Bounding, splitting and almost disjointness can be quite different

Vera Fischer

University of Vienna

October 9th, 2017

Creature forcing: S. Shelah

Assume CH. There is a cardinal preserving extension such that

• $\mathfrak{b} = \mathfrak{K}_1 < \mathfrak{a} = \mathfrak{s} = \mathfrak{K}_2.$

Rank Arguments: S. Hechler

• Consistently $\mathfrak{s} = \aleph_1 < \mathfrak{b} = \mathfrak{a} = \kappa$.

*ロト *部ト * ヨト * ヨト - ヨ

Larger values

Obtaining larger values, i.e. the consistency of $b = \kappa < \mathfrak{s} = \mathfrak{a} = \kappa^+$ (Brendle; Steprans and V.F.) led to:

- development of ccc suborders of proper creature posets, which behave analogously;
- construction of ultrafilters (filters) for which M_𝔅 preserves the unboundedness of certain unbounded families (weak Canjar filters);

Larger spread

Models in which \mathfrak{b} , \mathfrak{s} and \mathfrak{a} are distinct, but do not have consecutive values, have been obtained via matrix, or 2D-iterations. Let $\kappa < \lambda$ be arbitrary regular cardinals.

• (Blass, Shelah)
$$Con(u = \kappa < \mathfrak{d} = \lambda);$$

• (Brendle, V.F.)
$$Con(\mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda).$$

(日)

In particular these constructions brought:

- the construction of strong Canjar Ultrafilters;
- a new method of preserving mad families along an iteration, strong diagonalization;

Large cardinals assumptions: Ultrapowers of Posets

Let μ be a measurable cardinal. Then

- Ocn(∂ < 𝔅);
- If μ is a measurable cardinal such that μ < κ, then there is a generic extension in which cofinalities have not been changed and b = κ < s = a = λ.

Template iterations

- In the original template model:
 s =
 ^x₁ <
 b =
 δ <
 a. The fact that
 s =
 ^x₁
 in the model follows from the existence of preservation
 theorems for template iterations, which appear natural
 generalizations of preservation properties of standard finite
 support iterations.

イロト イヨト イヨト イヨト

$\mathsf{Con}(\aleph_1 < \theta = \mathfrak{s} < \mathfrak{b} = \mathfrak{d} < \mathfrak{a})$

- The result is a consequence of a very careful analysis of the local homogeniety properties of posets, which have been obtained via the iteration of non-definable ccc posets along templates.
- In particular, isomorphism-of-names arguments typical for forcing notions obtained via the iteration of definable posets along a template, have been substituted with the notion of a width of a template.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

For a linear order *L* and $x \in L$, let $L_x = \{z \in L : z < x\}$.

Definition

An indexed template is a pair $\langle L, \mathscr{I} \rangle := \langle \mathscr{I}_x \rangle_{x \in L}$ such that *L* is a linear order, $\mathscr{I}_x \subseteq \mathscr{P}(L_x)$ for all $x \in L$ and

- $\emptyset \in \mathscr{I}_X$,
- \mathcal{I}_x is closed under finite unions and intersections,
- $\mathscr{I}_x \subseteq \mathscr{I}_y$ if x < y and
- $\mathscr{I}(L) := \bigcup_{x \in L} \mathscr{I}_x \cup \{L\}$ is well-founded by the subset relation.

For $x \in L$, let $\hat{\mathscr{I}}_x$ denote the ideal (on L_x) generated by \mathscr{I}_x .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $A \subseteq L$. Then for each $x \in A$ denote $\mathscr{I}_x \upharpoonright A = \{A \cap H : H \in \mathscr{I}_x\}$. Furthermore, let

•
$$\bar{\mathscr{I}} \upharpoonright A := \langle \mathscr{I}_x \upharpoonright A \rangle_{x \in A}$$
 and

•
$$\mathscr{I}(A) = \bigcup_{x \in A} \mathscr{I}_x \upharpoonright A \cup \{A\}.$$

Fact

 $\langle A, \bar{\mathscr{I}} \upharpoonright A \rangle$ is an indexed template.

∃ 990

< ロ > < 団 > < 豆 > < 豆 > < □ > <</p>

Definition (Rank Function)

Let $\mathrm{Dp} = \mathrm{Dp}^{\tilde{\mathscr{I}}} : \mathscr{P}(L) \to \mathbf{ON}$ by $\mathrm{Dp}(X) = \mathrm{rank}_{\mathscr{I}(X)}(X)$.

Lemma

For $X \subseteq Y \subseteq L$, • $Dp(X) \leq Dp(Y)$ and

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Definition (Rank Function)

Let $\mathrm{Dp} = \mathrm{Dp}^{\tilde{\mathscr{I}}} : \mathscr{P}(L) \to \mathbf{ON}$ by $\mathrm{Dp}(X) = \mathrm{rank}_{\mathscr{I}(X)}(X)$.

Lemma

For $X \subseteq Y \subseteq L$,

- $Dp(X) \leq Dp(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathscr{I}_x \upharpoonright Y$. Furthermore, if $X \subsetneq Y \cap L_x$, then $Dp(X \cup \{x\}) < Dp(Y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Definition

Let θ be an uncountable regular cardinal, $\langle L, \bar{\mathscr{I}} \rangle$ be an indexed template, H, M disjoint sets such that $L = H \cup M$ and for each $x \in M$ let $C_x \in \hat{\mathscr{I}}_x$ of size $< \theta$. Now, for $A \subseteq L$, by recursion on Dp(A), define

- a poset $\mathbb{P} \upharpoonright A$, and
- for each $x \in A$, and each $B \in \hat{\mathscr{I}}_x \upharpoonright A$, define a $\mathbb{P} \upharpoonright B$ -name $\dot{\mathbb{Q}}_x^B$ as follows:

Definition (Continued:)

(a) If $x \in H$ then $\dot{\mathbb{Q}}_x^B$ is a $\mathbb{P} \upharpoonright B$ -name for $\mathbb{D}^{V^{\mathbb{P} \upharpoonright B}}$.

Definition (Continued:)

(a) If $x \in H$ then $\dot{\mathbb{Q}}_x^B$ is a $\mathbb{P} \upharpoonright B$ -name for $\mathbb{D}^{V^{\mathbb{P}} \upharpoonright B}$.

(b) If $x \in M$, for a fixed $\mathbb{P} \upharpoonright C_x$ -name \dot{F}_x for a filter base of size $< \theta$, $\dot{\mathbb{Q}}^B_x = \mathbb{M}_{\dot{F}_x}$ if $C_x \subseteq B$ or $\mathbb{1}$ otherwise.

・ロト ・聞 ト ・ 国 ト ・ 国 トー

크

Definition (Continued:)

- (a) If $x \in H$ then $\dot{\mathbb{Q}}_x^B$ is a $\mathbb{P} \upharpoonright B$ -name for $\mathbb{D}^{V^{\mathbb{P} \upharpoonright B}}$.
- (b) If $x \in M$, for a fixed $\mathbb{P} \upharpoonright C_x$ -name F_x for a filter base of size $< \theta$, $\hat{\mathbb{Q}}^B_x = \mathbb{M}_{F_x}$ if $C_x \subseteq B$ or 1 otherwise.
- (c) $p \in \mathbb{P} \upharpoonright A$ iff p is a finite sequence of names such that dom $p \subseteq A$ and either $p = \emptyset$ or, if $x = \max(\operatorname{dom} p)$, then there exists a $B \in \mathscr{I}_{x} \upharpoonright A$ such that $p \upharpoonright L_{x} \in \mathbb{P} \upharpoonright B$ and p(x) is a $\mathbb{P} \upharpoonright B$ -name for a condition in \mathbb{Q}_{x}^{B} .

・ロト ・聞 ト ・ 国 ト ・ 国 トー

Definition (The extension relation)

For $p, q \in \mathbb{P} \upharpoonright A$, $q \leq_A p$ if dom $p \subseteq$ dom q and either

(i) $p = \emptyset$, or

- (ii) x = y and there exists a $B \in \mathscr{I}_{y} \upharpoonright A$ such that $p \upharpoonright L_{y}, q \upharpoonright L_{y} \in \mathbb{P} \upharpoonright B$, $q \upharpoonright L_{y} \leq_{B} p \upharpoonright L_{y}$ and p(y), q(y) are $\mathbb{P} \upharpoonright B$ -names for conditions in $\dot{\mathbb{Q}}_{y}^{B}$ such that $q \upharpoonright L_{y}$ forces that $q(y) \leq p(y)$, or
- (iii) $x := \max(\operatorname{dom} p) < y := \max(\operatorname{dom} q)$ and there exists a $B \in \mathscr{I}_y \upharpoonright A$ such that $p, q \upharpoonright L_y \in \mathbb{P} \upharpoonright B$, $q \upharpoonright L_y \leq B p$ and q(y) is a $\mathbb{P} \upharpoonright B$ -name for a condition in \mathbb{Q}_y^B .

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

Lemma

 $\mathbb{P} \upharpoonright X \triangleleft \mathbb{P} \upharpoonright A$ for all $X \subseteq A$.

Lemma

For any $A \subseteq L$,

(a) $\mathbb{P} \upharpoonright A$ is ccc and

Lemma

 $\mathbb{P} \upharpoonright X \triangleleft \mathbb{P} \upharpoonright A$ for all $X \subseteq A$.

Lemma

For any $A \subseteq L$,

- (a) $\mathbb{P} \upharpoonright A$ is ccc and
- (b) if $p \in \mathbb{P} \upharpoonright A$ and \dot{x} is a $\mathbb{P} \upharpoonright A$ -name for a real, then there is $C \subseteq A$ of size $< \theta$ such that $p \in \mathbb{P} \upharpoonright C$ and \dot{x} is a $\mathbb{P} \upharpoonright C$ -name.

イロト イヨト イヨト イヨト

크

Definition (Shelah's template)

Fix uncountable regular cardinals $\theta < \mu < \lambda$. For $\delta \leq \lambda$ define

$$L^{\delta} = (\lambda \mu) \times \bigcup_{n < \omega} (\delta^*, \delta)$$

= 990

Definition (Shelah's template)

Fix uncountable regular cardinals $\theta < \mu < \lambda$. For $\delta \leq \lambda$ define

$$L^{\delta} = (\lambda \mu) \times \bigcup_{n < \omega} (\delta^*, \delta)$$

linearly ordered by x < y iff one of the following holds:

- (i) there is some $k < \min\{|x|, |y|\}$ such that $x \upharpoonright k = y \upharpoonright k$ and x(k) < y(k);
- (ii) $x \subseteq y$ and y(|x|) is positive.
- (iii) $y \subseteq x$ and x(|y|) is negative.

イロト イポト イヨト イヨト 二日

Definition

The family \mathscr{I}^{δ} if formed by finite unions of sets from

$$\{L_{\alpha}^{\delta}: \alpha \in \lambda\mu\} \cup \{[x \upharpoonright (|x|-1), x): x \in L^{\delta} \text{ is } \theta \text{-relevant}\} \cup \{\{z\} : z \in L^{\delta}\}.$$

Lemma

$$\langle L^{\delta}, \bar{\mathscr{I}}^{\delta} \rangle$$
 is an indexed template, where $\mathscr{I}_{x}^{\delta} := \{ A \in \mathscr{I}^{\delta} : A \subseteq L_{x}^{\delta} \}.$

Assume
$$\theta^{<\theta} = \theta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $A \in \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$.

<ロト <部 > < E > < E > < E > <

크

Assume
$$heta^{< heta} = heta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $A \in \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that

• □ > • □ > • □ > • □ > • □ > ·

Assume
$$heta^{< heta} = heta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $\dot{A} \ge \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that (a) $\mathbb{P}^{\delta} \upharpoonright X = \mathbb{P}^{\delta'} \upharpoonright X$ for all $X \subseteq L^{\delta}$,

• □ > • □ > • □ > • □ > • □ > ·

Assume
$$heta^{< heta} = heta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $\dot{A} \ge \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that

(a)
$$\mathbb{P}^{\delta} \upharpoonright X = \mathbb{P}^{\delta'} \upharpoonright X$$
 for all $X \subseteq L^{\delta}$.

(b) for any $\mathbb{P}^{\delta'} \upharpoonright L^{\delta'}$ -name \dot{F} for a filter base of size $< \theta$, there is an $x \in M^{\delta'}$ such that $\Vdash_{\delta'} \dot{F} = \dot{F}_x$ and

(日)

Assume
$$heta^{< heta} = heta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $\dot{A} \ge \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that

(a)
$$\mathbb{P}^{\delta} \upharpoonright X = \mathbb{P}^{\delta'} \upharpoonright X$$
 for all $X \subseteq L^{\delta}$,

(b) for any $\mathbb{P}^{\delta'} \upharpoonright L^{\delta'}$ -name \dot{F} for a filter base of size $< \theta$, there is an $x \in M^{\delta'}$ such that $\Vdash_{\delta'} \dot{F} = \dot{F}_x$ and

(c) $\mathbb{P}^{\delta'} \upharpoonright L^{\delta'}$ forces that \dot{A} is not mad.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Theorem (F. and Mejia)

There is an iteration \mathbb{P}^{λ} along L^{λ} that forces $\mathfrak{s} = \theta < \mathfrak{b} = \mathfrak{d} = \mu < \mathfrak{a} = \mathfrak{c} = \lambda$.

- To show s ≤ θ we rely on preservation theorems, which are natural (though quite technical) generalizations of preservation theorems known for finite support iterations of ccc posets.
- To show s ≥ θ we diagonalize all small (i.e. of size < θ) filter bases. In particular we provide p = θ in the final extension.

(日)

Boolean Ultrapowers: Raghavan, Shelah

Under the assumption of the existence of large cardinals, it is consistent that $\mathfrak{b}<\mathfrak{s}<\mathfrak{a}.$

<ロ> <同> <同> < 同> < 同> < 同> <

크

3D-Iterations (?)

The consistency of $\mathfrak{b} < \mathfrak{a} < \mathfrak{s}$ is still open!

Thank you for your attention!

E DQC