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Series

∑
an series

∑
an absolutely convergent ⇐⇒

∑
|an| converges∑

an conditionally convergent (c.c.) ⇐⇒
∑

an converges and∑
|an| = +∞

Notes: (1)
∑

an convergent =⇒ an → 0

(2) If
∑

an is conditionally convergent then∑
n∈P

an = +∞ and
∑
n∈N

an = −∞

where P = {n ∈ ω : an > 0} and N = {n ∈ ω : an < 0}

Jörg Brendle Rearrangements and Subseries



Series

∑
an series∑
an absolutely convergent ⇐⇒

∑
|an| converges

∑
an conditionally convergent (c.c.) ⇐⇒

∑
an converges and∑
|an| = +∞

Notes: (1)
∑

an convergent =⇒ an → 0

(2) If
∑

an is conditionally convergent then∑
n∈P

an = +∞ and
∑
n∈N

an = −∞

where P = {n ∈ ω : an > 0} and N = {n ∈ ω : an < 0}

Jörg Brendle Rearrangements and Subseries



Series

∑
an series∑
an absolutely convergent ⇐⇒

∑
|an| converges∑

an conditionally convergent (c.c.) ⇐⇒
∑

an converges and∑
|an| = +∞

Notes: (1)
∑

an convergent =⇒ an → 0

(2) If
∑

an is conditionally convergent then∑
n∈P

an = +∞ and
∑
n∈N

an = −∞

where P = {n ∈ ω : an > 0} and N = {n ∈ ω : an < 0}

Jörg Brendle Rearrangements and Subseries



Series

∑
an series∑
an absolutely convergent ⇐⇒

∑
|an| converges∑

an conditionally convergent (c.c.) ⇐⇒
∑

an converges and∑
|an| = +∞

Notes: (1)
∑

an convergent =⇒ an → 0

(2) If
∑

an is conditionally convergent then∑
n∈P

an = +∞ and
∑
n∈N

an = −∞

where P = {n ∈ ω : an > 0} and N = {n ∈ ω : an < 0}

Jörg Brendle Rearrangements and Subseries



Series

∑
an series∑
an absolutely convergent ⇐⇒

∑
|an| converges∑

an conditionally convergent (c.c.) ⇐⇒
∑

an converges and∑
|an| = +∞

Notes: (1)
∑

an convergent =⇒ an → 0

(2) If
∑

an is conditionally convergent then∑
n∈P

an = +∞ and
∑
n∈N

an = −∞

where P = {n ∈ ω : an > 0} and N = {n ∈ ω : an < 0}

Jörg Brendle Rearrangements and Subseries



Riemann’s rearrangement theorem

Riemann’s Rearrangement Theorem

Suppose
∑

an is conditionally convergent and r ∈ R∪{+∞,−∞}.
Then there is a rearrangement π ∈ Sym(ω) such that

∑
aπ(n) = r .

Also there is π ∈ Sym(ω) such that
∑

aπ(n) diverges by oscillation.

(lim infk
∑k

0 aπ(n) < lim supk
∑k

0 aπ(n))
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The questions

How many permutations do we need such that for every
conditionally convergent series

∑
an there is a permutation π in

our family such that
∑

aπ(n) no longer converges to the same
limit?

... such that
∑

aπ(n) diverges either to +∞ or −∞?

... such that
∑

aπ(n) converges to another limit?
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Rearrangement numbers

rr := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) 6=
∑

an)} the rearrangement number

rro := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) diverges by oscillation)}

rri := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) = ±∞)}

rrf := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) converges 6=
∑

an)}
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rr versus rro

rr := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) 6=
∑

an)} the rearrangement number

rro := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) diverges by oscillation)}

Theorem 1
rro = rr

Fact: ∀π ∈ Sym(ω) ∃σπ ∈ Sym(ω) such that

∃∞n (σπ[{0, ..., n − 1}] = {0, ..., n − 1})
∃∞n (σπ[{0, ..., n − 1}] = π[{0, ..., n − 1}])

Π witness for rr =⇒ Π ∪ {σπ : π ∈ Π} witness for rro
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rr versus non(meager)

non(meager) is the least size of a non-meager set of reals

Theorem 2

rr ≤ non(meager)

Proof:
∑

an c.c. given. K ∈ ω.

{π ∈ Sym(ω) : ∃n0 (
∑

n<n0
aπ(n) > K )} open dense.

Similarly with < −K instead of > K .

{π ∈ Sym(ω) :
∑

aπ(n) diverges by oscillation} dense Gδ.

Done!
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rr versus b

b := min{|F | : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F ∃∞n (g(n) < f (n))}
the unbounding number

Theorem 3

b ≤ rr

Proof: Π family of permutations, |Π| < b.
Π→ ωω : π 7→ fπ s.t. for all n

fπ(n) > n
∀m ≤ n ∀k ≥ fπ(n) (π(m) < π(k))

∃g ∈ ωω s.t. g ≥∗ fπ for all π ∈ Π.
Let {in : n ∈ ω} ⊆ ω s.t. in+1 ≥ g(in).∑

an c.c. given. Define

bk =

{
an if k = in
0 otherwise

Then
∑

bk =
∑

an c.c. Also
∑

bk =
∑

bπ(k) for all π ∈ Π.
Why? Because ∀∞n < m (π(in) < π(im)). Done!
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rri , rrf versus d

rri := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) = ±∞)}

rrf := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) converges 6=
∑

an)}

d := min{|F | : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F ∀∞n (g(n) < f (n))}
the dominating number

Theorem 4

d ≤ rri , rrf

Proof similar to Theorem 3.
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rr versus cov(null)

cov(null) is the least size of a family of null sets covering the reals

Theorem 5

cov(null) ≤ rr

proof based on:

Rademacher’s Lemma

Let (cn : n ∈ ω) be a sequence of reals. Set

A = {f ∈ 2ω :
∑
n

(−1)f (n)cn converges}

Then

µ(A) =

{
1 if

∑
n c

2
n converges

0 otherwise
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Consequences and a Question

Corollary 6

CON (d < rr)

Proof: In the random model, cov(null) > d. So follows from
Theorem 5.

Corollary 7

CON (cov(null) < rr)

Proof: In the Laver / Hechler model, cov(null) < b. So follows
from Theorem 3.

Question 1

CON (rr < non(meager))?
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Upper bounds for rri?

No known upper bounds for rri , rrf

rri := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) = ±∞)}

Theorem 8

CON (rri < c)

Proof Idea: Start with a model of c > ω1.
Make a finite support iteration of σ-centered forcing of length ω1.
At each stage we add a permutation π s.t. for all ground model
c.c.

∑
an,
∑

aπ(n) diverges to either +∞ or −∞.
(This needs some preliminary forcing.)
Thus the ω1 permutations adjoined along the iteration witness
rri = ω1.
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Upper bounds for rrf ?

rrf := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) converges 6=
∑

an)}

Theorem 9

CON (rrf < c)

Proof Idea: Start with a model of c > ω1.
Make a finite support iteration of σ-linked forcing of length ω1.
Use the Lévy-Steinitz Theorem (finite-dimensional version of
Riemann’s Theorem).

Conjecture 1

rri ≤ rrf

Conjecture 2

CON (rri < rrf )
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More questions

If
∑

an is c.c. then it has a divergent subseries
∑

n∈X an,
X ∈ [ω]ω.

E.g. ∑
n∈P

an = +∞ and
∑
n∈N

an = −∞

where P = {n ∈ ω : an > 0} and N = {n ∈ ω : an < 0}

How many subsets of ω do we need such that for every
conditionally convergent series

∑
an there is a set X in our family

such that
∑

n∈X an diverges?

... such that
∑

n∈X an diverges either to +∞ or −∞?
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Subseries numbers

ß := min{|F| : F ⊆ [ω]ω and ∀ c.c.
∑

an ∃X ∈ F
(
∑

n∈X an diverges)} the subseries number

ßo := min{|F| : F ⊆ [ω]ω and ∀ c.c.
∑

an ∃X ∈ F
(
∑

n∈X an diverges by oscillation)}

ßi := min{|F| : F ⊆ [ω]ω and ∀ c.c.
∑

an ∃X ∈ F
(
∑

n∈X an = ±∞)}

Theorem 10

ßo ≤ non(meager)

Theorem 11

cov(null) ≤ ß

Proofs: like for rr
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ß versus s

ß := min{|F| : F ⊆ [ω]ω and ∀ c.c.
∑

an ∃X ∈ F
(
∑

n∈X an diverges)} the subseries number

s := min{|F| : F ⊆ [ω]ω and ∀Y ∈ [ω]ω ∃X ∈ F
(|X ∩ Y | = |Y \ X | = ω)} the splitting number

Theorem 12

s ≤ ß

Proof: F ⊆ ωω, |F| < s.

∃I = {in : n ∈ ω} ⊆ ω unsplit by members of F .∑
an c.c. given. Define

bk =

{
an if k = in
0 otherwise

Then
∑

bk =
∑

an c.c. If X ∈ F
either X ∩ I finite and

∑
k∈X bk finite

or I ⊆∗ X and
∑

k∈X bk converges because
∑

bk does.
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∑
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∑

an c.c. If X ∈ F
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∑
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b lower bound of rr (Theorem 3).

Is b also lower bound of ß?

Ī = (In : n ∈ ω) sequence of finite subsets of ω with
max(In) < min(In+1).
Bn ⊆ In, Cn = In \ Bn, B̄ = (Bn : n ∈ ω), C̄ = (Cn : n ∈ ω).
ā = (ak : k ∈ ω) sequence of reals with 0 ≤ ak ≤ 1.

r , s ≥ 0. (Ī , B̄, ā) is (r , s)-sequence if, letting bn =
∑

k∈Bn
ak and

cn =
∑

k∈Cn
ak , we have that lim bn = r and lim cn = s.

D ∈ [ω]ω almost splits (r , s)-sequence (Ī , B̄, ā) if ∃E ⊆ ω s.t.

lim
n∈E

 ∑
k∈Bn∩D

ak

 = r and lim
n∈E

 ∑
k∈Cn∩D

ak

 = 0.

salmost := min{|D| : D ⊆ [ω]ω and ∀(rm, sm)-sequences
(Īm, B̄m, ām) ∃D ∈ D (D almost splits all (Īm, B̄m, ām))}
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Ī = (In : n ∈ ω) sequence of finite subsets of ω with
max(In) < min(In+1).
Bn ⊆ In, Cn = In \ Bn, B̄ = (Bn : n ∈ ω), C̄ = (Cn : n ∈ ω).
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salmost := min{|D| : D ⊆ [ω]ω and ∀(rm, sm)-sequences
(Īm, B̄m, ām) ∃D ∈ D (D almost splits all (Īm, B̄m, ām))}

Fact: ß ≤ salmost (even ßo ≤ salmost).

Proof: D ⊆ [ω]ω almost splitting.∑
k xk c.c. ak = |xk |.

P = {k ∈ ω : xk ≥ 0}, N = {k ∈ ω : xk < 0}.∑
k xk c.c. =⇒ ∃Ī = (In : n ∈ ω) intervals with

max(In) < min(In+1) s.t., letting Bn = In ∩ P, Cn = In ∩ N,
bn =

∑
k∈Bn

ak , and cn =
∑

k∈Cn
ak , we have lim bn = lim cn = 1.

Thus, (Ī , B̄, ā) is (1, 1)-sequence.

D ∈ D almost splits (Ī , B̄, ā) =⇒
∑

k∈D xk diverges.
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Theorem 13

salmost = ω1 in Laver model.

Corollary 14

CON(ß < b); so also CON(ß < rr)

Question 2

CON(rr < ß)? Even CON(rr < s)?
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About ßo and ßi

Question 3

ß = ßo?

Theorem 15

ßi > cov(meager)

Question 4

CON(ßi < c)?
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