Dissertationes Mathematicae - JCR-2016 impact factor: 1.0062

A journal publishing only excellent papers longer than 50 pages in all areas of mathematics (each paper is a separate volume) published by the Institute of Mathematics of the Polish Academy of Sciences (IMPAN) since 1952 along with Fundamenta Mathematicae, Colloquium Mathematicum and Studia Mathematica.

Authors include: S. Argyros, J. Baumgartner, W. Comfort, D. Fremlin, C. Di Prisco, R. Engelking, E. van Douwen, D. Monk, A. Mostowski, M. Rubin, H. Steinhaus, S. Wagon.

Noncommutative thin-tall algebras

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences, Warsaw

Piotr Koszmider (IMPAN)

Noncommutative thin-tall algebras

Luminy, 11-10-2017 2 / 15

э

DQC

Piotr Koszmider (IMPAN)

996

・ロト ・四ト ・ヨト ・ヨト ・ヨ

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever

э

DQC

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

э

590

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

 \bullet is disjoint from ${\cal P}$

э

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- \bullet is disjoint from ${\cal P}$
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

э

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

э

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

э

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions.

э

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions. Denote by \mathcal{I}_{β} the Boolean ring $BR(\{\mathcal{P}_{\beta} : \gamma < \beta\})$.

3

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions. Denote by \mathcal{I}_{β} the Boolean ring $BR(\{\mathcal{P}_{\beta} : \gamma < \beta\})$. We say that P is a tower of partitions of κ of length α if and only if for every $\beta < \alpha$

3

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions. Denote by \mathcal{I}_{β} the Boolean ring $BR(\{\mathcal{P}_{\beta} : \gamma < \beta\})$. We say that P is a tower of partitions of κ of length α if and only if for every $\beta < \alpha$

• \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,

3

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions. Denote by \mathcal{I}_{β} the Boolean ring $BR(\{\mathcal{P}_{\beta} : \gamma < \beta\})$. We say that P is a tower of partitions of κ of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}

3

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions. Denote by \mathcal{I}_{β} the Boolean ring $BR(\{\mathcal{P}_{\beta} : \gamma < \beta\})$. We say that P is a tower of partitions of κ of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}
- $\mathcal{I}_{\beta+1}/I_{\beta}$ is dense in I_{α}/I_{β}

э

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions. Denote by \mathcal{I}_{β} the Boolean ring $BR(\{\mathcal{P}_{\beta} : \gamma < \beta\})$. We say that P is a tower of partitions of κ of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}
- $\mathcal{I}_{\beta+1}/I_{\beta}$ is dense in I_{α}/I_{β}

э

Sac

We say that a partition \mathcal{P} of κ is coarser than a partition \mathcal{Q} whenever the Boolean ring $BR(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from P
- is an ideal in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.
- is dense in the Boolean ring $BR(\mathcal{P} \cup \mathcal{Q})$.

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of infinite partitions. Denote by \mathcal{I}_{β} the Boolean ring $BR(\{\mathcal{P}_{\beta} : \gamma < \beta\})$. We say that P is a tower of partitions of κ of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}
- $\mathcal{I}_{\beta+1}/I_{\beta}$ is dense in I_{α}/I_{β}

A Boolean ring is called thin-tall if it is generated by a tower of partitions of ω of length ω_1 .

э

Sac

There are towers of partitions of ω of length ω_1

3

There are towers of partitions of ω of length ω_1

Proof.

Juhász-Weiss, 1978.

There are towers of partitions of ω of length ω_1

Proof.

Juhász-Weiss, 1978. Successor stage is simple:

There are towers of partitions of ω of length ω_1

Proof.

Juhász-Weiss, 1978. Successor stage is simple: take unions of infinite "blocks" from the previous level.

There are towers of partitions of ω of length ω_1

Proof.

There are towers of partitions of ω of length ω_1

Proof.

Juhász-Weiss, 1978. Successor stage is simple: take unions of infinite "blocks" from the previous level. Limit stage $\alpha < \omega_1$:

• Choose a sequence $\alpha_n \rightarrow \alpha$,

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that
 - elements of the previous partitions are covered by finitely many Q_ns

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that
 - elements of the previous partitions are covered by finitely many Q_ns
 - Each Q_n includes an element from α_n -th partition and is in $BR(I_{\alpha_n+1})$

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that
 - elements of the previous partitions are covered by finitely many Q_ns
 - Each Q_n includes an element from α_n -th partition and is in $BR(I_{\alpha_n+1})$
- Choose a partition of \mathbb{N} into infinite sets A_k , $k \in \mathbb{N}$,

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that
 - elements of the previous partitions are covered by finitely many Q_n s
 - Each Q_n includes an element from α_n -th partition and is in $BR(I_{\alpha_n+1})$
- Choose a partition of \mathbb{N} into infinite sets A_k , $k \in \mathbb{N}$,
- The required new coarser partition is

$$P_k = \bigcup_{n \in A_k} [Q_n \setminus \bigcup_{i < n} Q_i].$$

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that
 - elements of the previous partitions are covered by finitely many Q_n s
 - Each Q_n includes an element from α_n -th partition and is in $BR(I_{\alpha_n+1})$
- Choose a partition of \mathbb{N} into infinite sets A_k , $k \in \mathbb{N}$,
- The required new coarser partition is

$$P_k = \bigcup_{n \in A_k} [Q_n \setminus \bigcup_{i < n} Q_i].$$

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that
 - elements of the previous partitions are covered by finitely many Q_n s
 - Each Q_n includes an element from α_n -th partition and is in $BR(I_{\alpha_n+1})$
- Choose a partition of \mathbb{N} into infinite sets A_k , $k \in \mathbb{N}$,
- The required new coarser partition is

$$P_k = \bigcup_{n \in A_k} [Q_n \setminus \bigcup_{i < n} Q_i].$$

There are towers of partitions of ω of length ω_1

Proof.

- Choose a sequence $\alpha_n \rightarrow \alpha$,
- Choose a sequence $(Q_n)_{n \in \mathbb{N}}$ such that
 - elements of the previous partitions are covered by finitely many Q_n s
 - Each Q_n includes an element from α_n -th partition and is in $BR(I_{\alpha_n+1})$
- Choose a partition of \mathbb{N} into infinite sets A_k , $k \in \mathbb{N}$,
- The required new coarser partition is

$$P_k = \bigcup_{n \in A_k} [Q_n \setminus \bigcup_{i < n} Q_i].$$

Digression 1: Longer towers of partitions of $\boldsymbol{\omega}$

1

DQC

Piotr Koszmider (IMPAN)

æ

DQC

• Towers of partitions of ω must have length $< (2^{\omega})^+$,

э

Sac

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),

э

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)

∃ ► < ∃ ►</p>

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

∃ ► < ∃ ►</p>

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

∃ ► < ∃ ►</p>

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

Question

• Is it consistent that there is a tower of partitions of ω of length ω_3 ?

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

- Is it consistent that there is a tower of partitions of ω of length ω_3 ?
- Is it consistent that there is no c.c.c. forcing which adds a tower of partitions of ω of length ω₂?

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

- Is it consistent that there is a tower of partitions of ω of length ω_3 ?
- Is it consistent that there is no c.c.c. forcing which adds a tower of partitions of ω of length ω₂?
- Does Chang's conjecture implies that there is no c.c.c. forcing which adds a tower of partitions of ω of length ω₃?

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

- Is it consistent that there is a tower of partitions of ω of length ω_3 ?
- Is it consistent that there is no c.c.c. forcing which adds a tower of partitions of ω of length ω₂?
- Does Chang's conjecture implies that there is no c.c.c. forcing which adds a tower of partitions of ω of length ω₃?

- Towers of partitions of ω must have length $< (2^{\omega})^+$,
- there are towers of partitions of ω of length α for each α < ω₂ (Juhász-Weiss, 1978),
- It is consistent that there are towers of partitions of ω of length α for each α < ω₃ (Baumgartner-Shelah, 1987; Martinez 2001)
- It is consitent with ¬CH that there are no towers of partitions of ω of length ω₂ (Just, 1985)

- Is it consistent that there is a tower of partitions of ω of length ω_3 ?
- Is it consistent that there is no c.c.c. forcing which adds a tower of partitions of ω of length ω₂?
- Does Chang's conjecture implies that there is no c.c.c. forcing which adds a tower of partitions of ω of length ω₃?

3

DQC

Theorem (Koepke-Martinez, 1995)

If there is a $(\kappa, 1)$ -morass, then there is tower of partitions of κ of length κ^+ ?

イロト 不得 トイラト イラト・ラ

Theorem (Koepke-Martinez, 1995)

If there is a $(\kappa, 1)$ -morass, then there is tower of partitions of κ of length κ^+ ?

Question

<ロト < 回 ト < 回 ト < 回 ト - 三 三

Theorem (Koepke-Martinez, 1995)

If there is a $(\kappa, 1)$ -morass, then there is tower of partitions of κ of length κ^+ ?

Question

 Is it consistent that for some regular cardinal there is no tower of partitions of κ of length κ⁺?

∃ ► < ∃ ►</p>

4 D b 4 A b

Theorem (Koepke-Martinez, 1995)

If there is a $(\kappa, 1)$ -morass, then there is tower of partitions of κ of length κ^+ ?

Question

- Is it consistent that for some regular cardinal there is no tower of partitions of κ of length κ⁺?
- What large cardinal is needed for the above consistency?

Theorem (Koepke-Martinez, 1995)

If there is a $(\kappa, 1)$ -morass, then there is tower of partitions of κ of length κ^+ ?

Question

- Is it consistent that for some regular cardinal there is no tower of partitions of κ of length κ⁺?
- What large cardinal is needed for the above consistency?

Theorem (Koepke-Martinez, 1995)

If there is a $(\kappa, 1)$ -morass, then there is tower of partitions of κ of length κ^+ ?

Question

- Is it consistent that for some regular cardinal there is no tower of partitions of κ of length κ⁺?
- What large cardinal is needed for the above consistency?

Definition

$\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

э

Sac

<ロト <回 > < 回 > < 回 > .

Definition

$\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

• $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$

Sac

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,

500

イロト 不得 トイヨト イヨト 二日

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,
- $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

•
$$\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$$

•
$$P_{n,m} = P_{m,n}^*$$
 for each $m, n \in \mathbb{N}$,

• $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

Sac

イロト 不得 トイヨト イヨト 二日

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,
- $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

We say that a system of matrix units \mathcal{P} is coarser than a system of matrix units \mathcal{Q} whenever the C*-algebra $C^*(\mathcal{Q})$ generated by \mathcal{Q}

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,
- $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

We say that a system of matrix units \mathcal{P} is coarser than a system of matrix units \mathcal{Q} whenever the C*-algebra $C^*(\mathcal{Q})$ generated by \mathcal{Q}

• is disjoint from \mathcal{P}

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,
- $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

We say that a system of matrix units \mathcal{P} is coarser than a system of matrix units \mathcal{Q} whenever the C*-algebra $C^*(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from \mathcal{P}
- is an ideal in the C*-algebra $C^*(\mathcal{P} \cup \mathcal{Q})$.

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,
- $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

We say that a system of matrix units \mathcal{P} is coarser than a system of matrix units \mathcal{Q} whenever the C*-algebra $C^*(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from \mathcal{P}
- is an ideal in the C*-algebra $C^*(\mathcal{P} \cup \mathcal{Q})$.
- is essential in $C^*(\mathcal{P} \cup \mathcal{Q})$, i.e., for any nonzero element $a \in C^*(\mathcal{P} \cup \mathcal{Q})$ there is $b \in C^*(\mathcal{Q})$ such that $ab \neq 0$.

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,
- $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

We say that a system of matrix units \mathcal{P} is coarser than a system of matrix units \mathcal{Q} whenever the C*-algebra $C^*(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from ${\cal P}$
- is an ideal in the C*-algebra $C^*(\mathcal{P} \cup \mathcal{Q})$.
- is essential in $C^*(\mathcal{P} \cup \mathcal{Q})$, i.e., for any nonzero element $a \in C^*(\mathcal{P} \cup \mathcal{Q})$ there is $b \in C^*(\mathcal{Q})$ such that $ab \neq 0$.

Definition

 $\mathcal P$ is a system of matrix units in $\ell_2(\mathbb N)$ if and only if

- $\mathcal{P} = \{M_{n,m} : n, m \in \mathbb{N}\}$
- $P_{n,m} = P_{m,n}^*$ for each $m, n \in \mathbb{N}$,
- $P_{n,m}P_{l,k} = \delta_{m,l}P_{n,k}$ for each $k, l, m, n \in \mathbb{N}$.

We say that a system of matrix units \mathcal{P} is coarser than a system of matrix units \mathcal{Q} whenever the C*-algebra $C^*(\mathcal{Q})$ generated by \mathcal{Q}

- is disjoint from ${\cal P}$
- is an ideal in the C*-algebra $C^*(\mathcal{P} \cup \mathcal{Q})$.
- is essential in $C^*(\mathcal{P} \cup \mathcal{Q})$, i.e., for any nonzero element $a \in C^*(\mathcal{P} \cup \mathcal{Q})$ there is $b \in C^*(\mathcal{Q})$ such that $ab \neq 0$.

Piotr Koszmider (IMPAN)

996

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units.

590

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units. Denote by \mathcal{I}_{α} the C*-algebra $C^*(\{\mathcal{P}_{\beta} : \gamma < \beta\})$.

イロト 不得 トイヨト イヨト 二日

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units. Denote by \mathcal{I}_{α} the C*-algebra $C^*(\{\mathcal{P}_{\beta} : \gamma < \beta\})$. We say that P is a tower of systems of matrix units of length α if and only if for every $\beta < \alpha$

イロト 不得 トイヨト イヨト 二日

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units. Denote by \mathcal{I}_{α} the C*-algebra $C^*({\mathcal{P}_{\beta} : \gamma < \beta})$. We say that P is a tower of systems of matrix units of length α if and only if for every $\beta < \alpha$

• \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units. Denote by \mathcal{I}_{α} the C*-algebra $C^*({\mathcal{P}_{\beta} : \gamma < \beta})$. We say that P is a tower of systems of matrix units of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units.Denote by \mathcal{I}_{α} the C*-algebra $C^*(\{\mathcal{P}_{\beta} : \gamma < \beta\})$.We say that P is a tower of systems of matrix units of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}
- $\mathcal{I}_{\beta+1}/I_{\beta}$ is essential in I_{α}/I_{β}

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units.Denote by \mathcal{I}_{α} the C*-algebra $C^*(\{\mathcal{P}_{\beta} : \gamma < \beta\})$.We say that P is a tower of systems of matrix units of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}
- $\mathcal{I}_{\beta+1}/I_{\beta}$ is essential in I_{α}/I_{β}

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units.Denote by \mathcal{I}_{α} the C*-algebra $C^*(\{\mathcal{P}_{\beta} : \gamma < \beta\})$.We say that P is a tower of systems of matrix units of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}
- $\mathcal{I}_{\beta+1}/I_{\beta}$ is essential in I_{α}/I_{β}
- A C*-algebra is called fully noncommutative thin-tall if it is generated by a tower of partitions of ω of length ω_1 .

Let α be an ordinal and $P = (\mathcal{P}_{\beta})_{\beta < \alpha}$ be a sequence of systems of matrix units.Denote by \mathcal{I}_{α} the C*-algebra $C^*(\{\mathcal{P}_{\beta} : \gamma < \beta\})$.We say that P is a tower of systems of matrix units of length α if and only if for every $\beta < \alpha$

- \mathcal{I}_{β} is an ideal in \mathcal{I}_{α} ,
- \mathcal{P}_{β} is disjoint from \mathcal{I}_{β}
- $\mathcal{I}_{\beta+1}/I_{\beta}$ is essential in I_{α}/I_{β}
- A C*-algebra is called fully noncommutative thin-tall if it is generated by a tower of partitions of ω of length ω_1 .

1

DQC

イロト イヨト イヨト イヨト

The successor step :

$$\mathcal{A} \equiv \mathcal{A} \otimes \mathcal{K} \to \tilde{\mathcal{A}} \otimes \mathcal{K}$$

DQC

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

The successor step : $\mathcal{A} \equiv \mathcal{A} \otimes \mathcal{K} \rightarrow \tilde{\mathcal{A}} \otimes \mathcal{K}$

Definition

A C*-algebra \mathcal{A} is called stable if and only if $\mathcal{A} \equiv \mathcal{A} \otimes K$

э

The successor step : $\mathcal{A} \equiv \mathcal{A} \otimes \mathcal{K} \rightarrow \tilde{\mathcal{A}} \otimes \mathcal{K}$

Definition

A C*-algebra \mathcal{A} is called stable if and only if $\mathcal{A} \equiv \mathcal{A} \otimes K$

Theorem (Blackadar, 1980)

The direct limit of a countable chain of separable AF stable C*-algebras is AF and stable.

・ロト ・ 同ト ・ ヨト ・ ヨト

The successor step : $\mathcal{A} \equiv \mathcal{A} \otimes \mathcal{K} \rightarrow \tilde{\mathcal{A}} \otimes \mathcal{K}$

Definition

A C*-algebra \mathcal{A} is called stable if and only if $\mathcal{A} \equiv \mathcal{A} \otimes K$

Theorem (Blackadar, 1980)

The direct limit of a countable chain of separable AF stable C*-algebras is AF and stable.

・ロト ・ 同ト ・ ヨト ・ ヨト

Piotr Koszmider (IMPAN)

990

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

There is a thin-tall fully noncommutative C*-algebra which is not stable.

3

DQC

イロト イ団ト イヨト イヨト

There is a thin-tall fully noncommutative C*-algebra which is not stable.

• There is a direct limit of an ω_1 -chain of separable AF stable C^* -algebras which is not stable.

3

There is a thin-tall fully noncommutative C*-algebra which is not stable.

- There is a direct limit of an ω_1 -chain of separable AF stable C^* -algebras which is not stable.
- There is a C*-algebra where there is no maximal ideal among stable ideals (answering a question of Rordam)

∃ ► < ∃ ►</p>

There is a thin-tall fully noncommutative C*-algebra which is not stable.

- There is a direct limit of an ω_1 -chain of separable AF stable C^* -algebras which is not stable.
- There is a C*-algebra where there is no maximal ideal among stable ideals (answering a question of Rordam)
- There are two nonisomorphic thin-tall fully noncommutative C*-algebras

There is a thin-tall fully noncommutative C*-algebra which is not stable.

- There is a direct limit of an ω_1 -chain of separable AF stable C^* -algebras which is not stable.
- There is a C*-algebra where there is no maximal ideal among stable ideals (answering a question of Rordam)
- There are two nonisomorphic thin-tall fully noncommutative C*-algebras

There is a thin-tall fully noncommutative C*-algebra which is not stable.

- There is a direct limit of an ω_1 -chain of separable AF stable C*-algebras which is not stable.
- There is a C*-algebra where there is no maximal ideal among stable ideals (answering a question of Rordam)
- There are two nonisomorphic thin-tall fully noncommutative C*-algebras

Theorem (Simon-Weese)

There are two nonisomorphic thin-tall Boolean algebras. There is one which splits and one which does not split.

There is a thin-tall fully noncommutative C*-algebra which is not stable.

- There is a direct limit of an ω_1 -chain of separable AF stable C^* -algebras which is not stable.
- There is a C*-algebra where there is no maximal ideal among stable ideals (answering a question of Rordam)
- There are two nonisomorphic thin-tall fully noncommutative C*-algebras

Theorem (Simon-Weese)

There are two nonisomorphic thin-tall Boolean algebras. There is one which splits and one which does not split.

Proof.

Build a tower of partition which has a refinement which is a Luzin almost disjoint family (where no two disjoint uncountable subfamilies can be separated).

Automorphisms of thin-tall algebras

DQC

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Under CH there are thin-tall fully noncommutative C*-algebras where all automorphisms are trivial.

Under CH there are thin-tall fully noncommutative C*-algebras where all automorphisms are trivial.

Theorem (Weese, 1987)

Under CH there are thin-tall Boolean algebras where all automorphisms are trivial.

∃ ► < ∃ ►</p>

4 D b 4 A b

Under CH there are thin-tall fully noncommutative C*-algebras where all automorphisms are trivial.

Theorem (Weese, 1987)

Under CH there are thin-tall Boolean algebras where all automorphisms are trivial.

Theorem (Dow-Simon 1992)

In ZFC there are thin-tall Boolean algebras where all automorphisms are trivial.

A B F A B F

Under CH there are thin-tall fully noncommutative C*-algebras where all automorphisms are trivial.

Theorem (Weese, 1987)

Under CH there are thin-tall Boolean algebras where all automorphisms are trivial.

Theorem (Dow-Simon 1992)

In ZFC there are thin-tall Boolean algebras where all automorphisms are trivial.

Question

Are there in ZFC thin-tall fully noncommutative C*-algebras where all automorphisms are trivial.

Piotr Koszmider (IMPAN)

Noncommutative thin-tall algebras

Luminy, 11-10-2017 11 / 15

Under CH there are thin-tall fully noncommutative C*-algebras where all automorphisms are trivial.

Theorem (Weese, 1987)

Under CH there are thin-tall Boolean algebras where all automorphisms are trivial.

Theorem (Dow-Simon 1992)

In ZFC there are thin-tall Boolean algebras where all automorphisms are trivial.

Question

Are there in ZFC thin-tall fully noncommutative C*-algebras where all automorphisms are trivial.

Piotr Koszmider (IMPAN)

Noncommutative thin-tall algebras

Luminy, 11-10-2017 11 / 15

Piotr Koszmider (IMPAN)

990

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if

э

DQC

イロト イヨト イヨト イヨト

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

Proposition

A subset \mathcal{F} of a commutative C^* -algebra C(K) is irredundant if and only if

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

Proposition

A subset \mathcal{F} of a commutative C^* -algebra C(K) is irredundant if and only if for every $f \in \mathcal{F}$ there are distinct $x_f, y_f \in K$ such that

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

Proposition

A subset \mathcal{F} of a commutative C^* -algebra C(K) is irredundant if and only if for every $f \in \mathcal{F}$ there are distinct $x_f, y_f \in K$ such that $f(x_f) \neq f(y_f)$

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

Proposition

A subset \mathcal{F} of a commutative C^* -algebra C(K) is irredundant if and only if for every $f \in \mathcal{F}$ there are distinct $x_f, y_f \in K$ such that $f(x_f) \neq f(y_f)$ but $g(x_f) = g(y_f)$ for all $g \in \mathcal{F} \setminus \{f\}$.

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

Proposition

A subset \mathcal{F} of a commutative C^* -algebra C(K) is irredundant if and only if for every $f \in \mathcal{F}$ there are distinct $x_f, y_f \in K$ such that $f(x_f) \neq f(y_f)$ but $g(x_f) = g(y_f)$ for all $g \in \mathcal{F} \setminus \{f\}$.

Theorem (M. Rubin: \Diamond 1983; K. Kunen: CH 1975)

There are nonseparable C(K)s with no uncountable irredundant set.

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

Proposition

A subset \mathcal{F} of a commutative C^* -algebra C(K) is irredundant if and only if for every $f \in \mathcal{F}$ there are distinct $x_f, y_f \in K$ such that $f(x_f) \neq f(y_f)$ but $g(x_f) = g(y_f)$ for all $g \in \mathcal{F} \setminus \{f\}$.

Theorem (M. Rubin: \Diamond 1983; K. Kunen: CH 1975)

There are nonseparable C(K)s with no uncountable irredundant set.

Theorem (S.Todorcevic, PFA 1993; MA 2006)

If K is totally disconnected and C(K) is nonseparable, then C(K) contains an uncountable irredundant set.

Piotr Koszmider (IMPAN)

Noncommutative thin-tall algebras

Luminy, 11-10-2017 12 / 15

э

ヘロト 人間 ト イヨト イヨト

A subset \mathcal{F} of a C^* -algebra is called irredundant if and only if no element of \mathcal{F} belongs to the C*-algebra generated by the remaining elements of \mathcal{F} .

Proposition

A subset \mathcal{F} of a commutative C^* -algebra C(K) is irredundant if and only if for every $f \in \mathcal{F}$ there are distinct $x_f, y_f \in K$ such that $f(x_f) \neq f(y_f)$ but $g(x_f) = g(y_f)$ for all $g \in \mathcal{F} \setminus \{f\}$.

Theorem (M. Rubin: \Diamond 1983; K. Kunen: CH 1975)

There are nonseparable C(K)s with no uncountable irredundant set.

Theorem (S.Todorcevic, PFA 1993; MA 2006)

If K is totally disconnected and C(K) is nonseparable, then C(K) contains an uncountable irredundant set.

Piotr Koszmider (IMPAN)

Noncommutative thin-tall algebras

Luminy, 11-10-2017 12 / 15

э

ヘロト 人間 ト イヨト イヨト

Piotr Koszmider (IMPAN)

990

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

Piotr Koszmider (IMPAN)

590

◆□> ◆□> ◆豆> ◆豆> 三豆

 It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)

э

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(l₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(ℓ₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(l₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

Question

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(l₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

Question

 Is there in ZFC a nonseparable (thin-tall?, scattered?) C*-algebra with no uncountable irredundant set?

э

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(ℓ₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

Question

- Is there in ZFC a nonseparable (thin-tall?, scattered?) C*-algebra with no uncountable irredundant set?
- Is there in ZFC a thin-tall C*-algebra with no nonseparable commutative subalgebra?

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(ℓ₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

Question

- Is there in ZFC a nonseparable (thin-tall?, scattered?) C*-algebra with no uncountable irredundant set?
- Is there in ZFC a thin-tall C*-algebra with no nonseparable commutative subalgebra?

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(ℓ₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

Question

- Is there in ZFC a nonseparable (thin-tall?, scattered?) C*-algebra with no uncountable irredundant set?
- Is there in ZFC a thin-tall C*-algebra with no nonseparable commutative subalgebra?

Theorem (T. Bice, P.K., 2017)

- It is consistent (with CH) that there is a thin-tall fully noncommutative C*-algebra with no uncountable irredundant set (and with no nonseparable commutative subalgebra)
- It is consistent that every set of operators X ⊆ B(l₂) which generates a C*-algebra of density 2^ω there is an irredundant subset Y ⊆ X of cardinality 2^ω.

Question

- Is there in ZFC a nonseparable (thin-tall?, scattered?) C*-algebra with no uncountable irredundant set?
- Is there in ZFC a thin-tall C*-algebra with no nonseparable commutative subalgebra?

Theorem (T. Bice, P.K., 2017)

There is in ZFC a scattered nonseparable C*-algebra with no nonseparable commutative subalgebra.

Piotr Koszmider (IMPAN)

Noncommutative thin-tall algebras

900

◆□> ◆□> ◆豆> ◆豆> 三豆

Some bibliography

- S. Ghasemi, P. Koszmider, On the stability of thin-tall scattered C*-algebras (final stages of preparation).
- C. Hida, P. Koszmider, Large irredundant sets in C*-algebras (final stages of preparation)

- T. Bice, P. Koszmider, A note on the Akemann-Doner and Farah-Wofsey constructions, Proc. Amer. Math. Soc. 145 (2017), no. 2, 681–687.
- S. Ghasemi, P. Koszmider, Noncommutative Cantor-Bendixson derivatives and scattered C*-algebras. Matharxiv.

- T. Bice, P. Koszmider, C*-algebras with and without *«*-increasing approximate units. Matharxiv.
- S. Ghasemi, P. Koszmider; An extension of compact operators by compact operators with no nontrivial multipliers. Matharxiv.

Piotr Koszmider (IMPAN)

Dissertationes Mathematicae - JCR-2016 impact factor: 1.0062

A journal publishing only excellent papers longer than 50 pages in all areas of mathematics (each paper is a separate volume) published by the Institute of Mathematics of the Polish Academy of Sciences (IMPAN) since 1952 along with Fundamenta Mathematicae, Colloquium Mathematicum and Studia Mathematica.

Authors include: S. Argyros, J. Baumgartner, W. Comfort, D. Fremlin, C. Di Prisco, R. Engelking, E. van Douwen, D. Monk, A. Mostowski, M. Rubin, H. Steinhaus, S. Wagon.