T of size κ ≥ ℵ1.

Assuming that T has
an uncountable model, the obvious bounds are

1 ≤ I(κ, T ) ≤ 2κ.

Remark: The restriction to uncountable models is because we cannot (yet)
deal with the countable case: the Vaught’s conjecture, asserting that either
I(ℵ0, T ) ≤ ω or I(ℵ0, T ) = 2ℵ0 , is still widely open.

Main question
Given T , can one provide non-trivial lower/upper bounds for the spectrum
function I(κ, T )?
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Classification theory

To answer that question, Shelah isolated a number of dividing lines for
complete countable first-order theories:

stable vs unstable
superstable vs unsuperstable
NDOP vs DOP (dimensional order property)
NOTOP vs OTOP (omitting types order property)
shallow vs deep
. . .

This gave birth to a beautiful branch of model theory, later called stability
theory.
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Classification theory

Shelah’s proved that if T has one of the following properties
unsupertable
DOP (dimensional order property, defined only for superstable theories)
OTOP (omitting types order property)

then I(κ, T ) = 2κ for every κ ≥ ℵ1.

So if the function I(κ, T ) is to have a non-trivial upper bound, then T
must be (stable) superstable, NDOP and NOTOP: such theories are briefly
called classifiable.
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Classification theory for classifiable theories

The solution of the spectrum problem for classifiable theories
depends upon a key construction which assigns to each model of
size κ a skeleton of submodels. Each submodel has cardinality at
most 2ℵ0 , and the skeleton is partially ordered by the natural tree
order on a subset of κ<ω. The isomorphism type of the model is
determined by the small submodels and this partial ordering. [...]
If one of these trees is not well-founded, the theory is said to be
deep and has 2κ models for every κ ≥ ℵ1. If not, the theory is
shallow and the type of structure theory we have described
exists. We are able to assign to each such shallow theory a depth
α corresponding to the rank of a system of invariants, as
discussed above, and to compute the spectrum function of T in
terms of that depth.

(John T. Baldwin, Fundamentals of Stability Theory)
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Classification theory for classifiable theories

To be slightly more precise, the depth of a superstable theory T is defined
by assigning to each (regular) type p an ordinal dp(p), called depth of p.

If
the collection of all such ordinals admits a sup β ∈ On, then the depth of
T is dp(T ) = β + 1, and the theory is called shallow; if such a sup does
not exist, then T is called deep.

Let M |= T be of size κ and consider its canonical decomposition TM ,
which is a subtree of κ<ω labelled with submodels of M of cardinality
≤ 2ℵ0 . Then if a realizes a regular type p in M and a belongs to the
submodel attached to a node r of TM , then TM is well-founded above r
and r has rank ≤ dp(p). It follows that TM is well-founded and of rank
≤ dp(T ) (independently of κ).

The isomorphism type of a κ-sized model M of T depends only on TM ,
therefore it is enough to count how many such decomposition trees one can
have to get an upper bound for the spectrum function.
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Shelah’s Main Gap Theorem

Theorem (Shelah)
Let κ ≥ ℵ1 be the γ-th cardinal.

1 If T is classifiable shallow of depth α

(necessarily, α < ω1)

, then

I(κ, T ) ≤ iα
(
|γ|2ℵ0

)

≤ iω1

(
|γ|2ℵ0

)
.

2 If T is not classifiable shallow, then

I(κ, T ) = 2κ.

Remark: The upper bound in 1 may trivialize (e.g. when κ is a fixed
point of the ℵ-function), but in general it is easy to find cardinals for which
this is not the case: for example, under GCH there are unboundedly many
κ for which such upper bound is < 2κ, or even ≤ κ.
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Some examples

Th(Z,+, ·, 0, 1) and DLO are unstable.

Th(Zω,+, 0) is stable unsuperstable.
The theory of a single unary function such that each element has
infinitely many preimages is superstable deep.
ACF0 and Th(Z,+,−, 0) are classifiable shallow of depth 1.
Fix γ < ω1. Let T γ be the theory in the language consisting of a
binary relation symbol Eα for every α < γ defined by

each Eα is an equivalence relation, and each E0-class is infinite;
if α < α′ < γ, then Eα refines E′

α and every Eα′ -class contains
infinitely many Eα-classes.

Then T γ is classificable shallow of depth γ + 1.
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α and every Eα′ -class contains
infinitely many Eα-classes.

Then T γ is classificable shallow of depth γ + 1.
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Complexity of the isomorphism relation

Given a countable complete first-order theory T and an uncountable
cardinal κ, let

∼=κ
T

denote the isomorphism relation over κ-sized models of T .

Intuitively, one can say that ∼=κ
T is “simple” when there is a reasonable way

to decide, given any to κ-sized models of T , whether they are isomorphic
or not; otherwise ∼=κ

T is “complicated”. In the former case, the κ-sized
models of T can be regarded as “easily classifiable” up to isomorphism.

But what should “simple” and “reasonable” mean, mathematically?

Here is where generalized Descriptive Set Theory enters the scene...
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Generalized DST in a nutshell (1/3)

The following definition generalizes that of the usual Baire and Cantor
spaces (which correspond to the case κ = ω).

Definition
Given an infinite cardinal κ, the generalized Baire space is the space κκ
of functions f : κ→ κ equipped with the (bounded) topology τb, which is
generated by the sets of the form

Np = {f ∈ κκ | p ⊆ f}

for p ∈ <κκ =
⋃
α<κ

ακ.

The generalized Cantor space κ2 is the subspace of κκ consisting of
functions taking values in {0, 1}.
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Generalized DST in a nutshell (2/3)

Definition
A set A ⊆ κκ is (κ+-)Borel is it is in the smallest κ+-algebra generated by
the bounded topology.

A set A ⊆ κκ is (κ-)analytic (or Σ1
1) if it is the projection of a closed

(equivalently, Borel) subset of κκ× κκ. The set A is co-analytic (or Π1
1)

if κκ \A is Σ1
1, and it is bi-analytic (or ∆1

1) if it is both Σ1
1 and Π1

1.

Borel sets can be stratified according to the usual definition:

Σ0
1 = open sets Π0

1 = closed sets

Σ0
α =

{ ⋃
γ<κ

Aγ | Aγ ∈
⋃

1≤β<α
Π0
β

}
Π0
α =

{
κκ \A | A ∈ Σ0

α

}
If A is Borel, the smallest ordinal α < κ+ for which A ∈ Σ0

α ∪Π0
α is called

the Borel rank of A, and denoted by rkB(A). We stipulate that
rkB(A) =∞ when A is not Borel.
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Generalized DST in a nutshell (3/3)

κκ is regular and 0-dimensional;
closed sets coincides with the bodies of trees T ⊆ <κκ;
the Borel hierarchy does not collapse before κ+ (different proof if
κ<κ 6= κ);
Borel sets have the (κ-)Baire property;
. . .

τb 6= product topology, and κκ has a base of size κ iff κ<κ = κ;
κκ is not (completely) metrizable (unless cof(κ) = ω);
κκ and κ2 are homeomorphic when κ is not weakly compact;
κ2 is never compact, and it is κ-compact iff κ is weakly compact;
Souslin’s theorem fails: there are ∆1

1 sets which are not Borel;
Σ1

1 sets need not to have the (κ-)Baire property;
. . .
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Back to isomorphism relations...

Given a countable complete first-order theory T in the vocabulary L, let

ModκT

be the collection of models of T with domain κ.

Each element of ModκT
can be identified via characteristic functions with an element of

ModκL =
∏
i<I

niκ2 ≈ κ2,

where I ≤ ω is the cardinality of L and ni is the ariety of its i-th symbol.

Generalized Lopez-Escobar theorem (essentially, Vaught)
Assume κ<κ = κ. Then A ⊆ ModκL is Borel and closed under isomorphism
if and only if A = Modκϕ for some Lκ+κ-sentence ϕ.

Thus ModκT is a Borel subset of κ2, and ∼=κ
T is a Σ1

1 equivalence relation
on it.
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Back to isomorphism relations...

Within this framework, we can say that
∼=κ
T is “simple” if it is a Borel subset of (ModκT )

2,

because in this case we have a “Borel” procedure to decide whether two
models are isomorphic or not.

Not surprisingly, when κ = ω, this notion has nothing to do with Shelah’s
classification theory.

Main questions
For which uncountable cardinals κ countable and complete first-order
theories T we have that ∼=κ

T is “simple” (= Borel)? When this is the case,
what is the Borel rank of ∼=κ

T ?

Does the Borelness (and/or the Borel rank) of ∼=κ
T depend on both

parameters, or it just depends on the theory T?

(In the latter case, we can regard T itself as “simple” if some/any ∼=κT is Borel.)
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F-H-K theorem

Theorem (S.D. Friedman-Hyttinen-Kulikov)

Let T be a countable complete first order theory, and κ be such that
κ<κ = κ > 2ℵ0 .

1 If T is classifiable shallow, then ∼=κ
T is Borel.

2 If T is not classifiable shallow, then ∼=κ
T is not Borel.

Question (F-H-K)
If T is classifiable shallow, what is the Borel rank of ∼=κ

T ? Is it related to
the depth of T?
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A descriptive version of the Main Gap Theorem

A detailed analysis of Friedman-Hyttinen-Kulikov proof reveals the
following refinement of their theorem.

Given T , define the Borel-rank
spectrum function B(κ, T ) by setting

B(κ, T ) = rkB(∼=κ
T ).

Theorem (S.D. Friedman-Hyttinen-Kulikov + Mangraviti-M.)
Let T be a countable complete first order theory, and κ be such that
κ<κ = κ > 2ℵ0 .

1 If T is classifiable shallow of depth α, then B(κ, T ) ≤ 4α+ 2.
2 If T is not classifiable shallow, then B(κ, T ) =∞.

Thus in the “good” case B(κ, T ) is almost everywhere dominated by a
constant function which (unlike Shelah’s upper bound) depends only on
dp(T ) and not on the cardinal κ.
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A descriptive version of the Main Gap Theorem

(To appreciate the descriptive main gap, recall that the Borel hierarchy does not
collapse before κ+ ≥ ℵ2.)

Since the depth of a classifiable shallow theory is always a countable
ordinal, we get

Descriptive Main Gap Theorem
Let T be a countable complete first order theory, and κ be such that
κ<κ = κ > 2ℵ0 .

1 If T is classifiable shallow, then B(κ, T ) ≤ 4dp(T ) + 2 < ℵ1.
2 If T is not classifiable shallow, then B(κ, T ) =∞.

Remark: This gap theorem, unlike Shelah’s, is never trivial for the relevant
κ’s: in particular, under GCH the descriptive gap is non-trivial for every
successor cardinal κ ≥ ℵ2.

L. Motto Ros (Turin, Italy) Generalized DST and classification Luminy, 11.10.2017 17 / 44



A descriptive version of the Main Gap Theorem

(To appreciate the descriptive main gap, recall that the Borel hierarchy does not
collapse before κ+ ≥ ℵ2.)

Since the depth of a classifiable shallow theory is always a countable
ordinal, we get

Descriptive Main Gap Theorem
Let T be a countable complete first order theory, and κ be such that
κ<κ = κ > 2ℵ0 .

1 If T is classifiable shallow, then B(κ, T ) ≤ 4dp(T ) + 2 < ℵ1.
2 If T is not classifiable shallow, then B(κ, T ) =∞.

Remark: This gap theorem, unlike Shelah’s, is never trivial for the relevant
κ’s: in particular, under GCH the descriptive gap is non-trivial for every
successor cardinal κ ≥ ℵ2.

L. Motto Ros (Turin, Italy) Generalized DST and classification Luminy, 11.10.2017 17 / 44



A descriptive version of the Main Gap Theorem

(To appreciate the descriptive main gap, recall that the Borel hierarchy does not
collapse before κ+ ≥ ℵ2.)

Since the depth of a classifiable shallow theory is always a countable
ordinal, we get

Descriptive Main Gap Theorem
Let T be a countable complete first order theory, and κ be such that
κ<κ = κ > 2ℵ0 .

1 If T is classifiable shallow, then B(κ, T ) ≤ 4dp(T ) + 2 < ℵ1.
2 If T is not classifiable shallow, then B(κ, T ) =∞.

Remark: This gap theorem, unlike Shelah’s, is never trivial for the relevant
κ’s: in particular, under GCH the descriptive gap is non-trivial for every
successor cardinal κ ≥ ℵ2.

L. Motto Ros (Turin, Italy) Generalized DST and classification Luminy, 11.10.2017 17 / 44



A descriptive version of the Main Gap Theorem

(To appreciate the descriptive main gap, recall that the Borel hierarchy does not
collapse before κ+ ≥ ℵ2.)

Since the depth of a classifiable shallow theory is always a countable
ordinal, we get

Descriptive Main Gap Theorem
Let T be a countable complete first order theory, and κ be such that
κ<κ = κ > 2ℵ0 .

1 If T is classifiable shallow, then B(κ, T ) ≤ 4dp(T ) + 2 < ℵ1.
2 If T is not classifiable shallow, then B(κ, T ) =∞.

Remark: This gap theorem, unlike Shelah’s, is never trivial for the relevant
κ’s: in particular, under GCH the descriptive gap is non-trivial for every
successor cardinal κ ≥ ℵ2.

L. Motto Ros (Turin, Italy) Generalized DST and classification Luminy, 11.10.2017 17 / 44



The set-theoretic way to classification theory...

The descriptive main gap can also be used in a different way.

Goal
Given a countable complete first-order theory T , determine whether ∼=κ

T is
Borel, and if yes compute its Borel rank.

If one succeeds in proving that ∼=κ
T is Borel, then we can conclude that T is

classifiable shallow; and if we are able to compute rkB(∼=κ
T ), then we know

that the depth of T is higher than that. This method could be used to
isolate “natural” classifiable shallow theories with higher and higher depth.

Example
For γ < ω1, consider again the theory T γ of γ-many (coarser and coarser)
equivalence relations, plus some extra conditions. It is not hard to see that
∼=T
γ is Borel, and that its Borel rank increases with γ. Thus the T γ ’s are

classifiable shallow with depth increasing with γ.
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The set-theoretic way to classification theory...

Goal
Given a countable complete first-order theory, determine whether ∼=κ

T is
Borel, and if yes compute its Borel rank.

There are some advantages with this approach:

There is a lot of freedom in choosing the cardinal κ: it is enough to
have κ<κ = κ > 2ℵ0 .
There is also some freedom in the choice of the set-theoretic universe
to work in (for example, forcing extensions preserving cardinals and
the continuum should be fine).
Computing the Borel rank of ∼=κ

T seems in general simpler than
directly computing the depth of the theory.
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Scott height

The Descriptive Main Gap Theorem is a consequence of a result connecting
B(κ, T ) with the Scott height of the κ-sized models of T .

Definition
Let κ be an infinite cardinal. Given M,N ∈ ModκT and an ordinal β, set
M ≡β N if and only if M and N satisfy the same L∞κ-formulæ with
quantifier rank < β.

The L∞κ-Scott height of M ∈ ModκT is the smallest ordinal β, if it
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Scott height vs Borelness: the countable case

Theorem (Becker-Kechris)
For any Lω1ω-sentence ϕ, the following are equivalent:

the isomorphism relation on Modωϕ is Borel;
there is β < ω1 such that the L∞ω-Scott height of any M ∈ Modωϕ is
≤ β.

Their proof heavily uses effective descriptive set theory and a boundedness
argument, therefore:

it is not clear how to generalize this to uncountable models;
there is no clear relation between the Borel rank of ∼=ω

ϕ and the
L∞ω-Scott height of ϕ.
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Scott height vs Borelness: the (un)countable case

Theorem (S.D. Friedman-Hyttinen-Kulikov + Mangraviti-M.)

Let κ<κ = κ. Suppose that T has L∞κ-Scott height β < κ+.

Then
∼=κ
T ∈ Π0

δ with δ ≤ 2β + 2 < κ+.

Theorem (S.D. Friedman-Hyttinen-Kulikov + Mangraviti-M.)

Let κ<κ = κ. Suppose that ∼=κ
T ∈ Π0

δ . Then T has L∞κ-Scott height
β ≤ max{3, δ + 1} < κ+.

In particular, the L∞κ-Scott height β of T and the Borel rank δ of ∼=κ
T ,

when they are both defined, have always finite distance. Moreover

∼=κ
T is Borel ⇐⇒ there is β < κ+ such that the L∞ω-Scott height

of any M ∈ ModκT is ≤ β.

Furthermore, we also get a level-by-level version of this statement
(considering only limit levels).
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Proof of the Descriptive Main Gap Theorem

Fix a countable complete first-order theory T .

Theorem (Shelah)

Let κ > 2ℵ0 be regular. Then the L∞κ-Scott height β of T is 6=∞ if and
only if T is classifiable, and in this case

if T is shallow of depth α, then β ≤ 2α;
if T is deep then β = κ+.

Proof of the Descriptive Main Gap Theorem.
1 Let T be classifiable shallow of depth α. Then the L∞κ-Scott height
β of T is ≤ 2α, whence ∼=κ

T ∈ Π0
δ for δ ≤ 2β + 2 ≤ 4α+ 2.

2 Suppose that ∼=κ
T is Borel. Let δ < κ+ be such that ∼=κ

T ∈ Π0
δ . Then

T has L∞κ-Scott height β ≤ max{3, δ + 1} < κ+, whence T is
classifiable shallow by Shelah’s theorem.
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T ∈ Π0
δ for δ ≤ 2β + 2 ≤ 4α+ 2.

2 Suppose that ∼=κ
T is Borel. Let δ < κ+ be such that ∼=κ

T ∈ Π0
δ . Then

T has L∞κ-Scott height β ≤ max{3, δ + 1} < κ+, whence T is
classifiable shallow by Shelah’s theorem.
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Another Descriptive Main Gap Theorem

There is another way to asses the complexity of ∼=κ
T : instead of counting its

classes or computing its Borel rank, one can compare it with other
isomorphism relations of the same form to establish their relative
complexity.

In the classical case κ = ω there is a standard way to do this.

Definition (Borel reducibility)
Given two Lω1ω-senteces ϕ and ψ, we say that ∼=ω

ϕ is Borel reducible to
∼=ω
ψ (in symbols, ∼=ω

ϕ ≤B ∼=ω
ψ) if there is a Borel function

f : Modωϕ → Modωψ such that for every M,N ∈ Modωϕ

M ∼= N ⇐⇒ f(M) ∼= f(N).

∼=ω
ϕ <B

∼=ω
ψ means: ∼=ω

ϕ ≤B ∼=ω
ψ but ∼=ω

ψ �B ∼=ω
ϕ.

The intuitive meaning is

if ∼=ω
ϕ ≤B ∼=ω

ψ, then ∼=ω
ϕ is not more complicated than ∼=ω

ψ.
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Another Descriptive Main Gap Theorem

Generalized descriptive set theory provides the right framework to
generalize, mutatis mutandis, the reducibility ≤B to a reducibility ≤(κ)

B

between isomorphism relations of the form ∼=κ
T .

Combining Shelah’s Main Gap Theorem with the F-H-K theorem we get

Theorem
Let T, T ′ be two countable complete first order theory. Assume that T is
classifiable shallow of depth α, while T ′ is not classifiable shallow. Then

for
every cardinal κ = ℵγ such that

iα
(
|γ|2ℵ0

)
≤ κ and κ<κ = κ > 2ℵ0

we have
∼=κ
T <B

∼=κ
T ′ .
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Another Descriptive Main Gap Theorem

Theorem
Let T, T ′ be two countable complete first order theory. Assume that T is
classifiable shallow of depth α, while T ′ is not classifiable shallow. Then for
every cardinal κ = ℵγ such that

iα
(
|γ|2ℵ0

)
≤ κ and κ<κ = κ > 2ℵ0

we have
∼=κ
T <B

∼=κ
T ′ .

The non-reducibility direction can be proved either counting the number of
isomorphism types, or using the fact that ∼=κT is Borel while ∼=κT ′ is not. The
reducibility direction uses that ∼=κT has ≤ κ classes and that all of them are Borel.

Question
How large is the ≤B-gap between ∼=κ

T and ∼=κ
T ′? Is there any equivalence

relation which lies strictly between the two?
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Yet another Descriptive Main Gap Theorem

Along these lines, Hyttinen, Kulikov, and Moreno recently proved the
following result.

Theorem (Hyttinen-Kulikov-Moreno)

Suppose that κ<κ = κ = λ+ with 2λ > 2ℵ0 and λ<λ = κ. Then the
following statement is consistent:

If T is classifiable and T ′ is not, then
there is an embedding of (P(κ),⊆) into (B∗(T, T ′),≤B), where B∗(T, T ′)
is the collection of all Borel∗ equivalence relations strictly between ∼=κ

T and
∼=κ
T ′ .

Thus the isomorphism relation between the models of a classifiable theory
T is way more simple than the isomorphism relation between the models of
a non-classifiable theory T ′.
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Yet another Descriptive Main Gap Theorem

Since ≤κB provides a notion of complexity for isomorphism relations which is
much finer that the simple distinction Borel vs non-Borel (possibly including
Borel ranks), Hyttinen-Kulikov-Moreno theorem gives a much better and
more informative gap among countable complete first-order theories.

On the other hand, it should be noticed that:
the dividing line of Hyttinen-Kulikov-Moreno theorem is different from
that of Shelah’s Main Gap Theorem, and cannot distinguish the
complexity of a classifiable shallow theory from that of a classifiable
deep theory;
it is just a consistency result, while all other gap theorems presented
so far are ZFC theorems.

Back Skip
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Scott height vs Borelness: the (un)countable case

Theorem (S.D. Friedman-Hyttinen-Kulikov + Mangraviti-M.) Proof

Let κ<κ = κ. Suppose that T has L∞κ-Scott height β < κ+. Then
∼=κ
T ∈ Π0

δ with δ ≤ 2β + 2 < κ+.

Theorem (S.D. Friedman-Hyttinen-Kulikov + Mangraviti-M.) Proof

Let κ<κ = κ. Suppose that ∼=κ
T ∈ Π0

δ . Then T has L∞κ-Scott height
β ≤ max{3, δ + 1} < κ+.

In particular, the L∞κ-Scott height β of T and the Borel rank δ of ∼=κ
T ,

when they are both defined, have always finite distance. Moreover

∼=κ
T is Borel ⇐⇒ there is β < κ+ such that the L∞ω-Scott height

of any M ∈ ModκT is ≤ β.

Furthermore, we also get a level-by-level version of this statement
(considering only limit levels).
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Scott height vs Borelness: the (un)countable case

We need two games.

Ehrenfeucht-Fraïssé game (simplified version)
Given a well-founded tree T on κ and two structure M,N ∈ ModκT , the
game EF κT (M,N) is played as follows:

at turn n ∈ ω, player I picks a node pn of T and a set Xn ⊆ κ of size
< κ, while player II picks a partial function fn : κ→ κ of size < κ;
p0 is the root of T , while if n > 0 then pn must be an immediate
successor of pn−1 and Xn ⊇ Xn−1;
dom(fn) ∩ ran(fn) ⊇ Xn, and Xn ⊇ Xn−1 if n ≥ 0.

A run of the game ends when I cannot move further (i.e. her last move pn
is a leaf of T ). At this point, we say that II won the run iff fn is a partial
isomorphism between M and N .
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Scott height vs Borelness: the (un)countable case

Ehrenfeucht-Fraïssé games are strictly related to the L∞κ-Scott height of a
theory T .

Crucial fact
Given an ordinal α, let Tα be the tree of strictly descending sequences of
ordinals < α (such a tree is well-founded and has rank α+ 1). Then for
any two κ-sized models M,N ,

M ≡α N ⇐⇒ II has a winning strategy in EF κTα(M,N).

Thus if a theory T has L∞κ-Scott height β, then for every M,N ∈ ModκT

M ∼= N ⇐⇒ II wins EF κTβ (M,N).
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Scott height vs Borelness: the (un)countable case

Borel∗ game
Given a tree T ⊆ <κκ without κ-branches,

a function h from the maximal
branches of T to the τb-clopen subsets of κκ, and an element x ∈ κκ, let
G(T , h, x) be the game in which I and II take turns in picking nodes of T
which are immediate successors of the opponent last move (at limit rounds,
I picks an immediate successor of the sup of all previous moves).

The game ends when one of the players cannot move anymore, so that a
maximal branch b through T has been cooperatively selected. At this
point, we say that II won the run iff x ∈ h(b).

Given T and h as above, we define

B(T , h) = {x ∈ κκ | II has a winning strategy in G(T , h, x)},

and call the pair (T , h) a Borel∗ code for B(T , h).
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Scott height vs Borelness: the (un)countable case

Fact (essentially Blackwell)
A set A ⊆ κκ is Borel if and only if it admits a Borel∗ code (T , h) with T
well-founded (we can even require that T be one of the Tα described
before, with α < κ+).

A slightly more careful argument actually shows:

Lemma (Mangraviti-M.)

A ∈ Π0
α iff A = B(T , h) for some T well-founded of rank ≤ α+ 1.
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Scott height vs Borelness: the (un)countable case

Given any well-founded tree T on κ, let T ∗ be the (well-founded) tree
generated by the sequences

〈(p0, A0), f0, . . . , (pn, An), fn〉,
where

p0 is the root of T , pi+1 is an immediate successor of pi in T , Ai is
a subset of κ of size < κ, Ai+1 ⊇ Ai, fi : κ→ κ is a partial function with
dom(fi) ∩ ran(fi) ⊇ Ai, and fi+1 ⊇ fi. Notice that a maximal branch
through T ∗ always ends with an element of the form fn, and that the rank
of T ∗ is 2β + 3 if T has rank β + 1.

Define also a labeling function h from the branches of T ∗ to the τb-clopen
subsets of (ModκL)

2 by setting

(M,N) ∈ h(b) ⇐⇒ fn is a partial isomorphism between M and N,

where fn is the last element of T ∗.
Then for every M,N ∈ ModκL

II wins EF κT (M,N) ⇐⇒ II wins G(T ∗, h, (M,N)).
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Scott height vs Borelness: the (un)countable case

Theorem (S.D. Friedman-Hyttinen-Kulikov + Mangraviti-M.)

Let κ<κ = κ. Suppose that T has L∞κ-Scott height β < κ+. Then
∼=κ
T ∈ Π0

δ with δ ≤ 2β + 2 < κ+.

Proof.
For every M,N ∈ ModκT ,

M ∼= N ⇐⇒ M ≡β N
⇐⇒ II wins EF κTβ
⇐⇒ II wins G(T ∗β , h, (M,N)).

Since T ∗β has rank 2β + 3, we get ∼=κ
T ∈ Π0

2β+2.

Back Skip
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For every M,N ∈ ModκT ,

M ∼= N ⇐⇒ M ≡β N
⇐⇒ II wins EF κTβ
⇐⇒ II wins G(T ∗β , h, (M,N)).

Since T ∗β has rank 2β + 3, we get ∼=κ
T ∈ Π0

2β+2.

Back Skip
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Scott height vs Borelness: the (un)countable case

For the other direction in the correspondence between Scott height and
Borel rank, we need to sligthly refine the (generalized) Lopez-Escobar
theorem.

Proposition
Let κ<κ = κ, and let A ⊆ ModκL be Borel and closed under isomorphism.
If A has Borel rank δ, then A = Modκϕ for some Lκ+κ-sentence ϕ with
quantifier rank δ.

We are now ready to prove

Theorem (S.D. Friedman-Hyttinen-Kulikov + Mangraviti-M.) Proof

Let κ<κ = κ. Suppose that ∼=κ
T ∈ Π0

δ . Then T has L∞κ-Scott height
β ≤ max{3, δ + 1} < κ+.
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Scott height vs Borelness: the (un)countable case

Enrich L with a new unary symbol P , and consider the set W of those
M ∈ ModκL∪{P} such that

∣∣PM ∣∣ = ∣∣κ \ PM ∣∣ = κ.

Notice that W ∈ Π0
2

and it is invariant under isomorphism.

For M ∈W , let M0 and M1 be the substructures with domain PM and
κ\PM , respectively. The map M 7→ (M1,M2) is continuous, hence the set

A = {M ∈W |M1
∼=κ
T M2},

being the preimage of ∼=κ
T , is in Π0

δ′ , where δ
′ = max{2, δ}. Moreover, A

is invariant under isomorphism, hence A = Modκϕ for some
(L ∪ {P})κ+κ-sentence ϕ with quantifier rank δ′.
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Scott height vs Borelness: the (un)countable case

Suppose towards a contradiction that the L∞κ-Scott height of T is
> δ′ + 1,

and let N+, N− ∈ ModκT be such that N+ ≡δ′+1 N
− but

N+ 6∼= N−. Let M0,M1 ∈W be such that
PM

0
= PM

1
= {2γ | γ < κ}

M0
0 =M0

1 = N+

M1
0 = N+ and M1

1 = N−.

By choice of N+, N−, player II wins both

EF κTδ′+1
(M0

0 ,M
1
0 ) and EF κTδ′+1

(M0
1 ,M

1
1 ),

and any two winning strategies for II in those games can be combined into
a winning strategy for II in EF κTδ′+1

(M0,M1).

On the other hand, M0 ∈ A while M1 /∈ A, hence M0 6≡δ′+1 M
1, as

witnessed by ϕ, contradiction!
Back Skip
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Some questions

We showed that if κ<κ = κ > 2ℵ0 and T is classifiable shallow of depth α,
then the ∼=κ

T has Borel rank ≤ 4α+ 2.

Question
Can this be proved directly by using the canonical labelled-tree
decomposition TM of any M ∈ ModκT which is involved in the definition of
classifiable shallow theories?

This looks reasonable because TM is a well-founded tree of rank < α
(labelled with small structures, which give rise to a clopen condition when
κ > 2ℵ0), and in the classical case the isomorphism between well-founded
countable trees of rank α is Borel and has Borel rank ∼ α. A first step
would be checking that the map M 7→ TM is Borel (maybe even
continuous?).
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Some questions

We showed that if κ<κ = κ > 2ℵ0 and T is classifiable shallow, then the
L∞κ-Scott height δ of T and the Borel rank β of ∼=κ

T go together (finite
distance), and they are both “dominated” by the depth α of T .

Question
In this situation, does α yield also a lower bound for δ and β?
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Some questions

Problem
For every α < ω1, find a “natural” example of a classifiable shallow theory
T such that ∼=κ

T has Borel rank ≥ α for some (suitable) κ, possibly under
additional set-theoretical assumptions or working in some specific model of
ZFC.

The relevance of the problem lies in the fact that such theories would
provides natural examples of classifiable shallow theories with larger and
larger depth. Computing Borel ranks seems to be way more simpler than
computing depths, at least to me.
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Some questions

Recall that for some κ’s, if T is classifiable shallow and T ′ is not, then

∼=κ
T <B

∼=κ
T ′ .

Question
Under suitable assumptions on κ, how much large is the gap (w.r.t. ≤B)
between ∼=κ

T and ∼=κ
T ′ , where T and T ′ are as above?
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Some questions

Problem
What can be said about singular cardinals λ?

Can one relate Borelness
(and Borel rank) of the isomorphism relation ∼=λ

T to the L∞λ-Scott height
of the theory T?

New arguments are needed, but e.g. Džamonja and Väänänen already
developed a reasonable notion of Scott watershed in the context of
chainable models, so the problem makes sense and it is quite intriguing.
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The end

Thank you for your attention!
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