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The partial order ((FIN)ω,v)

De�nition
The set of non-empty �nite subsets of ω is denoted by FIN.

(FIN)ω is the set of block sequences.

For ā, b̄ ∈ (FIN)ω, we call b̄ a condensation of ā, short b̄ v ā, if any
member of b̄ (strictly speaking �member of range(b̄)�) is a �nite

union of members of ā.

De�nition
For b̄ ∈ (FIN)ω and s ∈ FIN, we write (b̄ past s) for the part of the

sequence b̄ that starts after the maximum of s.

We write b̄ v∗ ā if for some n ∈ ω, (b̄ past {n}) v ā.
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Diagonal lower bounds and FU-sets

De�nition
Let 〈ān | n ∈ ω〉 be v-descending. b̄ is a diagonal lower bound if

(∀n ∈ ω)(b̄ past bn−1) v ān.

De�nition
Let X ⊆ FIN. We let FU(X) be the set of unions of �nitely many

members of X.

3 / 21



Diagonal lower bounds and FU-sets

De�nition
Let 〈ān | n ∈ ω〉 be v-descending. b̄ is a diagonal lower bound if

(∀n ∈ ω)(b̄ past bn−1) v ān.

De�nition
Let X ⊆ FIN. We let FU(X) be the set of unions of �nitely many

members of X.

3 / 21



Matet-adequate families

De�nition
A set H ⊆ (FIN)ω is called a Matet-adequate family if the

following holds:

1. H is closed v∗-upwards.
2. Every v-descending ω-sequence of members of H has a

diagonal lower bound in H .

3. H has the Hindman property: If A ∈H and FIN is

partitioned into two pieces then there is some b̄ v ā, b̄ ∈H
such that FU(b̄) is a subset of a single piece of the partition.
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Examples of Matet-adequate families

(FIN)ω (Hindman)

Theorem
(Taylor) Let ā ∈ (FIN)ω, n ∈ ω. If c : [FU(ā)]n< → {0, 1}. Then
there is a b̄ v ā such that [FU(b̄)]n< is monochromatic.

same holds in any Matet-adequate family.
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Centred examples

Any Milliken-Taylor ultra�lter U .

De�nition
A Milliken-Taylor ultra�lter is an ultra�lter over FIN with the

following properties:

1. It has a basis of sets of the form FU(ā) with ā ∈ (FIN)ω,

2. each v-descending sequence of members of U has a v∗-lower
bound,

3. and it has the Hindman-property.

The Hindman property follows from the �rst two properties.

Milliken-Taylor ultra�lters are also called stable ordered-union

ultra�lters.
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Existence?

Under CH, MA, cov(M) = c or in the Sacks model there is an

Milliken-Taylor ultra�lter. Eisworth (2002), Yuan Yuan Zheng

(2017), Fernández-Breton and Hru²ák(2017).

Under NCF, so for example in the Matet model, there is none.

The issue of P -points. d = c. No P -points in the Silver model.
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Properties

If H is Matet-adequate then it has solutions to colorings as in the

Taylor theorem.

We are interested in M(U ), U and Milliken-Taylor ultra�lter.
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Connections between FIN and ω

min[ā] = {min(an) | n ∈ ω} for ā ∈ (FIN)ω.

min[X] = {min(x) | x ∈ X} for X ⊆ FIN.

m̂in(F ) = {min[X] | X ∈ F} for F ⊆ P(FIN).

Blass showed that for an Milliken-Taylor ultra�lter U the

projections m̂in(U ) and m̂ax(U ) are non-nearly coherent Ramsey

ultra�lters over ω.
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Idempotent ultra�lters

(FIN,∪) is a partial semigroup: We de�ne s ∪ t only for s < t. The
associative partial binary operation ∪ lifts to β(FIN), the space of

min-unbounded ultra�lters over FIN, as follows (and we write ∪̇ for

the lifted operation):

U1∪̇U2 = {X ⊆ FIN | for U1-most s, for U2-most t, s ∪ t ∈ X}

With the topology

{{U | X ∈ U } | X ⊆ FIN}

it is a compact zero-dimensional Hausdorf space. With the topology

(βFIN, ∪̇) is a semitopological semigroup.
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Existence, even with a large starting point

Lemma
(Ellis) For each closed subsemigroup H of βFIN there is an

idempotent ultra�lter.

Lemma
(Eisworth) Let F be an ordered-union �lter. There is a

min-unbounded idempotent ultra�lter U ∈ βFIN that extends F .
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Motivating questions

Let n ∈ ω r {0, 1}. Is it consistent relative to ZFC that there is a

model with n near coherence classes of ultra�lters?

Necessary: u < d. No or few Cohen reals.

Try to build a model with a small P -point and an �inhomogeneous�

continuum.
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Matet forcing

De�nition
In the Matet forcing, M, the conditions are pairs (s, c̄) such that

s ∈ FIN and c̄ ∈ (FIN)ω and s < c0. The forcing order is

(t, d̄) ≤ (s, c̄) (recall the stronger condition is the smaller one) i�

s ⊆ t and tr a is a concatenation of �nitely many of the cn and d̄
is a condensation of c̄.

De�nition
Let H be a Matet-adequate family. In the subforcing M(H ) the

second components of the conditions are taken from H .
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Ramsey-theoretic computations in the M(U )-extension

We write and set(ā) =
⋃
{an | n ∈ ω}. The forcing M(U )

diagonalises (�shoots a real through�) {set(ā) | ā ∈ C }, namely

the generic real

µG :=
⋃
{s | ∃c̄ | (s, c̄) ∈ G}

is a pseudo-intersection of this set.

De�nition

(1) Let ā ∈ (FIN)ω and µ ∈ [ω]ω. ā � µ = 〈an | n ∈ ω, an ⊆ µ〉.
Note, we do not take those an with an ∩ µ 6= ∅ that are not

subsets of µ.

(2) Let U ⊆ (FIN)ω and µ ∈ [ω]ω. U � µ = fil({ā � µ | ā ∈ U }).
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Preserving a P -point

De�nition
Let H be a Matet-adequate family and let E be a P -point. We

say H avoids E if for any ā ∈H and �nite-to-one f there is an

E ∈ E and an b̄ ∈H such that b̄ v ā and f [E] ∩ f [set(b̄)] = ∅.

Theorem
(Eisworth) If U avoids E then in VM(U ) the P -point E is

preserved, i.e. {Y | (∃E ∈ E )Y ⊇ X} is an ultra�lter.
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Extending (U � µ) in VM(U )

Theorem
(M., 2017) After forcing with M(U ), (U � µ)+ is a

Matet-adequate family that avoids E .

Corollary

Let E be a P -point and U be a Milliken-Taylor ultra�lter with

Φ(U ) 6≤RB E . Assume CH. Then in the forcing extension by M(U )
the Milliken-Taylor ultra�lter U is destroyed and can be completed

to an Milliken-Taylor ultra�lter U ext ⊇ U with Φ(U ext) 6≤RB E .
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Names for diagonal lower bounds

Lemma
Let U be an Milliken-Taylor ultra�lter, E be a P -point, Φ(U ) 6≤RB E .

Let Q = M(U ) and let µ be the name for the generic real. Let

〈Xn | n ∈ ω〉 be a sequence of Q-names for elements of (FIN)ω such

that

Q  (∀n ∈ ω)(Xn ∈ (U � µ)+ ∧Xn+1 v Xn).

Then

D
˜

= {〈ť, (s, ā)〉 | (s, ā) ∈ Qα is neat for X̄
˜

and

∃t0 < t1 < · · · < tk = t

(s, ā)  t0 = min(X0
˜

� µ))∧∧
i<k

ti+1 = min((Xmax(ti)+1

˜
� µ) past ti)}

ful�ls

Q  D
˜
∈ (U � µ)+ ∧D

˜
v X0

˜
∧ (∀t ∈ D

˜
)(D

˜
past t v Xmax(t)+1

˜
).
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The Hindman property of the positive sets

The proof of the Hindman property includes again a proof that

positive diagonal lower bounds exist.

Lemma
In VM(U ), (U � µ)+ has the Hindman property.

For the proof of this lemma, we adapt a proof of a theorem of

Eisworth. This says

Theorem
(Eisworth) Let F be an ordered-union �lter generated by < cov(B)
sets and let c be a partition of FIN into �nite sets. Then there is an

ā ∈ F+ such that FU(ā) is included in one piece of the partition.

At a crucial point in the proof a Cohen real provides a name. We

show that also a Matet-real can be used. For this we outline the

proof. We recall the Galvin-Glazer technique.
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Technique

Let c be a name for a partition of (b̄0 ∈ U � µ)+ into �nitely many

pieces and let b̄n be a v-descending sequence of elements

b̄n ∈ (U � µ)+. Let U i be such that

M(U )  U i ⊇
(
(U � µ) ∪ {b̄n | n ∈ ω}

)
∧U i ∪̇U i = U i.

For X ⊆ FIN and t ∈ FIN we set

X 	 t = {s | s ∪ t ∈ X}

If U i is idempotent then for each X ∈ U i the set

{t | X 	 t ∈ U i} is in U i.

We de�ne for n ∈ ω names Xn and dn and pn = (sn, ān) with the

following rules:
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A name for a monochromatic set in (U � µ)+

(1) p0  X0 is the piece of the partition c of FU(b̄0) that is in U i.

(2) pn+1 = (sn+1, ān+1)  dn is the ≤lex,FIN-least element of

{d ∈ Xn ∩ FU({an,k | k ∈ ω}) ∩ FU(b̄n) | Xn 	 d ∈ U i and

min(d) > max(di) for i < n}

(3) pn+1  Xn+1 = Xn ∩ (Xn 	 dn).

Since U i is idempotent, the set in (2) is in U i.

We ensure with colouring of the pure part of pn that there is a

lower bound of 〈pn | n < ω〉 that forces only the existence of the

dn, without the pinning down.
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Iterating with countable support

P = 〈Pα,M(Uβ) | β < ω2, α ≤ ω2〉 with countable support and

Pβ  Uβ ⊇
⋃
{(Uγ � µγ) | γ < β}

Preservation theorem.

In VP, there are at least three near coherence classes of �lters.

m̂in(Uω2) = {min[ā] | ā ∈ Uω2}

m̂ax(Uω2) = {max[ā] | ā ∈ Uω2}

E .

Question

Can ♦(Sℵ2ℵ0 ) be used to arrange that there are just this three

classes?
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