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This talk will highlight some of the main concepts in my paper,
The universal triangle-free graph has finite big Ramsey degrees,
48 pp, submitted.

This work commenced during the Isaac Newton Institute HIF Programme
(2015) and continued at the Centre de Recerca Matemàtica (2016).
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Ramsey’s Theorem

Ramsey’s Theorem (finite version). Given any k , l ,m, there is an n
such that for each coloring of the collection of all k-element subsets of
{0, . . . , n − 1} into l colors, there is a subset X ⊆ {0, . . . , n − 1} of size
m such that each k-element subset of X has the same color.

Ramsey’s Theorem (infinite version). Given any k, l and a coloring
on the collection of all k-element subsets of N into l colors, there is an
infinite set M of natural numbers such that each k-element subset of M
has the same color.

N→ (N)kl
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Finite Structural Ramsey Theory

(B
A

)
denotes the set of copies of A in B.

A Fräıssé class K has the Ramsey property if for each pair A ≤ B in K and
l ≥ 1, there is some C in K such that for each coloring f :

(C
A

)
→ l , there

is a B ′ ∈
(C
B

)
such that f takes one color on

(B′

A

)
.

∀A ≤ B ∈ K, ∀l ≥ 1, ∃C ∈ K such that C → (B)Al .

Some Fräıssé classes of finite structures with the Ramsey property:
Boolean algebras, vector spaces over a finite field, ordered graphs,
ordered hypergraphs, ordered graphs omitting k-cliques, ordered metric
spaces, and many others.
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Small Ramsey Degrees

A Fräıssé class not satisfying the Ramsey Property may still possess some
Ramseyness.

A Fräıssé class K has small Ramsey degrees if for each A ∈ K there is an
integer t(A,K) such that for each B ∈ K there is a C ∈ K such that

C → (B)Al ,t(A,K).

The classes of finite graphs, hypergraphs, graphs omitting k-cliques, etc.,
have small Ramsey degrees.
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Ramsey Theory on Infinite Structures

Def. (Kechris, Pestov, Todorcevic 2005)
Let K be a Fräıssé class and F = Flim(K). F has finite big Ramsey
degrees if for each A ∈ K, there is a finite number T (A,K) such that
for any coloring of

(F
A

)
into finitely many colors, there is a substructure

F′ of F, with F′ ∼= F, in which
(F′

A

)
take no more than T (A,K) colors.

∀A ∈ Age(S), ∃T (A) such that S → (S)Al ,T (A).

Infinite structures known to have finite big Ramsey degrees: The
rationals (Devlin 1979); the Rado graph (Sauer 2006); the countable
ultrametric Urysohn space (Nguyen Van Thé 2008); the Qn and S(2),
S(3) (Laflamme, NVT, Sauer 2010), and a few others.
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Connections with Topological Dynamics

Thm. (Kechris/Pestov/Todorcevic 2005) Aut(Flim K) is extremely
amenable if and only if K has the Ramsey property and consists of
rigid elements.

(Nguyen Van Thé 2013) Extended above result to Fräıssé classes that
have precompact expansions with the Ramsey property (small Ramsey
degrees).

(Zucker 2017) Characterized universal completion flows of
Aut(Flim K) whenever Flim K admits a big Ramsey structure
(big Ramsey degrees).
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The big Ramsey degrees in the Rado graph R - context

G denotes the Fräıssé class of finite graphs, and the Rado graph is
R = Flim(G).

Thm. (Sauer 2006) Given any finite graph A, there is a finite number
T (A,G) such that for any l ≥ 1 and any coloring f :

(R
A

)
→ l , there is a

subgraph R′ ≤ R isomorphic to R such that f takes no more than
T (A,G) colors on

(R′

A

)
.

T (vertex,G) = 1, but T (edge,G) = 2, and the numbers grow quickly.

Lower bounds for T (A,G) for any A ∈ G were proved by Laflamme,
Sauer, and Vuksanovic 2006 and counted by J. Larson in 2008.
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G denotes the Fräıssé class of finite graphs, and the Rado graph is
R = Flim(G).

Thm. (Sauer 2006) Given any finite graph A, there is a finite number
T (A,G) such that for any l ≥ 1 and any coloring f :

(R
A

)
→ l , there is a

subgraph R′ ≤ R isomorphic to R such that f takes no more than
T (A,G) colors on

(R′

A

)
.

T (vertex,G) = 1, but T (edge,G) = 2, and the numbers grow quickly.

Lower bounds for T (A,G) for any A ∈ G were proved by Laflamme,
Sauer, and Vuksanovic 2006 and counted by J. Larson in 2008.

Dobrinen big Ramsey degrees University of Denver 8 / 65



The big Ramsey degrees in the Rado graph R - context
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Strong Trees and Milliken’s Theorem

A Ramsey theorem on strong trees due to Milliken plays a central role in
Devlin’s and Sauer’s results. A colored version of it was key in
[L/NVT/S 2010].

A tree T ⊆ 2<ω is a strong tree iff it is either isomorphic to 2<ω or to 2≤k

for some finite k.
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Strong Subtree ∼= 2≤2, Ex. 1

0

00

000 001

01

010 011

1

10

100 101

11

110 111
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Strong Subtree ∼= 2≤2, Ex. 2

0

00

000 001

01

010 011

1

10

100 101

11

110 111
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Strong Subtree ∼= 2≤2, Ex. 3

〈〉

0

00

000 001

01

010 011

1

10

100 101

11

110 111
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A Ramsey Theorem for Strong Trees

Thm. (Milliken 1979) Let k ≥ 0, l ≥ 2, and a coloring of all the
subtrees of 2<ω which are isomorphic to 2≤k into l colors. Then there
is an infinite strong subtree S ⊆ 2<ω such that all copies of 2≤k in S
have the same color.

Milliken’s Theorem builds on the Halpern-Läuchli Theorem.

Thm. (Halpern-Läuchli 1966) Let d ≥ 1, l ≥ 2, and Ti = 2<ω for i < d .
Given a coloring of the product of level sets of the Ti into l colors,

f :
⋃
n<ω

∏
i<d

Ti (n)→ l ,

there are infinite strong trees Si ≤ Ti and an infinite sets of levels
M ⊆ ω where the splitting in Si occurs, such that f is constant on⋃

m∈M
∏

i<d Si (m).
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Nodes in Trees can Code Graphs

Let A be a graph. Enumerate the vertices of A as 〈vn : n < N〉.

A set of nodes {tn : n < N} in 2<ω codes A if and only if for each pair
m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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Diagonal Trees Code Graphs

A tree T is diagonal if there is at most one meet or terminal node per level.

T is strongly diagonal if passing numbers at splitting levels are all 0
(except for the right extension of the splitting node).

t0

t1

t2

•

•

•

v0

v1

v2

Every graph can be coded by the terminal nodes of a diagonal tree.
Moreover, there is a strongly diagonal tree which codes R.
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A Different Strongly Diagonal Tree Coding a Path

〈〉

•

•

•

v0

v1

v2
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Strongly diagonal trees can be enveloped into strong trees

〈〉

0

00

000 001

01

010 011

1

10

100 101

11

110 111
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Another strong tree envelope

〈〉

0

00

000 001

01

010 011

1

10

100 101

11

110 111
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Outline of Sauer’s Proof: R has finite big Ramsey degrees

1 The Rado graph is bi-embeddable with the graph coded by all nodes
in the tree 2<ω.

2 Each finite graph can be coded by finitely many strong similarity
types of strongly diagonal trees.

3 Each strongly diagonal tree can be enveloped into a finite strong tree.

4 Apply Milliken’s Theorem finitely many times to obtain one color for
each type.

5 Choose a strongly diagonal subtree coding the Rado graph.
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In 2011, I was reading through Todorcevic’s book on Ramsey spaces and
came across this 2006 result of Sauer on the Rado graph.

Then I read Sauer’s 1998 paper on the universal triangle-free graph, H3,
where he got edge colorings to have big Ramsey degree of two.

Why did he stop with edges? Why wouldn’t Sauer’s methods for the Rado
graph generalize to give finite Ramsey degrees for H3?

Dobrinen big Ramsey degrees University of Denver 20 / 65



In 2011, I was reading through Todorcevic’s book on Ramsey spaces and
came across this 2006 result of Sauer on the Rado graph.

Then I read Sauer’s 1998 paper on the universal triangle-free graph, H3,
where he got edge colorings to have big Ramsey degree of two.

Why did he stop with edges? Why wouldn’t Sauer’s methods for the Rado
graph generalize to give finite Ramsey degrees for H3?

Dobrinen big Ramsey degrees University of Denver 20 / 65



In 2011, I was reading through Todorcevic’s book on Ramsey spaces and
came across this 2006 result of Sauer on the Rado graph.

Then I read Sauer’s 1998 paper on the universal triangle-free graph, H3,
where he got edge colorings to have big Ramsey degree of two.

Why did he stop with edges? Why wouldn’t Sauer’s methods for the Rado
graph generalize to give finite Ramsey degrees for H3?

Dobrinen big Ramsey degrees University of Denver 20 / 65



The Universal Homogeneous Triangle-Free Graph H3

The universal triangle-free graph H3 is the triangle-free graph on infinitely
many vertices into which every countable triangle-free graph embeds.

Equivalently, H3 is homogeneous: Any isomorphism between two finite
subgraphs of H3 extends to an automorphism of H3.

H3 is the Fräıssé limit of the Fräıssé class of finite triangle-free graphs, K3.

H3 was constructed by Henson in 1971. Henson also constructed universal
k-clique-free graphs for each k ≥ 3.
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History of Results

Theorem. (Henson 1971) H3 is weakly indivisible.

Theorem. (Nešetřil-Rödl 1977/83) The Fräıssé class of finite ordered
triangle-free graphs K<

3 has the Ramsey property. This implies finite
small Ramsey degrees for K3.

Theorem. (Komjáth/Rödl 1986) H3 is indivisible: Vertex colorings of
H3 have big Ramsey degree 1.

Theorem. (Sauer 1998) H3 has big Ramsey degree 2 for edges.

What about big Ramsey degrees in H3 for other
finite triangle-free graphs?
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Main Obstacles

“A proof of the big Ramsey degrees for H3 would need new
Halpern-Läuchli and Milliken Theorems, and nobody knows what those
should be.” (Todorcevic, 2012)

Said the same thing, plus, “There is no simply representable triangle-free
graph which is bi-embeddable with H3.” (Sauer, 2013)

“So far, the lack of tools to represent ultrahomogeneous structures is the
major obstacle towards a better understanding of their infinite partition
properties.” (Nguyen Van Thé, 2013 Habilitation)

Dobrinen big Ramsey degrees University of Denver 23 / 65



Main Obstacles

“A proof of the big Ramsey degrees for H3 would need new
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Main Theorem: H3 has Finite Big Ramsey Degrees

Theorem. (D.) For each finite triangle-free graph A, there is a positive
integer T (A,K3) such that for any coloring of all copies of A in H3 into
finitely many colors, there is a subgraph H ≤ H3, again universal
triangle-free, such that all copies of A in H take no more than
T (A,K3) colors.

∀A ∈ K3, ∃T (A,K3) such that H3 → (H3)Al ,T (A,K3)
.

This is the first result on big Ramsey degrees of a homogeneous
structure omitting a non-trivial substructure.
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Structure of Proof that H3 has finite big Ramsey degrees

I Develop new notion of strong coding tree to represent H3.

II Prove a Ramsey Theorem for strictly similar finite antichains.

(a) Prove new Halpern-Läuchli Theorems for strong coding trees.
− Three new forcings are needed, but the proofs take place in ZFC.

(b) Prove a new Ramsey Theorem for finite preserving trees.
− correct analogue of Milliken’s Theorem.

(c) New notion of envelope.
− Involves new notions of incremental strong coding tree and sets of

witnessing coding nodes.

III Construct a strongly diagonal subset of coding nodes coding H3 and
apply the Ramsey Theorem for strictly similar antichains.
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Part I: Strong Coding Trees
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First Approach: Strong Triangle-Free Trees

Infinite strong triangle-free trees have coding nodes which are dense and
which code the universal triangle-free graph; splitting is maximal subject
to never coding a triangle.

The only forbidden structures are sets of coding nodes ci , cj , ck such that
cj(|ci |) = ck(|ci |) = ck(|cj |) = 1 as this codes a triangle.

Splitting Criterion: A node t at the level of the n-th coding node cn
extends right if and only if t and cn have no parallel 1’s.

Non-splitting nodes extend left.
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Strong triangle-free tree S

〈〉

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

v0

v1

v2

v3

v4

v5
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Almost sufficient

One can develop almost all the Ramsey theory one needs on strong
triangle-free trees

except for the base case, vertex colorings via colorings of coding nodes:
there is a bad coloring for these.

To get around this, we stretch and skew the trees so that at most one
coding or one splitting node occurs at each level.
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Strong coding tree T

c0

c1

c2

c3

•

•

•

•

v0

v1

v2

v3

Write T ≤ T if T is a subtree of T strongly similar to T .
Every tree T ≤ T is a strong coding tree: Its coding nodes are dense and
code H3, and the “zip up” forms a strong triangle-free tree.
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A subset A of a strong coding tree is a tree if A is meet closed,
A =

⋃
{t � |s| : s, t ∈ A and |t| ≥ |s|}, and the lengths of members of A

are exactly the lengths of its coding nodes and splitting nodes.
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Guarantees for extending subtrees to copies of T

Parallel 1’s Criterion: “New sets of parallel 1’s are witnessed by a coding
node.” A tree satisfying the Parallel 1’s Criterion is a preserving tree: “all
types are preserved”.

A tree is valid in T if leftmost extensions of its nodes to any level in T
add no new sets of parallel 1’s.

Facts. (1) Any preserving subtree of T in which the splitting is
maximal and the coding nodes are dense and non-terminal is a strong
coding tree, where the coding nodes code H3.

(2) Any finite valid preserving subtree of a strong coding tree T can be
extended to a strong coding subtree of T .
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A tree which is not preserving

It has parallel 1’s not witnessed by a coding node.
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A preserving tree

〈〉
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Part II: A Ramsey Theorem for Strictly Similar Finite Antichains.
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Some Key Concepts

Two finite subtrees A,B of a strong coding tree T are strictly similar if
there is a tree isomorphism ϕ : A→ B which sends coding (splitting)
nodes to coding (splitting) nodes, preserves relative lengths, passing
numbers at levels of coding nodes, and first instances of parallel 1’s.

A subtree A of a strong coding tree T is incremental if whenever a new set
of parallel 1’s occurs in A, all of its proper subsets occur as new parallel
1’s at a lower level.
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G a graph with three vertices and no edges

An incremental tree A coding G

〈〉
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G a graph with three vertices and no edges

An incremental tree B coding G . B is strictly similar to A.

〈〉
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A non-incremental tree coding G
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An incremental tree C coding G
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An incremental tree D coding G strictly similar to C
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Ramsey Theorem for Strictly Similar Antichains

Theorem. (D.) Let A be a finite antichain of coding nodes. Associate
A with the tree it induces, and let c color all strictly similar copies of A
in T into finitely many colors.

Then there is a strong coding tree S ≤ T in which all strictly similar
copies of A in S have the same color.

Furthermore, S can be chosen so that all finite antichains of coding
nodes automatically induce incremental trees.

(The theorem works for more than antichains, but only antichains are
used in the proof of the Main Theorem. The proof takes four sections
of the paper.)
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Part III: Apply the Ramsey Theorem for Strictly Similar Antichains and
construct a diagonal subtree coding H3 to obtain the Main Theorem.
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Bounds for T (G ,K3)

1 Let G be a finite triangle-free graph, and let f color the copies of G
in H3 into finitely many colors.

2 The strong coding tree T codes H3. For each antichain A of coding
nodes in T coding a copy GA of G , define f ′(A) = f (GA).

3 List the finitely many strict similarity types of antichains of coding
nodes in T coding G .

4 Apply the Ramsey Theorem for Strict Similarity Types once for each
strict similarity type to obtain a strong coding tree S ≤ T in which f ′

has one color per type.

5 Take a strongly diagonal subtree D in S which codes H3, and let H′
be the subgraph of H3 coded by D.

6 Then f has no more colors on the copies of G in H′ than the number
of strict similarity types of antichains coding G .
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Constructing a diagonal set D of coding nodes coding H3

cD0

cD1

Dobrinen big Ramsey degrees University of Denver 45 / 65



Main Ideas behind Part II

How is the Ramsey Theorem for Strictly Similar Antichains proved?

(a) Prove new Halpern-Läuchli Theorems for strong coding trees.
− Three new forcings are needed, but the proofs take place in ZFC.
− Laver’s outline to me in 2011 of Harrington’s forcing proof of HL

was indispensable.

(b) Prove a new Ramsey Theorem for finite strict preserving trees.
− correct analogue of Milliken’s Theorem.

(c) New notion of envelope.
− Involves new notions of incremental strong coding tree and sets of

witnessing coding nodes.
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(a) Halpern-Läuchli-style Theorem

Thm. (D.) Given: T a strong coding tree, B a finite valid strong
coding subtree of T , A a finite subtree of B with max(A) ⊆ max(B),
and X a level set extending A into T with A∪X a valid preserving tree.
Color all end-extensions Y of A in T for which A ∪ Y is strictly similar
to A ∪ X into finitely many colors.
Then there is a strong coding tree S ≤ T end-extending B such that all
level sets Y in S with A ∪ Y strictly similar to A ∪ X have the same
color.

Remark. The proof uses three different forcings. The forcings are best
thought of as conducting unbounded searches for finite objects in ZFC.
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The forcing ideas - Case (i): X contains a splitting node

Let T be a strong coding tree.

List the maximal nodes of A+ as s0, . . . , sd , where sd denotes the node
which the splitting node in X extends.

Let Ti = {t ∈ T : t ⊇ si}, for each i ≤ d .

Fix κ large enough so that κ→ (ℵ1)2dℵ0 holds.

Such a κ is guaranteed in ZFC by a theorem of Erdős and Rado.
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The forcing for Case (i)

P is the set of conditions p such that p is a function of the form

p : {d} ∪ (d × ~δp)→ T � lp,

where ~δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the splitting node extending sd at level lp;

(ii) For each i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti � lp.

q ≤ p if and only if ~δq ⊇ ~δp, lq ≥ lp, and

(i) q(d) ⊃ p(d), and q(i , δ) ⊃ p(i , δ) for each δ ∈ ~δp and i < d ; and

(ii) The set {q(i , δ) : (i , δ) ∈ d × ~δp} ∪ {q(d)} has no new sets of parallel

1’s above {p(i , δ) : (i , δ) ∈ d × ~δp} ∪ {p(d)}.
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The forcing for Case (i)
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Case (i): X contains a splitting node

The forcing is used to find a good set of starting nodes where it is possible
to extend them to homogeneous levels.

We alternate building the subtree by hand with using the forcing to find
the next level where homogeneity is guaranteed.

Remarks. (1) No generic extension is actually used.

(2) These forcings are not simply Cohen forcings; the partial orderings
are stronger in order to guarantee that the new levels we obtain by
forcing are extendible inside T to another strong coding tree.

(3) The assumption that A ∪ X satisfies the Parallel 1’s Criterion is
necessary.
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Case (ii): X contains a coding node

We use a different forcing.

We obtain end-homogneity.

To homogenize over these, we need a third forcing. This is where the
strict similarity comes into play.
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(b) Ramsey Theorem for Strict Preserving Trees

Thm. (D.) Let T be a strong coding tree. Let A be a finite strict
preserving subtree of T . Suppose all the strictly similar copies of A in
T are colored in finitely many colors.

Then there is a subtree S ≤ T which is isomorphic to T (hence codes
H3) such that all strictly similar copies of A in S have the same color.

A tree is a strict preserving tree if each new set of parallel 1’s is
witnessed by a coding node before anything else happens (other
occurrences of new parallel 1’s, splits, or coding nodes).

Strict similarity takes into account isomorphism as trees with coding
nodes, passing numbers, and placements of new sets of parallel 1’s.
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(c) Envelopes, Incremental Trees, and Witnessing Coding Nodes

Dobrinen big Ramsey degrees University of Denver 53 / 65



A codes a non-edge

s

t

This satisfies the Parallel 1’s Criterion, so A is its own envelope.
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B codes a non-edge

s

t

B does not satisfy the Parallel 1’s Criterion.
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An Envelope E(B)

〈〉

s

t

w

The envelope E (B) satisfies the Parallel 1’s Criterion.
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An incremental tree D coding three vertices with no edges
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An envelope of the incremental tree D
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Towards Ramsey Theorem for Strictly Similar Antichains

Given a finite antichain A of coding nodes inducing an incremental tree,
let E (A) be an envelope.

Any coloring f of all antichains in T strictly similar to A induces a coloring
f ′ on all strictly similar copies of E (A).

Apply the Ramsey Theorem for Strict Preserving Trees for f ′ on T to
obtain T ′ ≤ T in which all copies of E (A) have the same color.

Take an incremental strong coding tree S ≤ T ′ and a set of witnessing
coding nodes W ⊆ T which have no parallel 1’s with any coding node in
S .

Then each copy of A in S has an envelop in T ′, by adding in some nodes
from W .

Thus, each copy of A in S has the same color.
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To finish: Some Examples
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The two strict similarity types of Edge Codings
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Non-edges have eight strict similarity types
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Thank you for your attention!
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