On Singular Stationarity

Omer Ben-Neria University of California, Los Angeles

Luminy, October 2017

,

On Singular Stationarity

Introduction

We discuss consistency results related to two notions of singular stationarity

- 1. Mutually stationary sets
- 2. Tightly stationary sets

These notions were introduced by Foreman and Magidor in their work on the non-saturation of generalized nonstationary ideals.

On Singular Stationarity

Conventions

- $\vec{\kappa} = \langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of regular cardinals with limit $\kappa_{\omega} = \bigcup_n \kappa_n$
- We focus on fixed-cofinality stationary sequences- $\vec{S} = \langle S_n \rangle_n$ of stationary sets $S_n \subseteq \kappa_n \cap Cof(\mu)$ for some fixed regular cardinal μ
- ► An algebra 𝔄 is an expansion of ⟨*H*_θ, ∈, <_θ⟩ by countably many finitary functions. κ_ω << θ is regular</p>
- A subalgebra or substructure of \mathfrak{A} is an elementary substructure $M \prec \mathfrak{A}$

On Singular Stationarity

Definition

A sequence of stationary sets $\langle S_n \rangle_n$ is **mutually stationary** (MS) if for every algebra \mathfrak{A} there exists $M \prec \mathfrak{A}$ such that $\sup(M \cap \kappa_n) \in S_n$ for all but finitely many $n < \omega$

► (Foreman and Magidor) For every $\vec{\kappa}$ and every stationary sequence \vec{S} of $S_n \subseteq \kappa_n \cap \operatorname{Cof}(\omega)$, \vec{S} is MS

On Singular Stationarity

Different behavior in uncountable cofinality

- ► (Foreman Magidor) In *L*, there is a sequence \vec{S} of stationary sets $S_n \subseteq \omega_n \cap \frac{\text{Cof}(\omega_1)}{\text{Cof}(\omega_1)}$ which is not MS
- ► (Schindler) Similar non-MS examples exist in other canonical extender models *L*[*E*]
- (Koepke and Welch) If every S with S_n ⊆ ω_n∩
 Cof(ω₁) is MS then there is an inner model with stationarily measurable cardinals α < ω_n of Mitchell order o(α) ≥ ω_{n-2}.

G:Is it provable (in ZFC) that there exists a sequence of stationary sets $S_n \subseteq \omega_n$ of some fixed cofinality which is not MS?

On Singular Stationarity

Theorem

It is consistent relative to the existence of infinitely many supercompact cardinals that every sequence of fixed-cofinality stationary sets $S_n \subseteq \omega_n$ is MS

- ► (Cummings-Foreman-Magidor) If k is a Prikry generic sequence then equery stationary sequence S is MS
- ► (Koepke) It is possible to have κ_n = ω_{2n+1}, in a model where every sequence of S_n ⊆ κ_n ∩ Cof(ω₁) is MS

On Singular Stationarity

Outline of proof (cofinality $\mu = \omega_2$)

We will work in a model of GCH. Given a sequence $\langle S_n \rangle_n$ of stationary sets $S_n \subseteq \omega_n \cap \operatorname{Cof}(\omega_2)$ and an algebra \mathfrak{A} , we would like to construct $M \prec \mathfrak{A}$ which meets S_n for every $n \ge 4$.

Split the argument into three parts:

I The strategy (building M in ω -many steps) II Zoom in on a step (ideal-based construction) III Utilizing supercompactness

On Singular Stationarity

Part I - The strategy

• Given an algebra \mathfrak{A} , we start from $N \prec \mathfrak{A}$ with $|N| = \aleph_2$, $\vec{S} \in N$, and ${}^{<\omega_2}N \subseteq N$ (we say *N* is $< \omega_2$ -closed), and build an ω -sequence of extensions

$$N = M_3 \prec M_4 \prec \ldots \prec M_n \prec \ldots \prec \mathfrak{A}$$

such that

- 1. $\sup(M_n \cap \omega_n) \in S_n$ (M_n meets S_n)
- 2. $M_n \cap \omega_{n-1} = M_{n-1} \cap \omega_{n-1}$ (end extension property)
- 3. $|M_n| = \aleph_2$ and is $< \omega_2$ -closed
- $M_{\omega} = \bigcup_n M_n \prec \mathfrak{A}$ satisfies the desirable properties

On Singular Stationarity

Part II - Zoom in on a single step $M_{n-1} \mapsto M_n$

- Let $\kappa = \omega_n$, $\lambda = \omega_{n-1}$, $M_{n-1} = N$. We would like to construct $N^+ \prec \mathfrak{A}$ which meets $S = S_n$ and end extends *N* above λ
- Let *I* be a κ -complete ideal on κ and \leq_I be the order on $I^+ = \mathcal{P}(\kappa) \setminus I$ defined by $A \leq_I B$ iff $A \setminus B \in I$.
- We say the ideal *I* is (w₂ + 1)-closed if *I*⁺ has a dense subset *D* such that ≤_{*I*} ↾ *D* is a (w₂ + 1)-closed poset
- Lemma: If $I \in N$ is a $(\omega_2 + 1)$ -closed ideal with $S \in I^+$ then there is a \subseteq -decreasing sequence $\langle A_i \mid i \leq \omega_2 \rangle$ of I^+ -subsets of S, such that $A_i \in N$ for all $i < \omega_2$, and for every $f : \kappa \to \lambda$ in $N, f \upharpoonright A_i$ is constant for some $i < \omega_2$.

On Singular Stationarity

- Let $\overline{A} = A_{\omega_2} \subseteq S$. For every $\alpha \in \overline{A}$ and $f \in {}^{\kappa}\lambda \cap N$, $f(\alpha) \in N$. Consequently, $\overline{N} = SK^{\mathfrak{A}}(N \cup \{\alpha\}) = \{f(\alpha) \mid f \in N, \operatorname{dom}(f) = \kappa\}$ is an end extension of N above λ . However, we want $\sup(\overline{N} \cap \kappa) = \alpha \in S$, but $\alpha \in \overline{N}$
- ► Let $\delta \in N$ be a ladder system- $\delta(\nu) = \langle \delta(\nu)_i | i < \omega_2 \rangle$ is cofinal in ν , for every $\nu \in \kappa \cap Cof(\omega_2)$

Define
$$N^+ = SK^{\mathfrak{A}}(N \cup \{\delta(\alpha) \upharpoonright i \mid i < \omega_2\}).$$

► N⁺ ⊆ N̄ since N ∪ {δ, α} ⊆ N̄. Therefore, N⁺ end extends N above λ.
N⁺ has size |N⁺| = N₊ and is < w₊ aloged

 N^+ has size $|N^+| = \aleph_2$ and is $< \omega_2$ -closed

On Singular Stationarity

Is $\sup(N^+ \cap \kappa) = \alpha$?

- ► $\sup(N^+ \cap \kappa) \ge \alpha$ since $\delta(\alpha) \subseteq N^+$
- $\sup(N^+ \cap \kappa) \leq \alpha$ if α belongs to every club $C \subseteq \kappa$ in N

Because every $\gamma \in N^+ \cap \kappa$ is of the form $\gamma = f(\delta(\alpha) \upharpoonright j)$ for some $j < \omega_2$ and $f \in N$, and N contains the club *C* of closure points of *f*

- To find such α in $\overline{A} = A_{\omega_2}$ it suffices for $\overline{A} \in I^+$ to be stationary
- ► Corollary: If $S \in I^+$ for some ideal *I* which is $(\omega_2 + 1)$ -closed and nonstationary then *N* has an end extension N^+ above λ with $\sup(N^+ \cap \kappa) \in S$

On Singular Stationarity

Part III - Utilizing supercopmactness

- Suppose that $\langle \kappa_n \mid 1 \leq n < \omega \rangle$ is an increasing sequence of supercompact cardinals (also set $\kappa_0 = \omega$)
- Force with ℙ, a full support iteration of Levy collapse posets, Coll(κ_n, < κ_{n+1}), n < ω</p>
- ► Fix $n \ge 4$ and let $j: V \to M$ be a κ_{ω}^+ -supercompact embedding with $\operatorname{cp}(j) = \kappa_n$, in *V*
- It is well-known that the quotient *j*(ℙ)/ℙ is (< κ_{n-1})-closed, and in particular (ω₂ + 1)-closed in *V*[*G*]. Moreover, the quotient *j*(ℙ)/ℙ has a master condition *g* (i.e., *g* extends *j*(*p*) for every *p* ∈ *G*)

On Singular Stationarity

- \mathbb{P} adds κ_{n+1} new subsets to κ_n . Let $\vec{C} = \langle C_i | i < \kappa_{n+1} \rangle$ be sequence of \mathbb{P} -names in Vwhich covers all possible clubs of κ_n in V[G]
- $C^* = \bigcap j^* \vec{C}$ is in *M*, and $g \Vdash_{j(\mathbb{P})/\mathbb{P}} C^* \subseteq j(\kappa_n)$ is club.
- ► For every \mathbb{P} -name \dot{S} of a stationary subset of κ_n ,

 $g \Vdash_{j(\mathbb{P})/\mathbb{P}} (j(\dot{S}) \cap C^*)$ is stationary

- ► We can find $\gamma < j(\kappa_n)$ and a condition *r* which extends *g*, such that $r \Vdash \gamma \in C^* \cap j(\dot{S})$
- **Define** in V[G]

$$I_{\gamma,r} = \{X \subseteq \kappa_n \mid r \Vdash \gamma \notin j(\dot{X})\}$$

► $I_{\gamma,r}$ is nonstationary, $(\omega_2 + 1)$ -closed, and its dual filter contains S

On Singular Stationarity

Tight Stationarity

- Tight stationarity is a strengthening of mutual stationarity which satisfies versions of Solovay's Splitting Lemma and Fodor's Theorem
- ▶ The idea is to restrict the substructures $M \prec \mathfrak{A}$ to a family of "nicely behaved" structures

Definition

- 1. A substructure $M \prec \mathfrak{A}$ is tight for $\vec{\kappa} = \langle \kappa_n \rangle_n$ if for every function $f \in \prod_n (M \cap \kappa_n)$ there is some $g \in M \cap \prod_n \kappa_n$ such that f(n) < g(n) for all $n < \omega$
- 2. A sequences $\langle S_n \rangle_n$ is tightly stationary if for every algebra \mathfrak{A} there is a tight $M \prec \mathfrak{A}$ such that $\sup(M \cap \kappa_n) \in S_n$ for all $n < \omega$

On Singular Stationarity

- Foreman and Magidor raised the question of whether every mutually stationary sequence is tightly stationary
- Cummings-Foreman-Magidor, Foreman-Steprans, and Chen-Neeman constructed different models which contain mutually stationary sequences which are not tight
- Unfortunately, the substructure $M_{\omega} = \bigcup_n M_n$, from the last proof, is not

On Singular Stationarity

Theorem

If $\langle \kappa_n \rangle_n$ is an increasing sequence of 1-extendible cardinals then every sequence $\langle S_n \rangle_n$ of fixed-cofinality stationary sets $S_n \subseteq \kappa_n$ is tightly stationary in a generic extension

Theorem

It is consistent relative to the existence of a sequence $\langle \kappa_n \mid n < \omega \rangle$ of cardinals κ_n which are κ_n^{+n+3} -strong that there is a model with a subset $\{\omega_{s_n}\rangle_{n < \omega}$ of the ω_n 's such that very fixed-cofinality sequence $\langle S_n \rangle_n$ is tightly stationary in a generic extension

On Singular Stationarity

- The theorems build on the results of Cummings, Foreman, Magidor, and Shelah which connect the existence of tight structures with certain properties with the existence of certain scales
- Using variations of Gitik's short-extenders forcing it is possible to add scales with desirable properties
 Specifically, we add a scale \$\vec{f} = \left(f + \vec{r} < r^{++\vec{t}})\$ such

Specifically, we add a scale $\vec{f} = \langle f_{\alpha} \mid \alpha < \kappa_{\omega}^{++} \rangle$ such that there are stationarily many approachable and continuous ordinals $\delta < \kappa_{\omega}^{++}$ for which $f_{\delta}(n) \in S_n$ for almost all n

On Singular Stationarity

Thank You

preprints:

,

- 1. On Singular Stationarity I (mutual stationarity and ideal-based methods)
- 2. On Singular Stationarity II (tight stationarity and extenders-based methods)

On Singular Stationarity