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The Suslin problem

For the rest of the talk, κ will denote a regular uncountable
cardinal.

Definition

A κ-tree T is a κ-Suslin tree if it has no chain or antichain of
size κ.

Recall that if a κ-tree T is normal, then T is Suslin iff it has no
antichain of size κ.

Definition

The κ-Suslin hypothesis is the statement that there does not
exist a κ-Suslin tree.
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The ω1-Suslin hypothesis

Theorem (Solovay-Tennenbaum)

The ω1-Suslin hypothesis is consistent relative to ZFC.

Roughly speaking, this theorem follows from:

Given an ω1-Suslin tree, there is an ω1-c.c. forcing poset
for making it non-Suslin.
Any finite support iteration of ω1-c.c. forcings is ω1-c.c.

The ω1-Suslin hypothesis follows from Martin’s axiom.
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Aronszajn trees

Definition

A κ-tree T is a κ-Aronszajn tree if it has no chain of size κ (that
is, no cofinal branch).

Definition

For an infinite cardinal µ, a µ+-tree T is special if there is a
function f : T → µ such that x <T y implies f (x) 6= f (y).

Any special µ+-tree is Aronszajn but not Suslin.
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Club isomorphisms

Given a κ-tree T and A ⊆ κ, let T � A := {x ∈ T : htT (x) ∈ A}.

Definition

Let T and U be κ-trees. We say that T and U are club
isomorphic if there exists a club C ⊆ κ such that the trees
T � C and U � C are isomorphic.

For κ = µ+, a κ-Suslin tree cannot be club isomorphic to a
special κ-tree.
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The Abraham-Shelah property

Theorem (Abraham-Shelah)

The statement that any two normal ω1-Aronszajn trees are club
isomorphic is consistent relative to ZFC.

The Abraham-Shelah property implies the ω1-Suslin
hypothesis, because from ZFC there exists a special ω1-tree.

Roughly speaking, this theorem follows from:
Given two normal ω1-Aronszajn trees, there exists a proper
forcing of size ω1 which makes them club isomorphic;
(CH) Any countable support iteration of length ω2 of proper
forcings which have size ω1 is proper and ω2-c.c.

The Abraham-Shelah property also follows from PFA, but not
from Martin’s axiom.
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The ω2-Suslin hypothesis

Theorem (Laver-Shelah)

The ω2-Suslin hypothesis together with CH is consistent relative
to the existence of a weakly compact cardinal.

Note that in a model with the tree property on ω2, there are no
ω2-Aronszajn trees, and hence no ω2-Suslin trees.

A more natural generalization of Suslin’s hypothesis to ω2 is the
existence of a special ω2-Aronszajn tree together with the
nonexistence of an ω2-Suslin tree, since that replicates the
situation on ω1.

Since CH implies the existence of a special ω2-tree, it provides
a natural context to study the Suslin hypothesis on ω2.
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The Laver-Shelah construction

The idea of Laver-Shelah: Levy-collapse a weakly compact
cardinal to become ω2, and then iterate adding antichains of
size ω2 to ω2-Suslin trees.

Two major difficulties to overcome which were comparatively
easy in the case of ω1:

How to add an antichain of size ω2 to an ω2-Suslin tree with
an ω2-c.c. forcing?
How to preserve ω2 while iterating countably closed ω2-c.c.
forcings?

The weak compactness of κ together with some technical
iterated forcing arguments are used to resolve these issues.

John Krueger Club isomorphisms on higher Aronszajn trees



The Suslin hypothesis and the Abraham-Shelah property
Generalizing the Abraham-Shelah property

Overview of proof

Outline

1 The Suslin hypothesis and the Abraham-Shelah property

2 Generalizing the Abraham-Shelah property

3 Overview of proof

John Krueger Club isomorphisms on higher Aronszajn trees



The Suslin hypothesis and the Abraham-Shelah property
Generalizing the Abraham-Shelah property

Overview of proof

Question

These results suggest a natural question:

Question

Is it consistent with CH that any two normal ω2-Aronszajn trees
are club isomorphic?
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Closure of levels provides an obstacle

Given a tree T and δ < ht(T ), we say that T is closed at level δ
if every cofinal branch of T � δ has an upper bound in T .

Under CH, there exists a normal ω2-Aronszajn tree T1
which is closed at levels of cofinality ω.
Under CH, there exists a normal ω2-Aronszajn tree T2
which is not closed at any level.
Club isomorphisms between ω2-trees preserve the
property of whether a level is closed or not, so T1 and T2
are not club isomorphic.
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Revised question

This obstruction leads to a natural revision of the question.

A tree is countably closed if it is closed at every level of
cofinality ω.

Question

Is it consistent with CH that any two countably closed normal
ω2-Aronszajn trees are club isomorphic?
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Answer

Theorem (K. 2017)

It is consistent that any two countably closed normal
ω2-Aronszajn trees are club isomorphic relative to the existence
of an ineffable cardinal.
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The ω2-Suslin hypothesis

Proposition

(CH) The statement that any two countably closed normal
ω2-Aronszajn trees are club isomorphic implies the ω2-Suslin
hypothesis.

Assuming CH, if S is a normal ω2-Suslin tree, it is possible to
build a countably closed normal ω2-Aronszajn tree U which
contains S as a subtree, preserving heights of nodes.

CH implies the existence of a countably closed normal special
ω2-tree W . A club isomorphism between U and W would imply
that for some club C, S � C is special, which is impossible.
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Property of Baumgartner-Malitz-Reinhart

Consider the two facts:

There exists an ω1-c.c. forcing for killing an ω1-Suslin tree;
There exists a proper forcing which adds a club
isomorphism between two normal ω1-Aronszajn trees.

Both of these facts can be proven based on a well-known result
of Baumgartner-Malitz-Reinhart.

Theorem

If {ai : i < ω1} is a family of pairwise disjoint finite subsets of an
ω1-Aronszajn tree T , then there are i < j such that every node
in ai is incomparable in T with every node in aj .
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Generalization of Baumgartner-Malitz-Reinhart

Generalizing to ω2 under CH:
Does there exist a countably closed ω2-c.c. forcing for
killing an ω2-Suslin tree?
Does there exist a countably closed forcing for adding a
club isomorphism between two countably closed normal
ω2-Aronszajn trees which is proper for stationarily many
models of size ω1?

The answer is yes in the model constructed by Laver-Shelah,
which satisfies:

Property

(CH) If {ai : i < ω2} is a family of pairwise disjoint countable
subsets of an ω2-Aronszajn tree T , then there are i < j such
that every node in ai is incomparable in T with every node in aj .
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A forcing poset for adding a club isomorphism

Consider T and U which are countably closed normal
ω2-Aronszajn trees. Define a countably closed forcing poset
P(T ,U) for adding a club isomorphism from T to U.

Conditions in P(T ,U) are pairs (A, f ) satisfying:
A ⊆ ω2 ∩ cof(ω1) is countable;
f is an isomorphism between countable downwards closed
normal subtrees of T � A and U � A.

Let (B,g) ≤ (A, f ) if A ⊆ B and f ⊆ g.

Assume the property described in the previous slide holds.
Suppose that (A, f ) ∈ P(T ,U), N is an elementary substructure
of size ω1, Nω ⊆ N, and N ∩ ω2 ∈ A. Then (A, f ) is
(N,P(T ,U))-generic.
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Iterating the forcings

There is no known general iteration theorem for iterating
countably closed ω2-c.c. forcings while preserving ω2 which is
applicable to the Laver-Shelah forcing iteration.

The Laver-Shelah proof involves a technical argument to show
that the specific iteration under consideration is ω2-c.c.

To establish the consistency of the Abraham-Shelah property
on ω2, we adapt the Laver-Shelah construction to prove that a
specific countable support iteration of countably closed forcings
which are ω2-proper is ω2-proper (on a stationary set of
models).

John Krueger Club isomorphisms on higher Aronszajn trees



The Suslin hypothesis and the Abraham-Shelah property
Generalizing the Abraham-Shelah property

Overview of proof

Ineffability

Instead of working with a weakly compact cardinal as in the
Laver-Shelah proof, we use an ineffable cardinal κ.

Let J be the ineffability ideal on κ. Then:

Lemma

Let 〈Ni : i < κ〉 be a ⊆-increasing continuous sequence of
elementary substructure of size less than κ. Let 〈xi : i ∈ S〉 be
such that S ∈ J+ and each xi ⊆ Ni . Then there is a set
X ⊆

⋃
i Ni and a stationary set U ⊆ S such that for all i ∈ U,

X ∩ Ni = xi .
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The forcing iteration

Let Pα denote our forcing iteration up to α. Conditions in Pα are
of the form

p = (a,X ),

satisfying:
a is a countable function with dom(a) ⊆ α so that for all
γ ∈ dom(a), a(γ) is a Pγ-name for a condition in the poset
for adding a club isomorphism between two countably
closed normal ω2-Aronszajn trees Ṫα and U̇α;
X is a countable function with dom(X ) ⊆ α + 1 so that for
each β ∈ dom(X ), X (β) is a countable subset of

{M ∈ Pκ(β) : cf(M ∩ κ) > ω},

and if M ∈ X (β) and γ ∈ M ∩ dom(a), then M ∩ κ appears
in the condition a(γ).
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(N,Pα)-generic conditions

Consider an elementary substructure N of size less than κ for
which we would like to prove the existence of (N,Pα)-generic
conditions.

Define a condition p(N, α) to be equal to (∅,X ), where
dom(X ) = {α} and X (α) = {N ∩ α}.

Then whenever (b,Y ) ≤ p(N, α), then for all
γ ∈ N ∩ α ∩ dom(b), N ∩ κ appears in b(γ).

Also, for all p ∈ N ∩ Pα, p and p(N, α) are compatible.
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κ-proper for stationarily many N

Proposition

Let 〈Ni : i ∈ S〉 be a ⊆-increasing and continuous sequence of
elementary substructures of size less than κ, where S ∈ J+.
Then there is C ∈ J∗ such that for all i ∈ S ∩ C, p(Ni , α) is
(Ni ,Pα)-generic.

It follows that there are stationarily many N such that p(N, α) is
(N,Pα)-generic. For example, consider a model N which
satisfies that for all D ∈ N ∩ J∗, N ∩ κ ∈ D. Build a sequence as
above inside N, with C as above. Then N = NκN (so to speak),
and N ∩ κ ∈ C implies that p(N, α) is (N,Pα)-generic.
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Intermediate extensions

The Laver-Shelah method for proving the κ-c.c. depended on
being able to factor the iteration over a model of size less than
κ (where κ is the weakly compact cardinal collapsed to become
ω2).

If P is the Laver-Shelah iteration, then P is κ-c.c. By the weak
compactness of κ, using Π1

1-reflection there exist models N
such that N ∩ κ = λ is inaccessible, N<λ ⊆ N, and N ∩ P is
λ-c.c.

It easily follows that N ∩ P is a regular suborder of P. Thus, if G
is a generic filter for P then V [N ∩G] is an intermediate
extension of V [G].
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Strongly generic conditions

To adapt the Laver-Shelah method to the κ-proper context, we
need to convert the (N,Pα)-genericity of the condition p(N, α)
to strong (N,Pα)-genericity. By work of Mitchell, if a generic
filter G contains a strongly (N,Pα)-generic condition, then
V [N ∩G] is an intermediate extension of V [G].

Proposition

Let 〈Ni : i ∈ S〉 be ⊆-increasing and continuous, where S ∈ J+,
such that for all i ∈ S, p(Ni , α) is (Ni ,Pα)-generic. Then there is
C ∈ J∗ such that for all i ∈ S ∩ C, p(Ni , α) is strongly
(Ni ,Pα)-generic.
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Strongly generic conditions

If not, then for a J-positive set of i ∈ S, there is a dense set
Di ⊆ Ni ∩ Pα such that Di is not predense below p(Ni , α).

By ineffability, there is D ⊆
⋃

i Ni and a stationary set U ⊆ S
such that for all i ∈ U, Di = D ∩ Ni . Easily D is a dense subset
of Pα.

Consider the sequence 〈Mi : i ∈ U〉 where Mi = Sk(Ni ∪ {D}).
Then there are club many i such that p(Ni , α) = p(Mi , α) and
Ni ∩ Pα = Mi ∩ Pα. Now p(Mi , α) will be (Mi ,Pα)-generic, and
D ∈ Mi , so D ∩Mi = D ∩ Ni = Di is predense below
p(Mi , α) = p(Ni , α), which is a contradiction.
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