Local Ramsey Spaces in Matet Forcing Extensions

Heike Mildenberger

CIRM, 14th International Workshop in Set Theory

October 13, 2017

The set of non-empty finite subsets of ω is denoted by FIN. (FIN)^{ω} is the set of block sequences.

The set of non-empty finite subsets of ω is denoted by FIN. (FIN)^{ω} is the set of block sequences.

For \bar{a} , $\bar{b} \in (FIN)^{\omega}$, we call \bar{b} a condensation of \bar{a} , short $\bar{b} \sqsubseteq \bar{a}$, if any member of \bar{b} (strictly speaking "member of range(\bar{b})") is a finite union of members of \bar{a} .

The set of non-empty finite subsets of ω is denoted by FIN. (FIN)^{ω} is the set of block sequences.

For \bar{a} , $\bar{b} \in (FIN)^{\omega}$, we call \bar{b} a condensation of \bar{a} , short $\bar{b} \sqsubseteq \bar{a}$, if any member of \bar{b} (strictly speaking "member of range(\bar{b})") is a finite union of members of \bar{a} .

Definition

For $\bar{b} \in (FIN)^{\omega}$ and $s \in FIN$, we write $(\bar{b} \text{ past } s)$ for the part of the sequence \bar{b} that starts after the maximum of s.

We write $\overline{b} \sqsubseteq^* \overline{a}$ if for some $n \in \omega$, $(\overline{b} \text{ past } \{n\}) \sqsubseteq \overline{a}$.

Let $\langle \bar{a}_n \mid n \in \omega
angle$ be \sqsubseteq -descending. \bar{b} is a diagonal lower bound if

$$(\forall n \in \omega)(\bar{b} \text{ past } b_{n-1}) \sqsubseteq \bar{a}_n.$$

Definition Let $\langle \bar{a}_n \mid n \in \omega \rangle$ be \sqsubseteq -descending. \bar{b} is a diagonal lower bound if $(\forall n \in \omega)(\bar{b} \text{ past } b_{n-1}) \sqsubseteq \bar{a}_n.$

Definition

Let $X \subseteq \mathsf{FIN}$. We let $\mathrm{FU}(X)$ be the set of unions of finitely many members of X.

A set $\mathscr{H} \subseteq (FIN)^{\omega}$ is called a Matet-adequate family if the following holds:

- 1. \mathscr{H} is closed \sqsubseteq^* -upwards.
- Every ⊑-descending ω-sequence of members of ℋ has a diagonal lower bound in ℋ.
- 3. \mathscr{H} has the Hindman property: If $A \in \mathscr{H}$ and FIN is partitioned into two pieces then there is some $\overline{b} \sqsubseteq \overline{a}, \ \overline{b} \in \mathscr{H}$ such that $\operatorname{FU}(\overline{b})$ is a subset of a single piece of the partition.

$(\mathsf{FIN})^\omega$ (Hindman)

Theorem (Taylor) Let $\bar{a} \in (FIN)^{\omega}$, $n \in \omega$. If $c: [FU(\bar{a})]_{<}^{n} \to \{0,1\}$. Then there is a $\bar{b} \sqsubseteq \bar{a}$ such that $[FU(\bar{b})]_{<}^{n}$ is monochromatic.

$(\mathsf{FIN})^\omega$ (Hindman)

Theorem (Taylor) Let $\bar{a} \in (FIN)^{\omega}$, $n \in \omega$. If $c \colon [FU(\bar{a})]^n_{\leq} \to \{0,1\}$. Then there is a $\bar{b} \sqsubseteq \bar{a}$ such that $[FU(\bar{b})]^n_{\leq}$ is monochromatic.

same holds in any Matet-adequate family.

Any Milliken-Taylor ultrafilter \mathscr{U} .

Definition

A Milliken-Taylor ultrafilter is an ultrafilter over FIN with the following properties:

- 1. It has a basis of sets of the form $FU(\bar{a})$ with $\bar{a} \in (FIN)^{\omega}$,
- 3. and it has the Hindman-property.

The Hindman property follows from the first two properties.

Milliken-Taylor ultrafilters are also called stable ordered-union ultrafilters.

Under CH, MA, $\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$ or in the Sacks model there is an Milliken-Taylor ultrafilter. Eisworth (2002), Yuan Yuan Zheng (2017), Fernández-Breton and Hrušák(2017).

Under NCF, so for example in the Matet model, there is none.

The issue of *P*-points. $\mathfrak{d} = \mathfrak{c}$. No *P*-points in the Silver model.

If $\mathscr H$ is Matet-adequate then it has solutions to colorings as in the Taylor theorem.

If $\mathscr H$ is Matet-adequate then it has solutions to colorings as in the Taylor theorem.

We are interested in $\mathbb{M}(\mathscr{U})$, \mathscr{U} and Milliken-Taylor ultrafilter.

$$\begin{split} \min[\bar{a}] &= \{\min(a_n) \mid n \in \omega\} \text{ for } \bar{a} \in (\mathsf{FIN})^{\omega}.\\ \min[X] &= \{\min(x) \mid x \in X\} \text{ for } X \subseteq \mathsf{FIN}.\\ \min(\mathscr{F}) &= \{\min[X] \mid X \in \mathscr{F}\} \text{ for } \mathscr{F} \subseteq \mathcal{P}(\mathsf{FIN}).\\ \end{split}$$
Blass showed that for an Milliken-Taylor ultrafilter \mathscr{U} the projections $\min(\mathscr{U})$ and $\max(\mathscr{U})$ are non-nearly coherent Ramsey ultrafilters over ω .

$$\begin{split} \min[\bar{a}] &= \{\min(a_n) \mid n \in \omega\} \text{ for } \bar{a} \in (\mathsf{FIN})^{\omega}.\\ \min[X] &= \{\min(x) \mid x \in X\} \text{ for } X \subseteq \mathsf{FIN}.\\ \widehat{\min}(\mathscr{F}) &= \{\min[X] \mid X \in \mathscr{F}\} \text{ for } \mathscr{F} \subseteq \mathcal{P}(\mathsf{FIN}).\\ \end{split}$$
Blass showed that for an Milliken-Taylor ultrafilter \mathscr{U} the projections $\widehat{\min}(\mathscr{U})$ and $\widehat{\max}(\mathscr{U})$ are non-nearly coherent Ramsey ultrafilters over ω .

$$\begin{split} \min[\bar{a}] &= \{\min(a_n) \mid n \in \omega\} \text{ for } \bar{a} \in (\mathsf{FIN})^{\omega}.\\ \min[X] &= \{\min(x) \mid x \in X\} \text{ for } X \subseteq \mathsf{FIN}.\\ \widehat{\min}(\mathscr{F}) &= \{\min[X] \mid X \in \mathscr{F}\} \text{ for } \mathscr{F} \subseteq \mathcal{P}(\mathsf{FIN}).\\ \end{split}$$
Blass showed that for an Milliken-Taylor ultrafilter \mathscr{U} the projections $\min(\mathscr{U})$ and $\max(\mathscr{U})$ are non-nearly coherent Ramsey

ultrafilters over ω .

 (FIN, \cup) is a partial semigroup: We define $s \cup t$ only for s < t. The associative partial binary operation \cup lifts to $\beta(FIN)$, the space of min-unbounded ultrafilters over FIN, as follows (and we write $\dot{\cup}$ for the lifted operation):

 $\mathscr{U}_1 \dot{\cup} \mathscr{U}_2 = \{ X \subseteq \mathsf{FIN} \mid \text{ for } \mathscr{U}_1 \text{-most } s, \text{ for } \mathscr{U}_2 \text{-most } t, s \cup t \in X \}$

With the topology

$$\{\{\mathscr{U} \mid X \in \mathscr{U}\} \mid X \subseteq \mathsf{FIN}\}\$$

it is a compact zero-dimensional Hausdorf space. With the topology $(\beta FIN, \dot{\cup})$ is a semitopological semigroup.

Lemma

(Ellis) For each closed subsemigroup \mathscr{H} of β FIN there is an idempotent ultrafilter.

Lemma

(Eisworth) Let \mathscr{F} be an ordered-union filter. There is a min-unbounded idempotent ultrafilter $\mathscr{U} \in \beta FIN$ that extends \mathscr{F} .

Let $n \in \omega \setminus \{0, 1\}$. Is it consistent relative to ZFC that there is a model with n near coherence classes of ultrafilters?

Let $n \in \omega \smallsetminus \{0, 1\}$. Is it consistent relative to ZFC that there is a model with n near coherence classes of ultrafilters?

Necessary: $u < \mathfrak{d}$. No or few Cohen reals. Try to build a model with a small P-point and an "inhomogeneous" continuum.

In the Matet forcing, \mathbb{M} , the conditions are pairs (s, \bar{c}) such that $s \in \mathsf{FIN}$ and $\bar{c} \in (\mathsf{FIN})^{\omega}$ and $s < c_0$. The forcing order is $(t, \bar{d}) \leq (s, \bar{c})$ (recall the stronger condition is the smaller one) iff $s \subseteq t$ and $t \smallsetminus a$ is a concatenation of finitely many of the c_n and \bar{d} is a condensation of \bar{c} .

In the Matet forcing, \mathbb{M} , the conditions are pairs (s, \bar{c}) such that $s \in \mathsf{FIN}$ and $\bar{c} \in (\mathsf{FIN})^{\omega}$ and $s < c_0$. The forcing order is $(t, \bar{d}) \leq (s, \bar{c})$ (recall the stronger condition is the smaller one) iff $s \subseteq t$ and $t \smallsetminus a$ is a concatenation of finitely many of the c_n and \bar{d} is a condensation of \bar{c} .

Definition

Let \mathscr{H} be a Matet-adequate family. In the subforcing $\mathbb{M}(\mathscr{H})$ the second components of the conditions are taken from \mathscr{H} .

Ramsey-theoretic computations in the $M(\mathscr{U})$ -extension

We write and $\operatorname{set}(\overline{a}) = \bigcup \{a_n \mid n \in \omega\}$. The forcing $\mathbb{M}(\mathscr{U})$ diagonalises ("shoots a real through") $\{\operatorname{set}(\overline{a}) \mid \overline{a} \in \mathscr{C}\}$, namely the generic real

$$\mu_G := \bigcup \{ s \mid \exists \bar{c} \mid (s, \bar{c}) \in G \}$$

is a pseudo-intersection of this set.

Ramsey-theoretic computations in the $M(\mathscr{U})$ -extension

We write and $set(\bar{a}) = \bigcup \{a_n \mid n \in \omega\}$. The forcing $\mathbb{M}(\mathscr{U})$ diagonalises ("shoots a real through") $\{set(\bar{a}) \mid \bar{a} \in \mathscr{C}\}$, namely the generic real

$$\mu_G := \bigcup \{ s \mid \exists \bar{c} \mid (s, \bar{c}) \in G \}$$

is a pseudo-intersection of this set.

Definition

(1) Let $\bar{a} \in (FIN)^{\omega}$ and $\mu \in [\omega]^{\omega}$. $\bar{a} \upharpoonright \mu = \langle a_n \mid n \in \omega, a_n \subseteq \mu \rangle$. Note, we do not take those a_n with $a_n \cap \mu \neq \emptyset$ that are not subsets of μ .

(2) Let $\mathscr{U} \subseteq (FIN)^{\omega}$ and $\mu \in [\omega]^{\omega}$. $\mathscr{U} \upharpoonright \mu = \operatorname{fil}(\{\bar{a} \upharpoonright \mu \mid \bar{a} \in \mathscr{U}\}).$

Let \mathscr{H} be a Matet-adequate family and let \mathscr{E} be a P-point. We say \mathscr{H} avoids \mathscr{E} if for any $\bar{a} \in \mathscr{H}$ and finite-to-one f there is an $E \in \mathscr{E}$ and an $\bar{b} \in \mathscr{H}$ such that $\bar{b} \sqsubseteq \bar{a}$ and $f[E] \cap f[\operatorname{set}(\bar{b})] = \emptyset$.

Theorem

(Eisworth) If \mathscr{U} avoids \mathscr{E} then in $\mathbf{V}^{\mathbb{M}(\mathscr{U})}$ the *P*-point \mathscr{E} is preserved, i.e. $\{Y \mid (\exists E \in \mathscr{E}) Y \supseteq X\}$ is an ultrafilter.

Theorem

(M., 2017) After forcing with $\mathbb{M}(\mathscr{U})$, $(\mathscr{U} \upharpoonright \mu)^+$ is a Matet-adequate family that avoids \mathscr{E} .

Corollary

Let \mathscr{E} be a P-point and \mathscr{U} be a Milliken-Taylor ultrafilter with $\Phi(\mathscr{U}) \not\leq_{RB} \mathscr{E}$. Assume CH. Then in the forcing extension by $\mathbb{M}(\mathscr{U})$ the Milliken-Taylor ultrafilter \mathscr{U} is destroyed and can be completed to an Milliken-Taylor ultrafilter $\mathscr{U}^{ext} \supseteq \mathscr{U}$ with $\Phi(\mathscr{U}^{ext}) \not\leq_{RB} \mathscr{E}$.

Names for diagonal lower bounds

Lemma

Let \mathscr{U} be an Milliken-Taylor ultrafilter, \mathscr{E} be a P-point, $\Phi(\mathscr{U}) \not\leq_{\mathrm{RB}} \mathscr{E}$. Let $\mathbb{Q} = \mathbb{M}(\mathscr{U})$ and let μ be the name for the generic real. Let $\langle X_n \mid n \in \omega \rangle$ be a sequence of \mathbb{Q} -names for elements of $(\mathsf{FIN})^{\omega}$ such that

$$\mathbb{Q} \Vdash (\forall n \in \omega) (X_n \in (\mathscr{U} \upharpoonright \mu)^+ \land X_{n+1} \sqsubseteq X_n).$$

Then

$$\begin{split} \tilde{D} &= \{ \langle \check{t}, (s, \bar{a}) \rangle \mid (s, \bar{a}) \in \mathbb{Q}_{\alpha} \text{ is neat for } \bar{X} \text{ and} \\ &\exists t_0 < t_1 < \dots < t_k = t \\ &(s, \bar{a}) \Vdash t_0 = \min(\tilde{X}_0 \upharpoonright \mu)) \land \\ &\bigwedge_{i < k} t_{i+1} = \min((X_{\max(t_i)+1} \upharpoonright \mu) \text{ past } t_i) \} \end{split}$$

fulfils

$$\mathbb{Q} \Vdash \tilde{D} \in (\mathscr{U} \upharpoonright \mu)^+ \land \tilde{D} \sqsubseteq X_0 \land (\forall t \in \tilde{D}) (\tilde{D} \text{ past } t \sqsubseteq X_{\max(t)+1}).$$

The proof of the Hindman property includes again a proof that positive diagonal lower bounds exist.

Lemma

In $\mathbf{V}^{\mathbb{M}(\mathscr{U})}$, $(\mathscr{U} \upharpoonright \mu)^+$ has the Hindman property.

For the proof of this lemma, we adapt a proof of a theorem of Eisworth. This says

Theorem

(Eisworth) Let \mathscr{F} be an ordered-union filter generated by $< \operatorname{cov}(\mathcal{B})$ sets and let c be a partition of FIN into finite sets. Then there is an $\overline{a} \in \mathscr{F}^+$ such that $\operatorname{FU}(\overline{a})$ is included in one piece of the partition. At a crucial point in the proof a Cohen real provides a name. We show that also a Matet-real can be used. For this we outline the proof. We recall the Galvin-Glazer technique. Let c be a name for a partition of $(\overline{b}_0 \in \mathscr{U} \upharpoonright \mu)^+$ into finitely many pieces and let \overline{b}_n be a \sqsubseteq -descending sequence of elements $\overline{b}_n \in (\mathscr{U} \upharpoonright \mu)^+$. Let \mathscr{U}^i be such that

 $\mathbb{M}(\mathscr{U}) \Vdash \mathscr{U}^i \supseteq \left((\mathscr{U} \upharpoonright \mu) \cup \{ \bar{b}_n \mid n \in \omega \} \right) \land \mathscr{U}^i \dot{\cup} \mathscr{U}^i = \mathscr{U}^i.$

For $X \subseteq \mathsf{FIN}$ and $t \in \mathsf{FIN}$ we set

 $X \ominus t = \{s \ | \ s \cup t \in X\}$

If \mathscr{U}^i is idempotent then for each $X \in \mathscr{U}^i$ the set $\{t \mid X \ominus t \in \mathscr{U}^i\}$ is in \mathscr{U}^i .

We define for $n \in \omega$ names X_n and d_n and $p_n = (s_n, \bar{a}_n)$ with the following rules:

(1) $p_0 \Vdash X_0$ is the piece of the partition c of $FU(\bar{b}_0)$ that is in \mathscr{U}^i . (2) $p_{n+1} = (s_{n+1}, \bar{a}_{n+1}) \Vdash d_n$ is the $\leq_{\text{lex}, \text{FIN}}$ -least element of

 $\begin{aligned} \{d \in X_n \cap \mathrm{FU}(\{a_{n,k} \ | \ k \in \omega\}) \cap \mathrm{FU}(\overline{b}_n) \ | \ X_n \ominus d \in \mathscr{U}^i \text{ and} \\ \min(d) > \max(d_i) \text{ for } i < n \end{aligned}$

(3)
$$p_{n+1} \Vdash X_{n+1} = X_n \cap (X_n \ominus d_n).$$

Since \mathscr{U}^i is idempotent, the set in (2) is in \mathscr{U}^i .

We ensure with colouring of the pure part of p_n that there is a lower bound of $\langle p_n | n < \omega \rangle$ that forces only the existence of the d_n , without the pinning down.

Iterating with countable support

 $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{M}(\mathscr{U}_{\beta}) \mid \beta < \omega_2, \alpha \leq \omega_2 \rangle$ with countable support and

$$\mathbb{P}_{\beta} \Vdash \mathscr{U}_{\beta} \supseteq \bigcup \{ (\mathscr{U}_{\gamma} \restriction \mu_{\gamma}) \mid \gamma < \beta \}$$

$$\begin{split} \mathbb{P} &= \langle \mathbb{P}_{\alpha}, \mathbb{M}(\mathscr{U}_{\beta}) \ | \ \beta < \omega_2, \alpha \leq \omega_2 \rangle \text{ with countable support and} \\ \\ \mathbb{P}_{\beta} \Vdash \mathscr{U}_{\beta} \supseteq \bigcup \{ (\mathscr{U}_{\gamma} \restriction \mu_{\gamma}) \ | \ \gamma < \beta \} \end{split}$$

Preservation theorem.

 $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{M}(\mathscr{U}_{\beta}) \mid \beta < \omega_{2}, \alpha \leq \omega_{2} \rangle \text{ with countable support and}$ $\mathbb{P}_{\beta} \Vdash \mathscr{U}_{\beta} \supseteq \bigcup \{ (\mathscr{U}_{\gamma} \upharpoonright \mu_{\gamma}) \mid \gamma < \beta \}$

Preservation theorem.

In $\mathbf{V}^{\mathbb{P}}$, there are at least three near coherence classes of filters. $\hat{\min}(\mathscr{U}_{\omega_2}) = \{\min[\bar{a}] \mid \bar{a} \in \mathscr{U}_{\omega_2}\}$ $\hat{\max}(\mathscr{U}_{\omega_2}) = \{\max[\bar{a}] \mid \bar{a} \in \mathscr{U}_{\omega_2}\}$ \mathscr{E} .

Question

Can $\Diamond(S_{\aleph_0}^{\aleph_2})$ be used to arrange that there are just this three classes?