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Non-Archimedean Polish Groups

A Polish group is a topological group whose topology is Polish,
i.e., seperable and completely metrizable.

A topological group G is non-archimedean if G has a nbhd
base of its identity eG consisting of open subgroups.

Examples of non-archiemedean Polish groups:

I Countable discrete groups

I S∞ = {f : N→ N | f is bijective} ⊆ NN is a Gδ subset,
hence is Polish.
Nn = {f ∈ S∞ | ∀k ≤ n f (k) = k}, n ∈ ω, is a nbhd base
of the identity.

I Closed subgroups of S∞
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Non-Archimedean Polish Groups

Theorem (Becker–Kechris)
A Polish group is non-archimedean iff it is isomorphic to a
closed subgroup of S∞.
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Non-Archimedean Abelian Polish Groups

Theorem (folklore)
Let G be a Polish group. Then TFAE:

(i) G is non-archimedean abelian;

(ii) G is isomorphic to an abelian, closed subgroup of S∞;

(iii) G is isomorphic to a closed subgroup of
∏

An, where
each An is countable discrete abelian;

(iv) G is pro-countable abelian, i.e., there is an inverse system
of countable discrete abelian groups

Γ0 ← Γ1 ← · · · ← Γn ← · · ·

with πi ,j : Γi → Γj , i > j , such that G is the inverse limit

lim←−
n

Γn =

{
(γn) ∈

∏
n

Γn | ∀n πn+1,n(γn+1) = γn

}
.
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A deviation: TSI Groups

A Polish group G is TSI if G admits a compatible metric d
that is two-sided invariant:

d(gh, gk) = d(h, k) = d(hg , kg)

Theorem (folklore)
Let G be a Polish group. Then TFAE:

(i) G is non-archimedean TSI;

(ii) G is isomorphic to a closed subgroup of
∏

Hn, where
each Hn is countable discrete;

(iv) G is pro-countable.
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Actions and Orbit Equivalence Relations

G : Polish group
X : Polish space (or standard Borel space)
G y X : continuous or Borel action

The orbit equivalence relation EX
G :

xEX
G x ′ ⇐⇒ ∃g ∈ G g · x = x ′

E ,F : equivalence relations on Polish spaces X ,Y , respectively

E≤BF , or E is Borel reducible to F :
there is a Borel function ϕ : X → Y such that

xEx ′ ⇐⇒ ϕ(x)Fϕ(x ′)
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Equivalence Relations

An equivalence relation E is finite if each E -class is finite.

E is countable if each E -class is countable.

Fact: If G is a countable discrete group, then any G -orbit
equivalence relation is countable.

Theorem (Feldman–Moore)
Any countable Borel equivalence relation is the orbit
equivalence relation of a Borel action of a countable discrete
group.
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Equivalence Relations

An equivalence relation E is hyperfinite if E =
⋃
En, where

each En is a finite Borel equivalence relation, and En ⊆ En+1

for all n.

Example E0 on 2N:

xE0y ⇐⇒ ∃n∀m ≥ n x(m) = y(m)

Define
xE0,ny ⇐⇒ ∀m ≥ n x(m) = y(m)

Each E0,n is finite, and E0 is the increasing union of E0,n.
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Equivalence Relations

Theorem (Dougherty–Jackson–Kechris)
For a countable Borel equivalence relation E , E is hyperfinite
iff E ≤B E0.

Theorem (G.–Jackson)
For any countable abelian group G , EX

G is hyperfinite.

This can be viewed as the countable case of the actions of
non-achimedean abelian Polish groups.
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Equivalence Relations

An equivalence relation E is essentially countable if E ≤B F
for some countable Borel equivalence relation F .

E is essentially hyperfinite if E ≤B E0.

Conjecture If G is any abelian Polish group and EX
G is

essentially countable, then EX
G is essentially hyperfinite.
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Actions of Non-Archimedean Abelian Polish Groups

Theorem (Ding–G.)
If G is a non-archimedian abelian Polish group and E ≤B EX

G

is essentially countable, then E is essentially hyperfinite.

Corollary
If G is a locally compact non-archimedean abelian Polish
group, then EX

G is essentially hyperfinite.

This is the locally compact case of the actions of
non-archimedean abelian Polish groups.
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Another deviation: Lower Bounds

Theorem (Solecki)
If G is a non-compact Polish group then there is an action
G y X such that E0 ≤B EX

G .

Theorem (Malicki)
If G is a non-locally compact, non-archimedean abelian Polish
group, then there is an action G y X such that EX

G is not
essentially countable.

Eω
0 on (2N)N: (xn)Eω0 (yn) ⇐⇒ ∀n xnE0yn

Theorem (Hjorth–Kechris)
If G is a non-archimedean Polish group, then either EX

G is
essentially countable or Eω

0 ≤B EX
G .
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Tame Groups

A Polish group G is tame if every orbit equivalence relation
EX
G is Borel.

Locally compact Polish groups are tame.

Solecki completely characterized tame groups among groups of
the form

∏
Hn, where each Hn countable discrete abelian.

Other work on tame groups were done by Hjorth and recently
by Malicki.
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Tame Groups

Theorem (Solecki)
A group

∏
Hn, where each Hn countable discrete abelian, is

tame iff both

(1) for all but finitely many n, Hn is torsion, and

(2) for any prime p, for all but finitely many n, the
p-component of Hn is of the form F ⊕ Z(p∞)k , where F
is a finite p-group and k ∈ N.

Z(p∞) is the quasicyclic or Prüfer group: the additive mod 1

group of

{
m

pl
|m ∈ Z, l ∈ N

}
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(2) for any prime p, for all but finitely many n, the
p-component of Hn is of the form F ⊕ Z(p∞)k , where F
is a finite p-group and k ∈ N.

Z(p∞) is the quasicyclic or Prüfer group: the additive mod 1

group of

{
m

pl
|m ∈ Z, l ∈ N

}
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Wild Groups

A Polish group is wild if it is not tame.

Examples of non-archimedean abelian Polish groups that are
wild:

I Zω

I (
⊕

ω Z(p))ω = (Z(p)<ω)ω

G involves H if there is a closed subgroup K ≤ G and a closed
normal subgroup LE K such that H ∼= K/L.

If G involves H and H is wild, then so is G .
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Wild Groups

Theorem (Ding–G.)
If G is a non-archimedean abelian Polish group, then G is wild
iff G involves either Zω or (Z(p)<ω)ω for some prime p.

Corollary
Let G be a non-archimedean abelian Polish group. If G
involves Zω then Zω is isomorphic to a closed subgroup of G .
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Actions of Tame Groups

For any equivalence relation E on X , the jump of E , E+, is
defined on XN:

(xn)E+(yn) ⇐⇒ ∀n ∃m xnEym and ∀m ∃n xnEym

Theorem (Ding–G.)
Let G be a non-archimedean abelian Polish group. If G is
tame then EX

G ≤B (Eω0 )+++. In particular, every EX
G is

potentially Π0
6.

The bound is not sharp.
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Actions of Tame Groups

The previous theorem is in contrast with

Theorem (Hjorth)
For every α < ω1 there is a tame group of the form

∏
Hn,

where each Hn is countable discrete, such that some EX
G is not

pontentially Π0
α.
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Structure of Tame Groups

Definition (Solecki)
A countable group H is p-compact if for any decreasing
sequence of subgroups Gk < Z(p)× H such that
π1[Gk ] = Z(p), where π1 : Z(p)× H → Z(p) is the projection,
we have π1[

⋂
k Gk ] = Z(p).

Theorem (Solecki)
If
∏

Hn, each Hn countable discrete, is wild, then there is some
prime p such that for infinitely many n, Hn is not p-compact.

He showed that the converse is true in the abelian case.
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Structure of Tame Groups

Theorem (Solecki)
Let H be a countable abelian group. Then TFAE:

(i) H is p-compact.

(ii) H is torsion and the p-component of H satisfies the
minimal condition, i.e., there is no infinite strictly
descending chain of subgroups.

(iii) H is torsion and the p-component of H is of the form
F ⊕ Z(p∞)k for some finite p-group F and k ∈ N.

(iv) H is torsion and for any finite p-group F < H the p-rank
of H/F is finite.

(v) H is torsion and H does not involve Z(p)<ω.
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Structure of Tame Groups

Lemma (Ding–G.)
The following are also equivalent to p-compactness:

(vi) H is torsion and H[p] = {g ∈ H | pg = 0} is finite.

(vii) H does not contain either Z or Z(p)<ω as a subgroup.

Lemma (Ding–G.)
Let H be a countable abelian group and L ≤ H . Then H is
p-compact iff both L and H/L are p-compact.

Hjorth showed that this is false in the non-abelian case.
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Structure of Tame Groups

Theorem (Ding–G.)
Let G be a non-archimedean abelian Polish group. Then G is
tame iff there is a nbhd base {Gn} of the identity of G
consisting of open subgroups such that

(i) for all but finitely many n, Gn/Gn+1 is torsion, and

(ii) for any prime p, for all but finitely many n, Gn/Gn+1

contains only finitely many elements of order p.
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Structure of Tame Groups

Malicki has recently obtained similar characterizations of
tameness. He also showed that tameness coincides with
relative tameness.

Definition A Polish group G is relatively tame if whenever
G y X and G y Y are such that EX

G and EY
G are both Borel,

we have that the diagonal action G y X × Y gives Borel
EX×Y
G .
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Structure of Tame Groups

Theorem (Ding–G.)
Let G be a closed subgroup of

∏
Hn, where each Hn countable

discrete abelian. If G is tame then any group tree T ⊆ TG has
rank < ω · 4.
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Structure of Tame Groups

Consider the class P of all tame groups of the form
∏

n Hn,
where each Hn is countable discrete abelian.

Theorem (Ding–G.)
P has a universal element H∞ =

∏
n Hn, where

H0 =
⊕
p∈P

Z(p∞)<ω ⊕Q<ω,

and
Hn+1 =

⊕
0≤i≤n

Z(p∞i )⊕
⊕
i>n

Z(p∞i )<ω.
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Open Problems

Question Is every tame non-archimedean abelian Polish group
a closed subgroup of a tame group which is a countable
product of countable discrete abelian groups?

Question Is there a universal tame non-archimedean abelian
Polish group?

Conjecture Let G be any tame non-archimedean abelian
Polish group. Then every G -orbit equivalence relation is Borel
reducible to Eω0 , and therefore is potentially Π0

3.
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Thank you for your attention!
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