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We say that a partition P of a partition @ whenever
the Boolean ring BR(Q) generated by O

@ is disjoint from P
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Let « be an ordinal and P = (Pg)s<. be a sequence of infinite
partitions. Denote by 73 the Boolean ring BR({Ps : v < #}). We say
that P is a tower of partitions of x of length « if and only if for every
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Definition
We say that a partition P of a partition @ whenever
the Boolean ring BR(Q) generated by Q

@ is disjoint from P

@ is an ideal in the Boolean ring BR(P U Q).

@ is dense in the Boolean ring BR(P U Q).

Let « be an ordinal and P = (Pg)s<. be a sequence of infinite
partitions. Denote by 73 the Boolean ring BR({P3 : v < 3}). We say
that P is a tower of partitions of x of length « if and only if for every
b < a

@ 7z is anideal in Z,,
@ Pg is disjoint from Zg
® Z3.1/lgisdensein I,/l3

A Boolean ring is called thin-tall if it is generated by a tower of
partitions of w of length wy.
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How to make a tower of partitions of w of length w¢ in ZFC

Theorem (Ragajopalan 1976)
There are towers of partitions of w of length w1 J
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Proof.
Juhasz-Weiss, 1978.
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A C*-algebra A is called stable ifand only if A = A® K

Theorem (Blackadar, 1980)

The direct limit of a countable chain of separable AF stable
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© There is a C*-algebra where there is no maximal ideal among
stable ideals (answering a question of Rordam)

© There are two nonisomorphic thin-tall fully noncommutative
C*-algebras

Theorem (Simon-Weese)

There are two nonisomorphic thin-tall Boolean algebras. There is one
which splits and one which does not split.

Proof.

Build a tower of partition which has a refinement which is a Luzin
almost disjoint family (where no two disjoint uncountable subfamilies
can be separated). O
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Theorem (C. Hida & PK.)

@ [tis consistent (with CH) that there is a thin-tall fully
noncommutative C*-algebra with no uncountable irredundant set
(and with no nonseparable commutative subalgebra)

@ [t is consistent that every set of operators X C B({2) which
generates a C*-algebra of density 2% there is an irredundant
subset Y C X of cardinality 2*.

Question

@ Is there in ZFC a nonseparable (thin-tall?, scattered?) C*-algebra
with no uncountable irredundant set?

@ /s there in ZFC a thin-tall C*-algebra with no nonseparable
commutative subalgebra?

Theorem (T. Bice, PK., 2017)

There is in ZFC a scattered nonseparable C*-algebra with no
nonseparable commutative subalgebra.
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