Borel complexity of equivalence relations

Dominique Lecomte

Université Paris 6

XIV Atelier International de Théorie des Ensembles

October, 2017

向下 イヨト イヨト

Let X be a Polish space, and B be a Borel subset of X. Then we can find a closed set $C \subseteq \omega^{\omega}$ and $f: C \rightarrow B$ bijective continuous.

・ロト ・回ト ・ヨト ・ヨト

Let X be a Polish space, and B be a Borel subset of X. Then we can find a closed set $C \subseteq \omega^{\omega}$ and $f: C \to B$ bijective continuous.

• Kuratowski: level by level version.

・日・ ・ ヨ・ ・ ヨ・

Let X be a Polish space, and B be a Borel subset of X. Then we can find a closed set $C \subseteq \omega^{\omega}$ and $f: C \to B$ bijective continuous.

- Kuratowski: level by level version.
- The representation theorem of Borel sets refines this.

Let X be a Polish space, and B be a Borel subset of X. Then we can find a closed set $C \subseteq \omega^{\omega}$ and $f: C \to B$ bijective continuous.

- Kuratowski: level by level version.
- The representation theorem of Borel sets refines this.
- It provides a good subsequence of any $\alpha \in 2^{\omega}$, viewed as the sequence $(\alpha | l)_{l \in \omega}$ of its initial segments.

(4回) (4回) (4回)

Let X be a Polish space, and B be a Borel subset of X. Then we can find a closed set $C \subseteq \omega^{\omega}$ and $f: C \to B$ bijective continuous.

- Kuratowski: level by level version.
- The representation theorem of Borel sets refines this.
- It provides a good subsequence of any $\alpha \in 2^{\omega}$, viewed as the sequence $(\alpha | I)_{I \in \omega}$ of its initial segments. It can help to prove the

Theorem (Hurewicz)

Let $\mathbb{C} := \{ \alpha \in 2^{\omega} \mid \exists^{\infty} n \in \omega \ \alpha(n) = 1 \}$, X be a Polish space, and B be a Borel subset of X. Exactly one of the following holds:

- **1** B is in Σ_2^0 ,
- we can find $f: 2^{\omega} \to X$ injective continuous such that $\mathbb{C} = f^{-1}(B)$.

- A partial order relation R on $2^{<\omega}$ is a tree relation if, for $s \in 2^{<\omega}$,
 - **0** Ø R s,
 - One set P_R(s):={t∈2^{<ω} | t R s} is finite and linearly ordered by R.

伺下 イヨト イヨト

- A partial order relation R on $2^{<\omega}$ is a tree relation if, for $s \in 2^{<\omega}$,
 - **0** Ø R s,
 - One set P_R(s):={t∈2^{<ω} | t R s} is finite and linearly ordered by R.
- $h_R(s) := Card(P_R(s)) 1.$

- A partial order relation R on $2^{<\omega}$ is a tree relation if, for $s \in 2^{<\omega}$,
 - **0** Ø R s,
 - Output the set P_R(s):={t∈2^{<ω} | t R s} is finite and linearly ordered by R.
- $h_R(s) := Card(P_R(s)) 1.$

• Let R be a tree relation. A R-branch is a \subseteq -maximal subset of $2^{<\omega}$ linearly ordered by R.

向下 イヨト イヨト

- A partial order relation R on $2^{<\omega}$ is a tree relation if, for $s \in 2^{<\omega}$,
 - **0** Ø R s,
 - One set P_R(s):={t∈2^{<ω} | t R s} is finite and linearly ordered by R.
- $h_R(s) := Card(P_R(s)) 1.$

• Let R be a tree relation. A R-branch is a \subseteq -maximal subset of $2^{<\omega}$ linearly ordered by R.

• [R] is the set of all infinite R-branches.

向下 イヨト イヨト

• $(2^{<\omega})^{\omega}$: product of the discrete topology on $2^{<\omega}$.

The representation theorem (continued)

Definition (Debs-Saint Raymond)

- $(2^{<\omega})^{\omega}$: product of the discrete topology on $2^{<\omega}$.
- Let R be a tree relation. $[R] \subseteq (2^{<\omega})^{\omega}$: induced topology, Polish.

The representation theorem (continued)

Definition (Debs-Saint Raymond)

- $(2^{<\omega})^{\omega}$: product of the discrete topology on $2^{<\omega}$.
- Let R be a tree relation. $[R] \subseteq (2^{<\omega})^{\omega}$: induced topology, Polish.
- Basic clopen sets: $N_s^R := \{ \gamma \in [R] \mid \gamma(h_R(s)) = s \}$, $s \in 2^{<\omega}$.

- $(2^{<\omega})^{\omega}$: product of the discrete topology on $2^{<\omega}$.
- Let R be a tree relation. $[R] \subseteq (2^{<\omega})^{\omega}$: induced topology, Polish.
- Basic clopen sets: $N_s^R := \{\gamma \in [R] \mid \gamma(h_R(s)) = s\}, s \in 2^{<\omega}.$
- Let R, S be tree relations with $R \subseteq S$. The canonical map $\Pi: [R] \rightarrow [S]$ is defined by

 $\Pi(\gamma)$:= the unique S-branch containing γ .

It is continuous.

- $(2^{<\omega})^{\omega}$: product of the discrete topology on $2^{<\omega}$.
- Let R be a tree relation. $[R] \subseteq (2^{<\omega})^{\omega}$: induced topology, Polish.
- Basic clopen sets: $N_s^R := \{\gamma \in [R] \mid \gamma(h_R(s)) = s\}, s \in 2^{<\omega}.$
- Let R, S be tree relations with $R \subseteq S$. The canonical map $\Pi: [R] \rightarrow [S]$ is defined by

$$\Pi(\gamma)$$
:= the unique S-branch containing γ .

It is continuous.

• Let S be a tree relation. We say that $R \subseteq S$ is distinguished in S if

$$\begin{array}{c} \left. s \; S \; t \; S \; u \\ \forall s, t, u \in 2^{<\omega} \\ s \; R \; u \end{array} \right\} \; \Rightarrow \; s \; R \; t.$$

The representation theorem (continued)

Definition (Debs-Saint Raymond)

• Let $\eta < \omega_1$. A family $(R^{\rho})_{\rho \le \eta}$ of tree relations is a resolution family if

- **Q** $R^{\rho+1}$ is a distinguished subtree of R^{ρ} , for each $\rho < \eta$.
- **2** $R^{\lambda} = \bigcap_{\rho < \lambda} R^{\rho}$, for each limit ordinal $\lambda \leq \eta$.

・日・ ・ ヨ・ ・ ヨ・

• Let $\eta < \omega_1$. A family $(R^{\rho})_{\rho \le \eta}$ of tree relations is a resolution family if

- **Q** $R^{\rho+1}$ is a distinguished subtree of R^{ρ} , for each $\rho < \eta$.
- **2** $R^{\lambda} = \bigcap_{\rho < \lambda} R^{\rho}$, for each limit ordinal $\lambda \leq \eta$.

Theorem (Debs-Saint Raymond)

Let $\eta < \omega_1$, and $P \in \prod_{\eta+1}^0 ([\subseteq])$. Then there is a resolution family $(R^{\rho})_{\rho \leq \eta}$ such that

- ② the canonical map Π : [R^{η}] → [R^{0}] is a continuous bijection with $\Sigma_{\eta+1}^{0}$ -measurable inverse,
- the set $\Pi^{-1}(P)$ is a closed subset of $[R^{\eta}]$.

イロン イヨン イヨン イヨン

э

向下 イヨト イヨト

• Other applications: potential Wadge classes, another new proof of the Louveau-Saint Raymond theorem (without games).

向下 イヨト イヨト

• Other applications: potential Wadge classes, another new proof of the Louveau-Saint Raymond theorem (without games).

• Other applications: characterizations of when two disjoint analytic relations can be separated by a $(\Sigma_1^0 \times \Sigma_{\xi}^0)_{\sigma}$ set or by a $\Pi_1^0 \times \Pi_{\xi}^0$ set.

• Other applications: potential Wadge classes, another new proof of the Louveau-Saint Raymond theorem (without games).

• Other applications: characterizations of when two disjoint analytic relations can be separated by a $(\Sigma_1^0 \times \Sigma_{\xi}^0)_{\sigma}$ set or by a $\Pi_1^0 \times \Pi_{\xi}^0$ set. The representation theorem is used in the proofs and also to define the minimum objects.

• Other applications: potential Wadge classes, another new proof of the Louveau-Saint Raymond theorem (without games).

• Other applications: characterizations of when two disjoint analytic relations can be separated by a $(\Sigma_1^0 \times \Sigma_{\xi}^0)_{\sigma}$ set or by a $\Pi_1^0 \times \Pi_{\xi}^0$ set. The representation theorem is used in the proofs and also to define the minimum objects.

•
$$\Gamma$$
: Borel class, $\check{\Gamma} := \{ \neg \mathcal{B} \mid \mathcal{B} \in \Gamma \}.$

回 と く ヨ と く ヨ と

- Γ : Borel class, $\check{\Gamma} := \{ \neg \mathcal{B} \mid \mathcal{B} \in \Gamma \}.$
- $\mathbb{K} := 2^{\omega}$ if $\mathsf{rk}(\Gamma) \ge 2$, $\{0\} \cup \{2^{-k} \mid k \in \omega\} \subseteq \mathbb{R}$ if $\mathsf{rk}(\Gamma) = 1$.

回 と く ヨ と く ヨ と …

3

- Γ : Borel class, $\check{\Gamma} := \{ \neg \mathcal{B} \mid \mathcal{B} \in \Gamma \}.$
- $\mathbb{K} := 2^{\omega}$ if $\mathsf{rk}(\Gamma) \ge 2$, $\{0\} \cup \{2^{-k} \mid k \in \omega\} \subseteq \mathbb{R}$ if $\mathsf{rk}(\Gamma) = 1$.
- $\mathbb{C} \in \check{\Gamma}(\mathbb{K}) \setminus \Gamma$.

回 と く ヨ と く ヨ と …

2

•
$$\Gamma$$
: Borel class, $\check{\Gamma} := \{ \neg \mathcal{B} \mid \mathcal{B} \in \Gamma \}.$

•
$$\mathbb{K} := 2^{\omega}$$
 if $\mathsf{rk}(\Gamma) \ge 2$, $\{0\} \cup \{2^{-k} \mid k \in \omega\} \subseteq \mathbb{R}$ if $\mathsf{rk}(\Gamma) = 1$.

•
$$\mathbb{C} \in \dot{\Gamma}(\mathbb{K}) \setminus \Gamma$$
.
• $\mathbb{C} := \begin{cases} \{ \alpha \in 2^{\omega} \mid \exists^{\infty} n \in \omega \quad \alpha(n) = 1 \} \text{ if } \Gamma = \Sigma_{2}^{0}, \\ \{ \alpha \in 2^{\omega} \mid \forall^{\infty} n \in \omega \quad \alpha(n) = 0 \} \text{ if } \Gamma = \Pi_{2}^{0}, \\ \{ 0 \} \text{ if } \Gamma = \Sigma_{1}^{0}, \\ \mathbb{K} \setminus \{ 0 \} \text{ if } \Gamma = \Pi_{1}^{0}. \end{cases}$

・ 回 ト ・ ヨ ト ・ ヨ ト

•
$$\Gamma$$
: Borel class, $\check{\Gamma} := \{ \neg \mathcal{B} \mid \mathcal{B} \in \Gamma \}.$

• $\mathbb{K} := 2^{\omega}$ if $\mathsf{rk}(\Gamma) \ge 2$, $\{0\} \cup \{2^{-k} \mid k \in \omega\} \subseteq \mathbb{R}$ if $\mathsf{rk}(\Gamma) = 1$.

•
$$\mathbb{C} \in \check{\Gamma}(\mathbb{K}) \setminus \Gamma$$
.
• $\mathbb{C} := \begin{cases} \{ \alpha \in 2^{\omega} \mid \exists^{\infty} n \in \omega \quad \alpha(n) = 1 \} \text{ if } \Gamma = \Sigma_{2}^{0}, \\ \{ \alpha \in 2^{\omega} \mid \forall^{\infty} n \in \omega \quad \alpha(n) = 0 \} \text{ if } \Gamma = \Pi_{2}^{0}, \\ \{ 0 \} \text{ if } \Gamma = \Sigma_{1}^{0}, \\ \mathbb{K} \setminus \{ 0 \} \text{ if } \Gamma = \Pi_{1}^{0}. \end{cases}$

Theorem (Louveau-Saint Raymond)

Let $\mathbf{\Gamma} \neq \check{\mathbf{\Gamma}}$ be a Borel class, \mathbb{K}, \mathbb{C} as above, X be a Polish space, and A, B be disjoint analytic subsets of X. Exactly one of the following holds:

- A is separable from B by a F set,
- we can find $f: \mathbb{K} \to X$ injective continuous such that $\mathbb{C} \subseteq f^{-1}(A)$ and $\neg \mathbb{C} \subseteq f^{-1}(B)$.

Let $\Gamma \neq \check{\Gamma}$ be a Borel class, \mathbb{K}, \mathbb{C} as above, X be an analytic space, and A, B be disjoint analytic relations on X, A having sections in Γ . Exactly one of the following holds:

- **1** A is separable from B by a Γ set,
- ② we can find $f: \mathbb{K} \to X^2$ continuous with injective coordinates such that $\mathbb{C} \subseteq f^{-1}(A)$ and $\neg \mathbb{C} \subseteq f^{-1}(B)$.

向下 イヨト イヨト

Let $\Gamma \neq \check{\Gamma}$ be a Borel class, \mathbb{K}, \mathbb{C} as above, X be an analytic space, and A, B be disjoint analytic relations on X, A having sections in Γ . Exactly one of the following holds:

- **1** A is separable from B by a Γ set,
- ② we can find $f : \mathbb{K} \to X^2$ continuous with injective coordinates such that $\mathbb{C} \subseteq f^{-1}(A)$ and $\neg \mathbb{C} \subseteq f^{-1}(B)$.

• Let $2 \le \eta < \omega_1$, and $\mathbb{C} \in \Pi^0_{\eta+1}([\subseteq])$. The representation theorem gives $(R^{\rho})_{\rho \le \eta}$ such that $\Pi^{-1}(\mathbb{C})$ is a closed subset of $[R^{\eta}]$. We can find $\mathbb{I} \subseteq \omega$ and $(s_n)_{n \in \mathbb{I}}$ such that $\neg \Pi^{-1}(\mathbb{C})$ is the disjoint union of the $N_{s_n}^{R^{\eta}}$'s. We set $\mathbb{C}_n := \Pi[N_{s_n}^{R^{\eta}}]$, so that $(\mathbb{C}_n)_{n \in \mathbb{I}}$ is a partition of $\neg \mathbb{C}$ into $\mathbf{\Delta}_{\eta+1}^0$ sets.

・ 回 と ・ ヨ と ・ ヨ と

Let $2 \leq \eta < \omega_1$, $\mathbb{C} \in \Pi^0_{\eta+1}([\subseteq])$, X be an analytic space, A be an analytic subset of X, and $(D_n)_{n \in \omega}$ be a sequence of pairwise disjoint analytic subsets of X such that A is both disjoint from $\bigcup_{n \in \omega} D_n$ and separable from any of the D_n 's by a $\Sigma^0_{\eta+1}$ set. One of the following holds:

() A is separable from $\bigcup_{n \in \omega} D_n$ by a $\Sigma_{\eta+1}^0$ set,

We can find φ: I→ω injective and f: [⊆]→X injective continuous such that C⊆f⁻¹(A) and C_n⊆f⁻¹(D_{φ(n)}) for each n∈I.

If moreover $\mathbb{C} \notin \mathbf{\Sigma}_{n+1}^{0}$, then this is a dichotomy.

・ 回 と ・ ヨ と ・ ヨ と

Let $2 \leq \eta < \omega_1$, $\mathbb{C} \in \Pi^0_{\eta+1}([\subseteq])$, X be an analytic space, A be an analytic subset of X, and $(D_n)_{n \in \omega}$ be a sequence of pairwise disjoint analytic subsets of X such that A is both disjoint from $\bigcup_{n \in \omega} D_n$ and separable from any of the D_n 's by a $\Sigma^0_{\eta+1}$ set. One of the following holds:

- **(**) A is separable from $\bigcup_{n \in \omega} D_n$ by a $\Sigma_{\eta+1}^0$ set,
- We can find φ: I→ω injective and f: [⊆]→X injective continuous such that C⊆f⁻¹(A) and C_n⊆f⁻¹(D_{φ(n)}) for each n∈I.

If moreover $\mathbb{C} \notin \mathbf{\Sigma}_{n+1}^{0}$, then this is a dichotomy.

• There are versions of this for $\eta \leq 1$ and limit ordinals.

(1日) (日) (日)

Another application of the representation theorem

Theorem 3

Let $\mathbf{\Gamma} \neq \check{\mathbf{\Gamma}}$ be a Borel class of rank $3 \leq \xi < \omega_1^{\mathbf{C}\mathbf{K}}$, $\mathbb{C} \in \Delta_1^1 \cap \check{\mathbf{\Gamma}}(2^{\omega})$, and R be a Δ_1^1 relation on 2^{ω} with F_{σ} vertical sections. We assume that there is a Σ_1^1 subset V of 2^{ω} disjoint from $\Delta_1^1 \cap 2^{\omega}$ such that $R \cap V^2$ is GH^2 -meager in V^2 , and $V \cap \mathbb{C}$ is not separable from $V \setminus \mathbb{C}$ by a set in $\mathbf{\Gamma}$. Then there is $f : 2^{\omega} \to 2^{\omega}$ injective continuous such that $\mathbb{C} = f^{-1}(\mathbb{C})$ and $(f(\alpha), f(\beta)) \notin R$ if $\alpha \neq \beta$.

Another application of the representation theorem

Theorem 3

Let $\mathbf{\Gamma} \neq \check{\mathbf{\Gamma}}$ be a Borel class of rank $3 \leq \xi < \omega_1^{\mathbf{C}\mathbf{K}}$, $\mathbb{C} \in \Delta_1^1 \cap \check{\mathbf{\Gamma}}(2^{\omega})$, and R be a Δ_1^1 relation on 2^{ω} with F_{σ} vertical sections. We assume that there is a Σ_1^1 subset V of 2^{ω} disjoint from $\Delta_1^1 \cap 2^{\omega}$ such that $R \cap V^2$ is GH^2 -meager in V^2 , and $V \cap \mathbb{C}$ is not separable from $V \setminus \mathbb{C}$ by a set in $\mathbf{\Gamma}$. Then there is $f : 2^{\omega} \to 2^{\omega}$ injective continuous such that $\mathbb{C} = f^{-1}(\mathbb{C})$ and $(f(\alpha), f(\beta)) \notin R$ if $\alpha \neq \beta$.

Corollary

Let $\Gamma \neq \check{\Gamma}$ be a Borel class of rank at least three, \mathbb{C} in $\check{\Gamma}(2^{\omega}) \setminus \Gamma$, and R be a Borel relation on 2^{ω} with countable vertical sections. Then we can find $f: 2^{\omega} \to 2^{\omega}$ injective continuous such that $\mathbb{C} = f^{-1}(\mathbb{C})$ and $(f(\alpha), f(\beta)) \notin R$ if $\alpha \neq \beta$.

イロト イヨト イヨト イヨト

Another application of the representation theorem

Theorem 3

Let $\Gamma \neq \check{\Gamma}$ be a Borel class of rank $3 \leq \xi < \omega_1^{CK}$, $\mathbb{C} \in \Delta_1^1 \cap \check{\Gamma}(2^{\omega})$, and R be a Δ_1^1 relation on 2^{ω} with F_{σ} vertical sections. We assume that there is a Σ_1^1 subset V of 2^{ω} disjoint from $\Delta_1^1 \cap 2^{\omega}$ such that $R \cap V^2$ is GH^2 -meager in V^2 , and $V \cap \mathbb{C}$ is not separable from $V \setminus \mathbb{C}$ by a set in Γ . Then there is $f : 2^{\omega} \to 2^{\omega}$ injective continuous such that $\mathbb{C} = f^{-1}(\mathbb{C})$ and $(f(\alpha), f(\beta)) \notin R$ if $\alpha \neq \beta$.

Corollary

Let $\Gamma \neq \check{\Gamma}$ be a Borel class of rank at least three, \mathbb{C} in $\check{\Gamma}(2^{\omega}) \setminus \Gamma$, and R be a Borel relation on 2^{ω} with countable vertical sections. Then we can find $f: 2^{\omega} \to 2^{\omega}$ injective continuous such that $\mathbb{C} = f^{-1}(\mathbb{C})$ and $(f(\alpha), f(\beta)) \notin R$ if $\alpha \neq \beta$.

• This cannot be extended to lower levels.

• If $E \subseteq X^2$, $F \subseteq Y^2$, then $(X, E) \sqsubseteq_c (Y, F)$ means that there is $f: X \to Y$ injective continuous with $(f(x), f(x')) \in F$ iff $(x, x') \in E$.

(4) (3) (4) (3) (4)

- If $E \subseteq X^2$, $F \subseteq Y^2$, then $(X, E) \sqsubseteq_c (Y, F)$ means that there is $f: X \to Y$ injective continuous with $(f(x), f(x')) \in F$ iff $(x, x') \in E$.
- $(X, E) \sqsubseteq_c (Y, F)$ and $F \in \Gamma$ imply that $E \in \Gamma$.

伺 と く き と く き と

- If $E \subseteq X^2$, $F \subseteq Y^2$, then $(X, E) \sqsubseteq_c (Y, F)$ means that there is
- $f: X \to Y$ injective continuous with $(f(x), f(x')) \in F$ iff $(x, x') \in E$.
- $(X, E) \sqsubseteq_c (Y, F)$ and $F \in \Gamma$ imply that $E \in \Gamma$.

Questions

- When is a Borel equivalence relation Σ_{ε}^{0} (or Π_{ε}^{0})?
- When are the classes of a Borel equivalence relation Σ⁰_ξ (or Π⁰_ξ)?

伺 ト イヨト イヨト

- If $E \subseteq X^2$, $F \subseteq Y^2$, then $(X, E) \sqsubseteq_c (Y, F)$ means that there is
- $f: X \to Y$ injective continuous with $(f(x), f(x')) \in F$ iff $(x, x') \in E$.
- $(X, E) \sqsubseteq_c (Y, F)$ and $F \in \Gamma$ imply that $E \in \Gamma$.

Questions

- When is a Borel equivalence relation Σ_{ε}^{0} (or Π_{ε}^{0})?
- When are the classes of a Borel equivalence relation Σ⁰_ξ (or Π⁰_ξ)?
- \bullet We define equivalence relations on ${\mathbb K}$ by

$$\begin{cases} x \mathbb{E}_{0}^{\Gamma} y \Leftrightarrow (x, y \in \mathbb{C}) \lor (x = y), \\ x \mathbb{E}_{1}^{\Gamma} y \Leftrightarrow (x, y \in \mathbb{C}) \lor (x, y \notin \mathbb{C}), \\ x \mathbb{E}_{2}^{\mathbf{\Sigma}_{\xi}^{0}} y \Leftrightarrow (x, y \in \mathbb{C}) \lor (\exists n \in \omega \ x, y \in \mathbb{C}_{n}). \end{cases}$$

ヨト イヨト イヨト

The first two ranks

 \bullet We set

$$\mathcal{A}^{\Gamma} := \begin{cases} \{ (\mathbb{K}, \mathbb{E}_{0}^{\Gamma}) \} \text{ if } \Gamma = \Pi_{1}^{0}, \\ \\ \{ (\mathbb{K}, \mathbb{E}_{n}^{\Gamma}) \mid n \leq 1 \} \text{ if } \Gamma \in \{ \mathbf{\Sigma}_{\xi}^{0} \mid \xi \leq 2 \} \cup \{ \Pi_{\xi}^{0} \mid \xi \geq 2 \}, \\ \\ \{ (\mathbb{K}, \mathbb{E}_{n}^{\Gamma}) \mid n \leq 2 \} \text{ if } \Gamma \in \{ \mathbf{\Sigma}_{\xi}^{0} \mid \xi \geq 3 \}. \end{cases}$$

◆□▶ ◆□▶ ◆≧▶ ◆≧▶

The first two ranks

• We set

$$\mathcal{A}^{\Gamma} := \begin{cases} \{ (\mathbb{K}, \mathbb{E}_{0}^{\Gamma}) \} \text{ if } \Gamma = \Pi_{1}^{0}, \\ \\ \{ (\mathbb{K}, \mathbb{E}_{n}^{\Gamma}) \mid n \leq 1 \} \text{ if } \Gamma \in \{ \mathbf{\Sigma}_{\xi}^{0} \mid \xi \leq 2 \} \cup \{ \Pi_{\xi}^{0} \mid \xi \geq 2 \}, \\ \\ \{ (\mathbb{K}, \mathbb{E}_{n}^{\Gamma}) \mid n \leq 2 \} \text{ if } \Gamma \in \{ \mathbf{\Sigma}_{\xi}^{0} \mid \xi \geq 3 \}. \end{cases}$$

Theorem

Let $\Gamma \neq \check{\Gamma}$ be a Borel class of rank at most two, \mathbb{K} , \mathbb{C} as above, X be an analytic space, and E be a Borel equivalence relation on X. Exactly one of the following holds:

• the equivalence classes of E are in Γ ,

② there is $(X, E) \in A^{\Gamma}$ such that $(X, E) \sqsubseteq_c (X, E)$. Moreover, A^{Γ} is a ≤_c-antichain (and thus a \sqsubseteq_c and a ≤_c-antichain basis).

Equivalence relations with countably many classes

Conjecture

This holds for any Borel class **Γ**.

(4回) (4回) (4回)

Conjecture

This holds for any Borel class **Γ**.

Theorem

Let $1 \le \xi < \omega_1$, \mathbb{K} , $\mathbb{C} \in \mathbf{\Sigma}_{\xi}^0$ as above, X be an analytic space, and E be a Borel equivalence relation on X with countably many classes. Exactly one of the following holds:

• the equivalence classes of E are Π_{ε}^{0} ,

$$(\mathbb{K}, \mathbb{E}_1^{\Pi_{\xi}^0}) \sqsubseteq_c (X, E).$$

Equivalence relations with countably many classes

• The following is an application of Theorem 2.

白 と く ヨ と く ヨ と …

Equivalence relations with countably many classes

• The following is an application of Theorem 2.

Theorem

Let $1 \le \xi < \omega_1$, \mathbb{K} , $\mathbb{C} \in \mathbf{\Pi}_{\xi}^0$ as above, X be an analytic space, and E be a Borel equivalence relation on X with countably many classes. Exactly one of the following holds:

- the equivalence classes of E are Σ_{ε}^{0} ,
- 2 there is $n \in \{1, 2\}$ such that $(\mathbb{K}, \mathbb{E}_n^{\Sigma_{\xi}^0}) \sqsubseteq_c (X, E)$. Moreover, $\{(\mathbb{K}, \mathbb{E}_n^{\Sigma_{\xi}^0}) \mid 1 \le n \le 2\}$ is a \le_c -antichain.

Complex equivalence relations with simple classes

• The following is an application of Theorem 1.

回 と く ヨ と く ヨ と

Complex equivalence relations with simple classes

- The following is an application of Theorem 1.
- In the next result, we assume that $\mathbb{C} \cap N_s \in \check{\Gamma}(N_s) \setminus \Gamma$ for each $s \in 2^{<\omega}$ if the rank of Γ is at least two (assumption (*)).

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Complex equivalence relations with simple classes

- The following is an application of Theorem 1.
- In the next result, we assume that $\mathbb{C} \cap N_s \in \check{\Gamma}(N_s) \setminus \Gamma$ for each $s \in 2^{<\omega}$ if the rank of Γ is at least two (assumption (*)).

Theorem

Let $\Gamma \neq \check{\Gamma}$ be a Borel class, \mathbb{K}, \mathbb{C} as above satisfying (*), X be an analytic space, and E be a Borel equivalence relation on X whose classes are in Γ . Exactly one of the following holds:

E is in F,

② there is a Borel equivalence relation \mathbb{E} on \mathbb{H} :=2×K such that {((0, \alpha), (1, \alpha)) | \alpha ∈ \mathbb{C}} ⊆ \mathbb{E}, {((0, \alpha), (1, \alpha)) | \alpha ∉ \mathbb{C}} ⊆ \sigma \mathbb{E} and (\mathbb{H}, \mathbb{E}) \sigma_c (X, E).

(4月) イヨト イヨト

< ≣ >

< ∃>

ヨト ヨ

ヨト ヨ

Equivalence relations of rank at most two

• We set

$$\mathcal{B}^{\Gamma} := \mathcal{A}^{\Gamma} \cup \begin{cases} \emptyset \text{ if } \Gamma = \Sigma_{1}^{0}, \\ \{(\mathbb{H}, \mathbb{E}_{3}^{\Gamma})\} \text{ if } \Gamma = \Pi_{1}^{0}, \\ \{(\mathbb{H}, \mathbb{E}_{n}^{\Gamma}) \mid 3 \leq n \leq 5\} \text{ if the rank of } \Gamma \text{ is two.} \end{cases}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Equivalence relations of rank at most two

• We set

$$\mathcal{B}^{\Gamma} := \mathcal{A}^{\Gamma} \cup \begin{cases} \emptyset \text{ if } \Gamma = \Sigma_{1}^{0}, \\ \{(\mathbb{H}, \mathbb{E}_{3}^{\Gamma})\} \text{ if } \Gamma = \Pi_{1}^{0}, \\ \{(\mathbb{H}, \mathbb{E}_{n}^{\Gamma}) \mid 3 \leq n \leq 5\} \text{ if the rank of } \Gamma \text{ is two.} \end{cases}$$

Theorem

Let $\Gamma \neq \check{\Gamma}$ be a Borel class of rank at most two, \mathbb{K} , \mathbb{C} as above, X be an analytic space, and E be a Borel equivalence relation on X. Exactly one of the following holds:

❶ E is in **Γ**,

2 there is
$$(X, E) \in B^{\Gamma}$$
 such that $(X, E) \sqsubseteq_{c} (X, E)$.

Moreover, \mathcal{B}^{Γ} is a \leq_c -antichain.

(4回) キョン キョン

12

< 三→

Equivalence relations with countably many classes

• The following is an application of Theorems 1 and 2.

回 と く ヨ と く ヨ と

Equivalence relations with countably many classes

• The following is an application of Theorems 1 and 2.

Theorem

Let $3 \le \xi < \omega_1$, \mathbb{K} , $\mathbb{C} \in \Sigma_{\xi}^0$ as above satisfying (*), X be an analytic space, and E be a Borel equivalence relation on X with countably many classes. Exactly one of the following holds:

- E is in Π^0_{ξ} ,
- there is (X, E) ∈ {(K, E₁^{n_ℓ}), (H, E₈^{n_ℓ})} such that
 (X, E) ⊆_c (X, E).

Moreover, $\{(\mathbb{K}, \mathbb{E}_1^{\Pi_{\xi}^0}), (\mathbb{H}, \mathbb{E}_8^{\Pi_{\xi}^0})\}$ is a \leq_c -antichain.

向下 イヨト イヨト

Countable equivalence relations

• The following is an application of Theorems 1 and 3.

白 と く ヨ と く ヨ と

Countable equivalence relations

• The following is an application of Theorems 1 and 3.

Theorem

Let $\Gamma \neq \check{\Gamma}$ be a Borel class of rank at least three, \mathbb{C} as above satisfying (*), X be an analytic space, and E be a Borel equivalence relation on X with F_{σ} classes. Exactly one of the following holds:

- Ⅰ E is in Γ,
- $(\mathbb{H}, \mathbb{E}_3^{\Gamma}) \sqsubseteq_c (X, E).$

向下 イヨト イヨト

Countable equivalence relations

• The following is an application of Theorems 1 and 3.

Theorem

Let $\Gamma \neq \check{\Gamma}$ be a Borel class of rank at least three, \mathbb{C} as above satisfying (*), X be an analytic space, and E be a Borel equivalence relation on X with F_{σ} classes. Exactly one of the following holds:

- E is in Γ,
- $(\mathbb{H}, \mathbb{E}_3^{\Gamma}) \sqsubseteq_c (X, E).$
- First levels: replace $\{(\mathbb{H}, \mathbb{E}_3^{\Gamma})\}$ with

 $\begin{cases} \{(\mathbb{K}, \mathbb{E}_0^{\Gamma}), (\mathbb{K}, \mathbb{E}_1^{\Gamma})\} \text{ if } \Gamma = \mathbf{\Sigma}_1^0, \\ \{(\mathbb{K}, \mathbb{E}_0^{\Gamma}), (\mathbb{H}, \mathbb{E}_3^{\Gamma})\} \text{ if } \Gamma \in \{\mathbf{\Pi}_1^0, \mathbf{\Pi}_2^0\}, \\ \{(\mathbb{H}, \mathbb{E}_n^{\Gamma}) \mid 3 \le n \le 5\} \text{ if } \Gamma = \mathbf{\Sigma}_2^0. \end{cases}$

12

ヨト ヨ

3

● ▶ ● ●

< ≣ >

< ∃→

< ≣⇒

< ≣⇒

A general conjecture

• We set $\mathcal{B}^{\Gamma} := \mathcal{A}^{\Gamma} \cup \{ (\mathbb{H}, \mathbb{E}_{n}^{\Gamma}) \mid 3 \leq n \leq 8 \}$ if the rank of Γ is at least three.

・回 ・ ・ ヨ ・ ・ ヨ ・

A general conjecture

• We set $\mathcal{B}^{\Gamma} := \mathcal{A}^{\Gamma} \cup \{ (\mathbb{H}, \mathbb{E}_{n}^{\Gamma}) \mid 3 \leq n \leq 8 \}$ if the rank of Γ is at least three.

Theorem

Let $\mathbf{\Gamma} \neq \check{\mathbf{\Gamma}}$ be a Borel class, and \mathbb{K}, \mathbb{C} as above satisfying (*). Then $\mathcal{B}^{\mathbf{\Gamma}}$ is a \leq_{c} -antichain made of non- $\mathbf{\Gamma}$ Borel equivalence relations.

A general conjecture

• We set $\mathcal{B}^{\Gamma} := \mathcal{A}^{\Gamma} \cup \{ (\mathbb{H}, \mathbb{E}_{n}^{\Gamma}) \mid 3 \leq n \leq 8 \}$ if the rank of Γ is at least three.

Theorem

Let $\Gamma \neq \check{\Gamma}$ be a Borel class, and \mathbb{K}, \mathbb{C} as above satisfying (*). Then \mathcal{B}^{Γ} is a \leq_{c} -antichain made of non- Γ Borel equivalence relations.

Conjecture

Let $\mathbf{\Gamma} \neq \check{\mathbf{\Gamma}}$ be a Borel class of rank at least three, \mathbb{K}, \mathbb{C} as above satisfying (*), X be an analytic space, and E be a Borel equivalence relation on X. One of the following holds:

- E is in F,
- **2** there is $(\mathbb{X}, \mathbb{E}) \in \mathcal{B}^{\Gamma}$ such that $(\mathbb{X}, \mathbb{E}) \sqsubseteq_{c} (X, E)$.

- - 4 回 ト - 4 回 ト