Club isomorphisms on higher Aronszajn trees

John Krueger

Department of Mathematics University of North Texas

CIRM 2017

John Krueger Club isomorphisms on higher Aronszajn trees

イロト イポト イヨト イヨト

Outline

1 The Suslin hypothesis and the Abraham-Shelah property

2 Generalizing the Abraham-Shelah property

3 Overview of proof

John Krueger Club isomorphisms on higher Aronszajn trees

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

1 The Suslin hypothesis and the Abraham-Shelah property

2 Generalizing the Abraham-Shelah property

3 Overview of proof

John Krueger Club isomorphisms on higher Aronszajn trees

ヘロト 人間 ト ヘヨト ヘヨト

The Suslin problem

For the rest of the talk, κ will denote a regular uncountable cardinal.

Definition

A κ -tree T is a κ -Suslin tree if it has no chain or antichain of size κ .

Recall that if a κ -tree *T* is normal, then *T* is Suslin iff it has no antichain of size κ .

Definition

The κ -Suslin hypothesis is the statement that there does not exist a κ -Suslin tree.

- E - F

The ω_1 -Suslin hypothesis

Theorem (Solovay-Tennenbaum)

The ω_1 -Suslin hypothesis is consistent relative to ZFC.

Roughly speaking, this theorem follows from:

- Given an ω_1 -Suslin tree, there is an ω_1 -c.c. forcing poset for making it non-Suslin.
- Any finite support iteration of ω_1 -c.c. forcings is ω_1 -c.c.

The ω_1 -Suslin hypothesis follows from Martin's axiom.

ヘロト ヘアト ヘビト ヘビト

Aronszajn trees

Definition

A κ -tree *T* is a κ -*Aronszajn tree* if it has no chain of size κ (that is, no cofinal branch).

Definition

For an infinite cardinal μ , a μ^+ -tree *T* is *special* if there is a function $f : T \to \mu$ such that $x <_T y$ implies $f(x) \neq f(y)$.

Any special μ^+ -tree is Aronszajn but not Suslin.

ヘロト ヘアト ヘビト ヘビト

Club isomorphisms

Given a κ -tree T and $A \subseteq \kappa$, let $T \upharpoonright A := \{x \in T : ht_T(x) \in A\}$.

Definition

Let *T* and *U* be κ -trees. We say that *T* and *U* are *club isomorphic* if there exists a club $C \subseteq \kappa$ such that the trees $T \upharpoonright C$ and $U \upharpoonright C$ are isomorphic.

For $\kappa = \mu^+$, a κ -Suslin tree cannot be club isomorphic to a special κ -tree.

イロト イポト イヨト イヨト

The Abraham-Shelah property

Theorem (Abraham-Shelah)

The statement that any two normal ω_1 -Aronszajn trees are club isomorphic is consistent relative to ZFC.

The Abraham-Shelah property implies the ω_1 -Suslin hypothesis, because from ZFC there exists a special ω_1 -tree.

Roughly speaking, this theorem follows from:

- Given two normal ω₁-Aronszajn trees, there exists a proper forcing of size ω₁ which makes them club isomorphic;
- (CH) Any countable support iteration of length ω_2 of proper forcings which have size ω_1 is proper and ω_2 -c.c.

The Abraham-Shelah property also follows from PFA, but not from Martin's axiom.

The ω_2 -Suslin hypothesis

Theorem (Laver-Shelah)

The ω_2 -Suslin hypothesis together with CH is consistent relative to the existence of a weakly compact cardinal.

Note that in a model with the tree property on ω_2 , there are no ω_2 -Aronszajn trees, and hence no ω_2 -Suslin trees.

A more natural generalization of Suslin's hypothesis to ω_2 is the existence of a special ω_2 -Aronszajn tree together with the nonexistence of an ω_2 -Suslin tree, since that replicates the situation on ω_1 .

Since CH implies the existence of a special ω_2 -tree, it provides a natural context to study the Suslin hypothesis on ω_2 .

The Laver-Shelah construction

The idea of Laver-Shelah: Levy-collapse a weakly compact cardinal to become ω_2 , and then iterate adding antichains of size ω_2 to ω_2 -Suslin trees.

Two major difficulties to overcome which were comparatively easy in the case of ω_1 :

- How to add an antichain of size ω_2 to an ω_2 -Suslin tree with an ω_2 -c.c. forcing?
- How to preserve ω_2 while iterating countably closed ω_2 -c.c. forcings?

The weak compactness of κ together with some technical iterated forcing arguments are used to resolve these issues.

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

1 The Suslin hypothesis and the Abraham-Shelah property

2 Generalizing the Abraham-Shelah property

3 Overview of proof

John Krueger Club isomorphisms on higher Aronszajn trees

ヘロト 人間 ト ヘヨト ヘヨト

These results suggest a natural question:

Question

Is it consistent with CH that any two normal ω_2 -Aronszajn trees are club isomorphic?

ヘロト 人間 ト ヘヨト ヘヨト

æ

Closure of levels provides an obstacle

Given a tree *T* and $\delta < ht(T)$, we say that *T* is *closed at level* δ if every cofinal branch of $T \upharpoonright \delta$ has an upper bound in *T*.

- Under CH, there exists a normal ω₂-Aronszajn tree T₁ which is closed at levels of cofinality ω.
- Under CH, there exists a normal ω₂-Aronszajn tree T₂ which is not closed at any level.
- Club isomorphisms between ω₂-trees preserve the property of whether a level is closed or not, so T₁ and T₂ are not club isomorphic.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Revised question

This obstruction leads to a natural revision of the question.

A tree is *countably closed* if it is closed at every level of cofinality ω .

Question

Is it consistent with CH that any two countably closed normal ω_2 -Aronszajn trees are club isomorphic?

ヘロト ヘアト ヘビト ヘビト

æ

Answer

Theorem (K. 2017)

It is consistent that any two countably closed normal ω_2 -Aronszajn trees are club isomorphic relative to the existence of an ineffable cardinal.

The ω_2 -Suslin hypothesis

Proposition

(CH) The statement that any two countably closed normal ω_2 -Aronszajn trees are club isomorphic implies the ω_2 -Suslin hypothesis.

Assuming CH, if *S* is a normal ω_2 -Suslin tree, it is possible to build a countably closed normal ω_2 -Aronszajn tree *U* which contains *S* as a subtree, preserving heights of nodes.

CH implies the existence of a countably closed normal special ω_2 -tree *W*. A club isomorphism between *U* and *W* would imply that for some club *C*, *S* \upharpoonright *C* is special, which is impossible.

Outline

1 The Suslin hypothesis and the Abraham-Shelah property

2 Generalizing the Abraham-Shelah property

3 Overview of proof

John Krueger Club isomorphisms on higher Aronszajn trees

くロト (過) (目) (日)

Property of Baumgartner-Malitz-Reinhart

Consider the two facts:

- There exists an ω_1 -c.c. forcing for killing an ω_1 -Suslin tree;
- There exists a proper forcing which adds a club isomorphism between two normal ω₁-Aronszajn trees.

Both of these facts can be proven based on a well-known result of Baumgartner-Malitz-Reinhart.

Theorem

If $\{a_i : i < \omega_1\}$ is a family of pairwise disjoint finite subsets of an ω_1 -Aronszajn tree T, then there are i < j such that every node in a_i is incomparable in T with every node in a_j .

イロト イポト イヨト イヨト

Generalization of Baumgartner-Malitz-Reinhart

Generalizing to ω_2 under CH:

- Does there exist a countably closed ω₂-c.c. forcing for killing an ω₂-Suslin tree?
- Does there exist a countably closed forcing for adding a club isomorphism between two countably closed normal ω₂-Aronszajn trees which is proper for stationarily many models of size ω₁?

The answer is yes in the model constructed by Laver-Shelah, which satisfies:

Property

(CH) If $\{a_i : i < \omega_2\}$ is a family of pairwise disjoint countable subsets of an ω_2 -Aronszajn tree T, then there are i < j such that every node in a_i is incomparable in T with every node in a_j .

A forcing poset for adding a club isomorphism

Consider *T* and *U* which are countably closed normal ω_2 -Aronszajn trees. Define a countably closed forcing poset $\mathbb{P}(T, U)$ for adding a club isomorphism from *T* to *U*.

Conditions in $\mathbb{P}(T, U)$ are pairs (A, f) satisfying:

- $A \subseteq \omega_2 \cap cof(\omega_1)$ is countable;
- *f* is an isomorphism between countable downwards closed normal subtrees of $T \upharpoonright A$ and $U \upharpoonright A$.
- Let $(B,g) \leq (A,f)$ if $A \subseteq B$ and $f \subseteq g$.

Assume the property described in the previous slide holds. Suppose that $(A, f) \in \mathbb{P}(T, U)$, N is an elementary substructure of size ω_1 , $N^{\omega} \subseteq N$, and $N \cap \omega_2 \in A$. Then (A, f) is $(N, \mathbb{P}(T, U))$ -generic.

Iterating the forcings

There is no known general iteration theorem for iterating countably closed ω_2 -c.c. forcings while preserving ω_2 which is applicable to the Laver-Shelah forcing iteration.

The Laver-Shelah proof involves a technical argument to show that the specific iteration under consideration is ω_2 -c.c.

To establish the consistency of the Abraham-Shelah property on ω_2 , we adapt the Laver-Shelah construction to prove that a specific countable support iteration of countably closed forcings which are ω_2 -proper is ω_2 -proper (on a stationary set of models).

Ineffability

Instead of working with a weakly compact cardinal as in the Laver-Shelah proof, we use an ineffable cardinal κ .

Let *J* be the ineffability ideal on κ . Then:

Lemma

Let $\langle N_i : i < \kappa \rangle$ be a \subseteq -increasing continuous sequence of elementary substructure of size less than κ . Let $\langle x_i : i \in S \rangle$ be such that $S \in J^+$ and each $x_i \subseteq N_i$. Then there is a set $X \subseteq \bigcup_i N_i$ and a stationary set $U \subseteq S$ such that for all $i \in U$, $X \cap N_i = x_i$.

ヘロト ヘアト ヘビト ヘビト

The forcing iteration

Let \mathbb{P}_α denote our forcing iteration up to $\alpha.$ Conditions in \mathbb{P}_α are of the form

$$p=(a,X),$$

satisfying:

- *a* is a countable function with dom(*a*) $\subseteq \alpha$ so that for all $\gamma \in \text{dom}(a)$, $a(\gamma)$ is a \mathbb{P}_{γ} -name for a condition in the poset for adding a club isomorphism between two countably closed normal ω_2 -Aronszajn trees \dot{T}_{α} and \dot{U}_{α} ;
- X is a countable function with dom(X) ⊆ α + 1 so that for each β ∈ dom(X), X(β) is a countable subset of

 $\{\boldsymbol{M} \in \boldsymbol{P}_{\kappa}(\beta) : \mathrm{cf}(\boldsymbol{M} \cap \kappa) > \omega\},\$

and if $M \in X(\beta)$ and $\gamma \in M \cap \text{dom}(a)$, then $M \cap \kappa$ appears in the condition $a(\gamma)$.

(N, \mathbb{P}_{α}) -generic conditions

Consider an elementary substructure *N* of size less than κ for which we would like to prove the existence of (N, \mathbb{P}_{α}) -generic conditions.

Define a condition $p(N, \alpha)$ to be equal to (\emptyset, X) , where dom $(X) = \{\alpha\}$ and $X(\alpha) = \{N \cap \alpha\}$.

Then whenever $(b, Y) \leq p(N, \alpha)$, then for all $\gamma \in N \cap \alpha \cap \operatorname{dom}(b)$, $N \cap \kappa$ appears in $b(\gamma)$.

Also, for all $p \in N \cap \mathbb{P}_{\alpha}$, *p* and $p(N, \alpha)$ are compatible.

κ -proper for stationarily many N

Proposition

Let $\langle N_i : i \in S \rangle$ be a \subseteq -increasing and continuous sequence of elementary substructures of size less than κ , where $S \in J^+$. Then there is $C \in J^*$ such that for all $i \in S \cap C$, $p(N_i, \alpha)$ is $(N_i, \mathbb{P}_{\alpha})$ -generic.

It follows that there are stationarily many *N* such that $p(N, \alpha)$ is (N, \mathbb{P}_{α}) -generic. For example, consider a model *N* which satisfies that for all $D \in N \cap J^*$, $N \cap \kappa \in D$. Build a sequence as above inside *N*, with *C* as above. Then $N = N_{\kappa_N}$ (so to speak), and $N \cap \kappa \in C$ implies that $p(N, \alpha)$ is (N, \mathbb{P}_{α}) -generic.

Intermediate extensions

The Laver-Shelah method for proving the κ -c.c. depended on being able to factor the iteration over a model of size less than κ (where κ is the weakly compact cardinal collapsed to become ω_2).

If \mathbb{P} is the Laver-Shelah iteration, then \mathbb{P} is κ -c.c. By the weak compactness of κ , using Π_1^1 -reflection there exist models N such that $N \cap \kappa = \lambda$ is inaccessible, $N^{<\lambda} \subseteq N$, and $N \cap \mathbb{P}$ is λ -c.c.

It easily follows that $N \cap \mathbb{P}$ is a regular suborder of \mathbb{P} . Thus, if *G* is a generic filter for \mathbb{P} then $V[N \cap G]$ is an intermediate extension of V[G].

くロト (過) (目) (日)

Strongly generic conditions

To adapt the Laver-Shelah method to the κ -proper context, we need to convert the (N, \mathbb{P}_{α}) -genericity of the condition $p(N, \alpha)$ to strong (N, \mathbb{P}_{α}) -genericity. By work of Mitchell, if a generic filter *G* contains a strongly (N, \mathbb{P}_{α}) -generic condition, then $V[N \cap G]$ is an intermediate extension of V[G].

Proposition

Let $\langle N_i : i \in S \rangle$ be \subseteq -increasing and continuous, where $S \in J^+$, such that for all $i \in S$, $p(N_i, \alpha)$ is $(N_i, \mathbb{P}_{\alpha})$ -generic. Then there is $C \in J^*$ such that for all $i \in S \cap C$, $p(N_i, \alpha)$ is strongly $(N_i, \mathbb{P}_{\alpha})$ -generic.

ヘロト ヘ戸ト ヘヨト ヘヨト

Strongly generic conditions

If not, then for a *J*-positive set of $i \in S$, there is a dense set $D_i \subseteq N_i \cap \mathbb{P}_{\alpha}$ such that D_i is not predense below $p(N_i, \alpha)$.

By ineffability, there is $D \subseteq \bigcup_i N_i$ and a stationary set $U \subseteq S$ such that for all $i \in U$, $D_i = D \cap N_i$. Easily D is a dense subset of \mathbb{P}_{α} .

Consider the sequence $\langle M_i : i \in U \rangle$ where $M_i = Sk(N_i \cup \{D\})$. Then there are club many *i* such that $p(N_i, \alpha) = p(M_i, \alpha)$ and $N_i \cap \mathbb{P}_{\alpha} = M_i \cap \mathbb{P}_{\alpha}$. Now $p(M_i, \alpha)$ will be $(M_i, \mathbb{P}_{\alpha})$ -generic, and $D \in M_i$, so $D \cap M_i = D \cap N_i = D_i$ is predense below $p(M_i, \alpha) = p(N_i, \alpha)$, which is a contradiction.

References

J. Krueger Club isomorphisms on higher Aronszajn trees Preprint www.math.unt.edu/~jkrueger/papers.html

- R. Laver and S. Shelah The ℵ₂-Souslin hypothesis *Trans. Amer. Math. Soc.*, 264(2):411–417, 1981
- U. Abraham and S. Shelah Isomorphism types of Aronszajn trees Israel J. Math., 50(1,2):75-113, 1985

→ Ξ → < Ξ →</p>