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Introduction

Let M be a smooth (C∞), compact, oriented, boundaryless manifold of dimension
n ≥ 1 and let

ϕt : M −→ M

be a smooth flow associated to the vector field V .

Let E be a smooth complex vector bundle over M of rank N ≥ 1 which is
endowed with a flat connection

∇ : Ω0(M, E)→ Ω1(M, E).

Denote by d∇ : Ωk (M, E)→ Ωk+1(M, E) the induced coboundary operator
(d∇ ◦ d∇ = 0).
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Denote by Φ−t∗
k (ψ1) the solution of

∂tψ = −L(k)
V ,∇ψ, ψ(t = 0) = ψ1,

with
L(k)

V ,∇ = (d∇ + ιV )2 : Ωk (M, E)→ Ωk (M, E).

A question in dynamical systems. Fix 0 ≤ k ≤ n. Under which condition

Φ−t∗
k (ψ1)

has a limit as t → +∞ for every ψ1 in Ωk (M, E) ?
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It is convenient to introduce the “correlation function” :

∀t ≥ 0, Cψ1,ψ2 (t) :=

∫
M

ψ2 ∧ Φ−t∗
k (ψ1),

where ψ1 ∈ Ωk (M, E) and ψ2 ∈ Ωn−k (M, E ′).

Define also its Laplace transform, for Re(z) > 0 large enough,

Ĉψ1,ψ2 (z) =

∫ +∞

0

e−tz Cψ1,ψ2 (t)dt.

Meromorphic continuation ? Pollicott (1985), Ruelle (1987) : case of Axiom A
flows.
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This problem can be solved by determining a Banach space Hm
k (M, E) such that

L(k)
V ,∇ : Hm

k (M, E)→ Hm
k (M, E)

has good spectral properties (e.g. discrete spectrum).

Anosov flows (e.g. geodesic flows in negative curvature) : Liverani (2004),
Butterley-Liverani (2007), Giuletti-Liverani-Pollicott (2013).

Anosov flows (microlocal approach) : Tsujii (2010-12), Faure-Sjöstrand
(2011), Faure-Tsujii (2013), Dyatlov-Zworski (2013), etc.

Axiom A flows : Dyatlov-Guillarmou (2014). Also, in the case of
diffeomorphisms : Baladi-Tsujii (2007), Gouëzel-Liverani (2008).
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(2011), Faure-Tsujii (2013), Dyatlov-Zworski (2013), etc.

Axiom A flows : Dyatlov-Guillarmou (2014). Also, in the case of
diffeomorphisms : Baladi-Tsujii (2007), Gouëzel-Liverani (2008).
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Morse-Smale flows

A point x is said to be wandering if there exist some open neighborhood U of x
and some t0 > 0 such that

U ∩
(
∪|t|≥t0

ϕt(U)
)

= ∅.

Suppose that the nonwandering set is the union of finitely many closed
hyperbolic orbit and hyperbolic fixed points that we denote by

Λ1, . . . ,ΛK .

Define the unstable (resp.) stable manifolds :

W u/s(Λ) :=

{
x ∈ M : lim

t→−/+∞
d(ϕt(x),Λ) = 0

}
.
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One can prove that, for every x in M, there exists an unique (i , j) such that

x ∈W u(Λi ) ∩W s(Λj ).

If we suppose in addition that

∀x ∈ M, Tx M = Tx W u(Λi ) + Tx W s(Λj ) (transversality),

then we say that ϕt is a Morse-Smale flow.
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Peixoto (1962) proved that such vector fields form an open and dense family in
dimension 2. In higher dimension, it is an open set (Palis, 1968).

Goal. Describing the Pollicott-Ruelle spectrum of such flows and relate it to
topological invariants.

Hypothesis. In the following, we will always assume that the Lyapunov exponents
of the Morse-Smale flow verify some (generic) non-resonance assumptions
related to the Sternberg-Chen Theorem.

Csq. The flow can be linearized near every Λj in a smooth chart.
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Pollicott-Ruelle spectrum

Theorem (Dang-R. 2017)

Morse-Smale flow + nonresonance assumption. Let 0 ≤ k ≤ n.
Then, there exists a (minimal) discrete subset Rk (V ,∇) ⊂ C such that, given any
(ψ1, ψ2) in Ωk (M, E)× Ωn−k (M, E ′),

Ĉψ1,ψ2 (z) :=

∫ +∞

0

e−tz

(∫
M

ψ2 ∧ Φ−t∗
k (ψ1)

)
dt

has a meromorphic extension to C whose poles are contained inside Rk (V ,∇).

Rk (V ,∇) := {Pollicott-Ruelle resonances} .
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Elements inside Rk (V ,∇) ⊂ C correspond to the discrete spectrum of

L(k)
V ,∇ : Hm

k (M, E)→ Hm
k (M, E)

acting on an appropriate Sobolev space.

Each eigenvalue is associated with a spectral projector π
(k)
z0 and we set

C k
V ,∇(z0) := Ran

(
π(k)

z0

)
(Pollicott-Ruelle resonant states).
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Some comments.

Compared with previous result on the Axiom A case (Pollicott, Ruelle,
Baladi-Tsujii, Gouëzel-Liverani, Dyatlov-Guillarmou), no assumptions on the
supports of ψ1 and ψ2 (i.e. no cutoff function near the Λj ).

This is a global result on the dynamics.

Goal. Computation of this dynamical spectrum + links with topology (global
results).
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Explicit description of the spectrum

We need to fix some conventions in order to compute the spectrum. For simplicity,
we will now suppose that ∇ preserves an hermitian structure.

For a fixed point Λ, we define

σΛ = {0},

and the multiplicity
µΛ(0) = N,

where N is the rank of the complex vector bundle.
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For a closed orbit Λ, we set PΛ for the minimal period and

εΛ = 0 if W u(Λ) is orientable, and εΛ =
1

2
otherwise.

We denote by (e2iπγΛ
j )j=1,...,N the eigenvalues of the monodromy for the parallel

transport around Λ. Finally, we set

σΛ =

{
−

2iπ(γΛ
j + m + εΛ)

PΛ
: 1 ≤ j ≤ N, m ∈ Z

}
,

and the multiplicity of z0 ∈ σΛ

µΛ(z0) =

∣∣∣∣∣
{

(j ,m) : z0 = −
2iπ(γΛ

j + m + εΛ)

PΛ

}∣∣∣∣∣ ,
where N is the rank of the complex vector bundle.
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Theorem (Dang-R. 2017)

Morse-Smale flow + nonresonance assumption + ∇ preserves an hermitian
structure. Let 0 ≤ k ≤ n.
Then, one has

Rk (V ,∇) ⊂ {z : Re(z) ≤ 0} ,

and

Rk (V ,∇) ∩ iR =
⋃

Λ fixed point: dim W s (Λ)=k

σΛ ∪
⋃

Λ closed orbit: dim W s (Λ)∈{k,k+1}

σΛ.

Moreover, the multiplicity of z0 ∈ Rk (V ,∇) ∩ iR is

µk (z0) =
∑

Λ fixed point: dim W s (Λ)=k

µΛ(z0) +
∑

Λ closed orbit: dim W s (Λ)∈{k,k+1}

µΛ(z0).
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The rest of the spectrum is described by the following theorem :

Theorem (Dang-R. 2017)

Morse-Smale flow + nonresonance assumption + ∇ preserves an hermitian
structure. Let 0 ≤ k ≤ n.

Then, for every critical element Λ, there exists a sequence (zΛ,k (j))j≥1 such that

Re(zΛ,k (j)) ≤ 0, lim
j→+∞

Re(zΛ,k (j)) = −∞,

and

Rk (V ,∇) =
⋃

Λ,j≥1

(zΛ,k (j) + σΛ) .
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Some comments.

Closed orbits generate vertical bands of resonances. We recover, in the
context of Morse-Smale flows, the band structure exhibited by Faure and
Tsujii in the case of Anosov geodesic flows (2013).

The zΛ,k (j) are explicit (linear combination of eigenvalues of the linearized
system near Λ).
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We can already observe that

dim C k
V ,∇(0) =

∑
Λ fixed point: dim W s (Λ)=k

N +
∑

Λ closed orbit: dim W s (Λ)∈{k,k+1}

mΛ,

where mΛ is the multiplicity of e2iπεΛ as an eigenvalue of the monodromy around
Λ.

In particular, if the flow has 1 no fixed point and if e2iπεΛ is never an
eigenvalue of ME(Λ), then

∀0 ≤ k ≤ n, C k
V ,∇(0) = {0}.

1. These “topological” assumptions appear in the works of Fried on Reidemeister torsion.
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Links with topology

We have two natural cohomological complexes related to our problem :

Twisted De Rham complex :

0
d∇

−−→ Ω0(M, E)
d∇

−−→ Ω1(M, E)
d∇

−−→ . . .
d∇

−−→ Ωn(M, E)
d∇

−−→ 0.

Spectral Morse-Smale complex :

0
d∇

−−→ C 0
V ,∇(0)

d∇

−−→ C 1
V ,∇(0)

d∇

−−→ . . .
d∇

−−→ C n
V ,∇(0)

d∇

−−→ 0.
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Theorem (Dang-R. 2017)

Morse-Smale flow + nonresonance assumption.
Then, the maps

π
(k)
0 : Ωk (M, E)→ C k

V ,∇(0)

induce isomorphisms between the cohomology of the twisted De Rham
complex and the cohomology of the spectral Morse-Smale complex.

Recall that π
(k)
0 is the spectral projector appearing in the residue (at z = 0) of the

meromorphic extension of

Ĉψ1,ψ2 (z) :=

∫ +∞

0

e−tz

(∫
M

ψ2 ∧ Φ−t∗
k (ψ1)

)
dt
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Some comments.

In order to prove this Theorem, we use the formal analogy between our
problem and Hodge theory :

LV ,∇ = (d∇ + ιV )2 and ∆∇ = (d∇ + (d∇)∗)2.

In the case of gradient flows and of the trivial bundle M × C, we already
obtained this result (2016, see Viet’s talk).

In the case of geodesic flows on negatively curved surfaces, Dyatlov and
Zworski computed the dimension of

C k
V (0) ∩ Ker(ιV )

in terms of the Betti numbers of the underlying surface (2016).
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Applications. Suppose in addition that ∇ preserves an hermitian structure.

Then,
for every 0 ≤ k ≤ n, one has the Morse-Smale inequalities :

∑
Λ:dim W s (Λ)=k+1

mΛ + N
k∑

j=0

(−1)k−j cj (V ) ≥
k∑

j=0

(−1)k−j bj (M, E),

with equality in the case k = n and with cj (V ) the number of fixed points such
that dim W s(Λ) = j .
Recall that mΛ is the multiplicity of e2iπεΛ as an eigenvalue of the monodromy
around Λ.

In the case of the trivial bundle M × C, we recover the results of Smale (1959)
and Franks (1982).
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Torsion

Suppose now that

∀0 ≤ k ≤ n, 0 /∈ Rk (V ,∇).

Recall that it is equivalent to say that the flow has no fixed points and that e2iπεΛ

is not an eigenvalue of the monodromy (Fried’s assumptions). This also implies
that the twisted De Rham complex is acyclic.

In analogy with Ray-Singer definition of analytic torsion (=Reidmeister torsion,
Cheeger and Muller 1978-79), we set :

ζV ,∇(s) :=
n∑

k=0

(−1)k k
∑

z0∈Rk (V ,∇)∩iR

dim
(

C k
V ,∇(z0)

)
|z0|s

.
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Morse-Smale flow + nonresonance assumption + ∇ preserves an hermitian
structure + Fried’s assumptions. Then, one has

The spectral zeta function ζV ,∇(s) has a meromorphic extension to C with
(at most) one pole at s = 1 which is simple.

Moreover,

e−ζ
′
V ,∇(0) = Reidemeister torsion of (E ,∇).
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Some comments.

This illustrates that the first band of resonances carry non trivial
“topological” informations (not only the kernel).

Proof follows from our explicit description of the spectrum + Fried’s
dynamical formula for the Reidemeister torsion.
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Strategy of the proof

Construction of anisotropic Sobolev spaces of currents à la Faure-Sjöstrand.
It requires to understand the global dynamical properties of the Hamiltonian
flow induced by :

∀(x , ξ) ∈ T ∗M, HV (x , ξ) = ξ(V (x)).

Explicit construction of generalized eigenmodes using Sobolev regularity and
the Morse-Smale dynamics.

Show that these eigenmodes generate all the Pollicott-Ruelle spectrum.
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Thank you for your attention.
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