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Theorem (Lusin-Suslin)

Let X be a Polish space, and B be a Borel subset of X. Then we
can find a closed set C Cw* and f:C— B bijective continuous.
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Theorem (Lusin-Suslin)

Let X be a Polish space, and B be a Borel subset of X. Then we
can find a closed set C Cw* and f:C— B bijective continuous.

e Kuratowski: level by level version.
e The representation theorem of Borel sets refines this.

e It provides a good subsequence of any a€2¥, viewed as the
sequence (a|l)jew of its initial segments. It can help to prove the

Theorem (Hurewicz)
Let C:={a€2¥ | 3*°new «(n)=1}, X be a Polish space, and B
be a Borel subset of X. Exactly one of the following holds:
Q Bisin X3,
@ we can find f:2* — X injective continuous such that
C=f"Y(B).
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The representation theorem

Definition (Debs-Saint Raymond)

e A partial order relation R on 2<% is a tree relation if, for
sE2<Y,

QO 0Rs,

Q the set Pr(s):={t€2<¥ | t R s} is finite and linearly ordered
by R.
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The representation theorem

Definition (Debs-Saint Raymond)

e A partial order relation R on 2<% is a tree relation if, for
sE2<Y,

Q 0Rs,
Q the set Pr(s):={t€2<¥ | t R s} is finite and linearly ordered
by R.
e hg(s):=Card(Pg(s))—1.
o Let R be a tree relation. A R-branch is a C-maximal subset of
2<% linearly ordered by R.

e [R] is the set of all infinite R-branches.
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The representation theorem (continued)

Definition (Debs-Saint Raymond)

e (2<¥)“: product of the discrete topology on 2<%.
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Definition (Debs-Saint Raymond)

e (2<¥)“: product of the discrete topology on 2<%.
e Let R be a tree relation. [R]C(2<¥)“: induced topology, Polish.
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Definition (Debs-Saint Raymond)

e (2<¥)“: product of the discrete topology on 2<%.
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e Basic clopen sets: NF:={y€[R] | v(hr(s))=s}, s€2<v.
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Definition (Debs-Saint Raymond)

e (2<¥)“: product of the discrete topology on 2<%.
e Let R be a tree relation. [R]C(2<¥)“: induced topology, Polish.
e Basic clopen sets: NF:={y€[R] | v(hr(s))=s}, s€2<v.
e Let R, S be tree relations with RCS. The canonical map
M:[R]—[S] is defined by

M(v):= the unique S-branch containing ~.

It is continuous.
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The representation theorem (continued)

Definition (Debs-Saint Raymond)

e (2<¥)“: product of the discrete topology on 2<%.

e Let R be a tree relation. [R]C(2<¥)“: induced topology, Polish.
e Basic clopen sets: NF:={y€[R] | v(hr(s))=s}, s€2<v.

e Let R, S be tree relations with RCS. The canonical map
M:[R]—[S] is defined by

M(v):= the unique S-branch containing ~.

It is continuous.

e Let S be a tree relation. We say that RCS is distinguished in
Sif
sStSu
Vs, t,uc2<¥ = s Rt
sRu
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The representation theorem (continued)

Definition (Debs-Saint Raymond)

o Let n<wi. A family (R?),<y of tree relations is a resolution
family if

@ Rr*l is a distinguished subtree of R, for each p <.

Q R’\:ﬂp<)\ RP, for each limit ordinal A\<n).
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The representation theorem (continued)

Definition (Debs-Saint Raymond)

o Let n<wi. A family (R?),<y of tree relations is a resolution
family if

@ Rr*l is a distinguished subtree of R, for each p <.
Q R’\:ﬂp<)\ R?, for each limit ordinal A<n).

Theorem (Debs-Saint Raymond)

Let n<wy, and PN ([C]). Then there is a resolution family
(R?)p<y such that

9 R°=C,
@ the canonical map M:[R"]—[R°] is a continuous bijection

with X9 | -measurable inverse,
© the set M~Y(P) is a closed subset of [R"].
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First applications

e Original applications: continuous liftings, compact covering
maps, a new proof of the Louveau-Saint Raymond theorem (with
games).
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The Louveau-Saint Raymond theorem

e I': Borel class, [':={-B | Bel}.
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The Louveau-Saint Raymond theorem

e I': Borel class, [':={-B | Bel}.
o K:=2%if rk(lN>2, {0} U {27k | k e w}CR if rk(F)=1.
o Ccl(K)\T.
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The Louveau-Saint Raymond theorem

o I': Borel class, [:={-B| Berl}.

o K:=2%if rk(lN>2, {0} U {27k | k e w}CR if rk(F)=1.
o Ccl(K)\T.

{a€2¥ | 3®ncw a(n)=1}if F=X9,

{a€2¥ | V*®new a(n)=0}if r=nN,

{0} if r=x9,

K\ {0} if r=ny.

o C:=
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The Louveau-Saint Raymond theorem

o I': Borel class, [:={-B| Berl}.

o K:=2%if rk(lN>2, {0} U {27k | k e w}CR if rk(F)=1.
o Ccl(K)\T.

{a€2¥ | 3®ncw a(n)=1}if F=X9,

{a€2¥ | V*®new a(n)=0}if r=nN,

{0} if r=x9,

K\ {0} if r=ny.

o C:=

Theorem (Louveau-Saint Raymond)

Let F;élv' be a Borel class, K, C as above, X be a Polish space,
and A, B be disjoint analytic subsets of X. Exactly one of the
following holds:

© A is separable from B by a I set,

@ we can find f:K— X injective continuous such that
CCfY(A) and -CCf~1(B).
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Extensions of the Louveau-Saint Raymond theorem

Let T[T be a Borel class, K, C as above, X be an analytic space,
and A, B be disjoint analytic relations on X, A having sections in
. Exactly one of the following holds:

© A is separable from B by a T set,

@ we can find f:K— X? continuous with injective coordinates
such that CC f~1(A) and -CC f~1(B).

Dominique Lecomte Borel complexity of equivalence relations



Extensions of the Louveau-Saint Raymond theorem

Theorem 1

Let T[T be a Borel class, K, C as above, X be an analytic space,
and A, B be disjoint analytic relations on X, A having sections in
. Exactly one of the following holds:

© A is separable from B by a T set,

@ we can find f:K— X? continuous with injective coordinates
such that CC f~1(A) and -CC f~1(B).

o Let 2<n<wy, and (CEI'IE;H([Q]). The representation theorem
gives (R?),<y, such that M~1(C) is a closed subset of [R"]. We can
find ICw and (s,)ner such that =M~1(C) is the disjoint union of
the NE"'s. We set C,:=M[NE"], so that (Cp)per is a partition of
—C into Agﬂ sets.
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Extensions of the Louveau-Saint Raymond theorem

Theorem 2

Let 2<n<w;, Ce l'lgﬂ([g]), X be an analytic space, A be an
analytic subset of X, and (Dp)new be a sequence of pairwise
disjoint analytic subsets of X such that A is both disjoint from
Unew Dn and separable from any of the D,’s by a Z%H set. One

of the following holds:
Q A is separable from |J,,c,, Dn by a 22 41 Set,

@ we can find ¢:1—w injective and f:[C]— X injective
continuous such that CC f~(A) and C,Cf~(Dy(pn) for
each nell.

If moreover C ¢ Zg_ﬂ, then this is a dichotomy.
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Extensions of the Louveau-Saint Raymond theorem

Theorem 2

Let 2<n<w;, Ce l'lgﬂ([g]), X be an analytic space, A be an
analytic subset of X, and (Dp)new be a sequence of pairwise
disjoint analytic subsets of X such that A is both disjoint from
Unew Dn and separable from any of the D,’s by a Z%H set. One
of the following holds:

Q A is separable from |J,,c,, Dn by a 22 41 Set,

@ we can find ¢:1—w injective and f:[C]— X injective
continuous such that CC f~(A) and C,Cf~(Dy(pn) for
each nell.

If moreover C ¢ Zg_ﬂ, then this is a dichotomy.

e There are versions of this for <1 and limit ordinals.
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Another application of the representation theorem

Theorem 3

Let T[T be a Borel class of rank 3§£<w1CK, CeAlnr(),
and R be a A% relation on 2* with F, vertical sections. We assume
that there is a X1 subset V' of 2* disjoint from Al N 2% such that
R N V2 is GH ?-meager in VV?, and V N C is not separable from
V\C by a set in T. Then there is f :2“ —2% injective continuous
such that C=f"1(C) and (f(c), f(8)) ¢ R if a#p.
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Another application of the representation theorem

Theorem 3

Let T £F be a Borel class of rank 3<¢ <wCK, Ce Al nE(2),
and R be a A% relation on 2“ with F, vertical sections. We assume
that there is a X1 subset V/ of 2* disjoint from Al N 2% such that
R N V2 is GH ?-meager in VV?, and V N C is not separable from
V\C by a set in T. Then there is f :2“ — 2% injective continuous
such that C=f"1(C) and (f(c), f(8)) ¢ R if a#p.

Let T [ be a Borel class of rank at least three, C in [ (2“)\T, and
R be a Borel relation on 2* with countable vertical sections. Then
we can find f:2% —2% injective continuous such that C=f *(C)

and (f(), F(B8)) ¢ R if a 5.
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Another application of the representation theorem

Theorem 3

Let T £F be a Borel class of rank 3<¢ <wCK, Ce Al nE(2),
and R be a A% relation on 2“ with F, vertical sections. We assume
that there is a X1 subset V/ of 2* disjoint from Al N 2% such that
R N V2 is GH ?-meager in VV?, and V N C is not separable from
V\C by a set in T. Then there is f :2“ — 2% injective continuous
such that C=f"1(C) and (f(c), f(8)) ¢ R if a#p.

Let T [ be a Borel class of rank at least three, C in [ (2“)\T, and
R be a Borel relation on 2* with countable vertical sections. Then
we can find f:2% —2% injective continuous such that C=f *(C)

and (f(), F(B8)) ¢ R if a 5.

e This cannot be extended to lower levels.
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Borel equivalence relations

o If ECX? FCY?, then (X,E)C. (Y,F) means that there is
f:X —Y injective continuous with (f(x),f(x")) € F iff (x,x") € E.
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o (X,E)C. (Y,F)and FeT imply that E€T.
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f:X —Y injective continuous with (f(x),f(x")) € F iff (x,x") € E.
o (X,E)C. (Y,F)and FeT imply that E€T.

© When is a Borel equivalence relation Zg (or I'Ig )?

@ When are the classes of a Borel equivalence relation Zg (or
ng)?
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Borel equivalence relations

o If ECX? FCY?, then (X,E)C. (Y,F) means that there is
f:X —Y injective continuous with (f(x),f(x")) € F iff (x,x") € E.
o (X,E)C. (Y,F)and FeT imply that E€T.

© When is a Borel equivalence relation Zg (or I'Ig )?

@ When are the classes of a Borel equivalence relation Zg (or
ng)?

e We define equivalence relations on K by

xEfy < (x,y€C) V (x=y),

xEly & (x,y€C) V (x,y ¢C),

30
xE,°y & (x,y€C)V (Inc€w x,y€Cp).
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Some examples
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The first two ranks

o We set
{(K,ED)} if r=nY,

ATi=¢ {(KEL) [ n<1}if Fe{E2 | £<2}u{n?|¢>2},

{(K,E}) | n<2} if Fe{x? | £>3}.
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The first two ranks

o We set
{(K,Ef)} if r=ng,

ATi=¢ {(KEL) [ n<1}if Fe{E2 | £<2}u{n?|¢>2},
{(K,E}) | n<2} if Fe{E]|£>3).

Theorem

Let T[T be a Borel class of rank at most two, K, C as above, X
be an analytic space, and E be a Borel equivalence relation on X.
Exactly one of the following holds:

@ the equivalence classes of E are in T,
Q there is (X,E) € A" such that (X,E) C. (X, E).

Moreover, A" is a < -antichain (and thus a C. and a
<c-antichain basis).
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Equivalence relations with countably many classes

This holds for any Borel class .
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Equivalence relations with countably many classes

This holds for any Borel class .

Theorem

Let 1<£<wy, K, CGZ? as above, X be an analytic space, and E
be a Borel equivalence relation on X with countably many classes.
Exactly one of the following holds:

@ the equivalence classes of E are MY,

nO
Q (K,E;*)Cc (X, E).
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Equivalence relations with countably many classes

e The following is an application of Theorem 2.
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Equivalence relations with countably many classes

e The following is an application of Theorem 2.

Theorem

Let 1<é<w, K, Ce I'Ig as above, X be an analytic space, and E
be a Borel equivalence relation on X with countably many classes.
Exactly one of the following holds:

@ the equivalence classes of E are >0,
ZO
Q there is n€ {1,2} such that (K, E,*) C. (X, E).

30
Moreover, {(K,E,*) | L<n<2} is a <.-antichain.
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Complex equivalence relations with simple classes

e The following is an application of Theorem 1.
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Complex equivalence relations with simple classes

e The following is an application of Theorem 1.

e In the next result, we assume that C N Ny € ['(Ns)\T for each
s€2< if the rank of T is at least two (assumption (*)).
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Complex equivalence relations with simple classes

e The following is an application of Theorem 1.

e In the next result, we assume that C N Ny € ['(Ns)\T for each
s€2<¥ if the rank of T is at least two (assumption (*)).

Theorem

Let T#T be a Borel class, K, C as above satisfying (*), X be an
analytic space, and E be a Borel equivalence relation on X whose
classes are in T'. Exactly one of the following holds:

Q@ EisinT,

@ there is a Borel equivalence relation & on H:=2xK such that

{((0,0),(1,0)) | a€C} CE, {((0,a),(1,0)) | a¢C} CE
and (H,E) C. (X, E).
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Some other examples

-C
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Some other examples
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Some other examples
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Equivalence relations of rank at most two

o We set

0if r=x9,
BT =A"U{ {(H,E)} if r=n9,

{(H, El) | 3<n<5} if the rank of T is two.
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Equivalence relations of rank at most two

o We set

0if r=x9,
BT =A"U{ {(H,E)} if r=n9,

{(H, El) | 3<n<5} if the rank of T is two.

Theorem

Let F;élv' be a Borel class of rank at most two, K, C as above, X
be an analytic space, and E be a Borel equivalence relation on X.
Exactly one of the following holds:

Q@ EisinTl,
Q there is (X,E)€B" such that (X,E) C. (X, E).
Moreover, BT is a <.-antichain.
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Some other example
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Equivalence relations with countably many classes

e The following is an application of Theorems 1 and 2.
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Equivalence relations with countably many classes

e The following is an application of Theorems 1 and 2.

Theorem

Let 3<&<wy, K,Ce Zg as above satisfying (*), X be an analytic
space, and E be a Borel equivalence relation on X with countably
many classes. Exactly one of the following holds:

Q@ Eisin I‘Ig,

0 0
Q there is (X,E) € {(K,E;¢), (H,Eqg¢)} such that
(X’E) EC (Xv E)

n? n?
Moreover, {(K,E; ), (H,Eg*)} is a <c-antichain.
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Countable equivalence relations

e The following is an application of Theorems 1 and 3.
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Countable equivalence relations

e The following is an application of Theorems 1 and 3.

Theorem

Let T £ be a Borel class of rank at least three, C as above
satisfying (*), X be an analytic space, and E be a Borel
equivalence relation on X with F, classes. Exactly one of the
following holds:

Q@ EisinTl,

@ (ILEf) Cc (X, E).
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Countable equivalence relations

e The following is an application of Theorems 1 and 3.

Theorem

Let T £ be a Borel class of rank at least three, C as above
satisfying (*), X be an analytic space, and E be a Borel
equivalence relation on X with F, classes. Exactly one of the
following holds:

Q@ EisinTl,

Q (H,E}) C. (X, E).

e First levels: replace {(H,EL)} with
{(K,Ep), (K,Ef)} if F=X%2,

{(K,Ep), (H,EL)} if Fe{ng, N3},

{(H,El) | 3<n<5}if r=x9.
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Some other examples
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Some other examples
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Some other examples

-C
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Some other examples
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Some other examples
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A general conjecture

e We set B":=A" U {(H,El) | 3<n<8} if the rank of T is at
least three.
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A general conjecture

e We set B":=A" U {(H,El) | 3<n<8} if the rank of T is at
least three.

Let T#T be a Borel class, and K, C as above satisfying (*). Then
B" is a <.-antichain made of non-I' Borel equivalence relations.
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A general conjecture

e We set B":=A" U {(H,El) | 3<n<8} if the rank of T is at
least three.

Theorem

Let T#T be a Borel class, and K, C as above satisfying (*). Then
B" is a <.-antichain made of non-I' Borel equivalence relations.

| 5\

Conjecture

Let T be a Borel class of rank at least three, K,C as above
satisfying (*), X be an analytic space, and E be a Borel
equivalence relation on X. One of the following holds:

@ EisinT,

Q there is (X,E)€B" such that (X,E) C. (X, E).
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