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chaos. Review papers by Nonnenmacher '11 (math), Novaes
'13 (physics)

> Proposed experiments: Hannay-Keating-Ozorio de Almeida
'94 (optical), Brun-Schack '99 (NMR quantum computer)

» Attractive model for numerical experiment:
Schomerus-Tworzydlo '04, Nonnenmacher-Zworski '05,'07,
Keating et al. '06, Nonnenmacher-Rubin '07, Keating et al.
'08, Navaes et al. '09, Carlo et al. '16...

» Many quantum open chaotic system can be reduced to open
quantum maps: Nonnenmacher-Sjostrand-Zworski '11.

» Applications going as far as computer networks:
Ermann-Frahm-Shepelyansky '15.



Open quantum map: overview
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Figure: Eigenvalues for the Google Matrix of the Linux kernel and Weyl
asymptotics, Ermann-Frahm-Shepelyansky 15.



Open baker’s maps

Open baker's maps > = s\ 4 are determined by
> an integer M > 3, the base
» aset AC{0,...,M —1}, the alphabet A B
» we always assume 1 < |A| < M
s is a canonical relation on (0, 1), x (0,1)e: i
*3,{0,2}

i (x,8) — (Mx—a,%)

—
if Xe(%,wl), ac A ]
AN

Basic model for a hyperbolic transformation with
‘holes’ through which one can escape




Discrete Cantor sets
For k € N, the domain and range of s are
I, := Domain(»*) = {(x,€): |MK. x| e Cr}
M7 = Range(>) = {(x,&): |IM*- €] € Ci}

where Ci C {0,..., M¥ — 1} is a discrete Cantor set:

Cy = Ck(M,.A) = {Zkil aM": ag,...,adk—1 € A}

r=0



Discrete Cantor sets
For k € N, the domain and range of s are
I, := Domain(»*) = {(x,€): |MK. x| e Cr}
M7 = Range(>) = {(x,&): |IM*- €] € Ci}

where Ci C {0,..., M¥ — 1} is a discrete Cantor set:

1
0a,M’: ao, ..., ak_1 EA}

Ci=Cu(M, A)= {3

Iy Iy
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Limiting Cantor set and trapped set
The trapped set in the dynamic of s is defined as K =TT NI~
where I+ =, I‘f are the incoming/outgoing tails

1

q 1

It is given by Coo X Coo Where C is the limiting Cantor set:

=N [ 5] © 0.1
k ceCy

Cso has Hausdorff dimension

_ log|A|
§ = log M €(0,1)

The topological pressure is given by P(s) = — s, s € R.
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Quantization on the torus: Discrete microlocal analysis

Quantization of observable on the torus T2 = S)l< X S%, St = R/Z:
ac C®(T?) — Opp(a) : 42 — €3

Here the Hilbert space (3 := ¢?(Zy) has dimension N >> 1.
(N ~ h=t.) Discrete Fourier transform Fy : (3, — (3,

]:NU Z e27ruZ/N

Properties of quantization
> a=a(x) = Opy(a) = an, an(j) = a(j/N);
» a=a({) = Opy(a) = FyanFn;
> [Opn(a), Opn(b)] = — 22y Opn({a, b}) + O(Nfz)zfv—wﬁ,-



Open quantum baker’'s maps

Example: M =3, A = {0,2}. We put N := M* and

xXn/3Fnizxnz 0 0
By = Fp 0 0 0 03— 03

0 0 xwny3Fn/zxng3

where we fix y € C5°((0,1);[0,1]), xn(j) = x(i/N)



Open quantum baker’'s maps

Example: M =3, A = {0,2}. We put N := M* and

xXn/3Fnizxnz 0 0
By = Fp 0 0 0 03— 03
0 0 xwny3Fn/zxng3

where we fix x € Gg°((0,1):[0,1]), xn(j) = x(U/N)
» By is a quantization of sy _4: Egorov's theorem
Bn Opy(a) = Opy(b)Bn + O(N 1) L2
if a(X7£) = b(}/a 77) when %M,A(Xag) = (%77)7 §,y €suppx

> Resonances are eigenvalues of By. They are in the unit disk
{AeC: |\ <1}

» Similar construction for any base M and alphabet A.
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Spec(By) for k =5, N = Mk
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Previous results: Walsh quantized baker's map

A different quantization using Walsh Fourier transform Wy (the
discrete Fourier transform on the group (Zy)¥) instead of the
standard discrete Fourier transform Fpy (the discrete Fourier
transform on the group Zy, N = M¥) has been studied by
Nonnenmacher-Zworski '07.

> It is explicitly solvable due to the structure of the tensor
product. No entanglement involved.

» Positive spectral gap for M = 3, A = {0,2}, but no gap for
M =4, A=1{0,2}.

» Fractal Weyl law and uniform angular distribution.



Results: spectral gap

Let Ry be the spectral radius of By:
Ry := max{|A| : A € Spec(Bn)}.
Theorem 1 [Dyatlov-J '16]

There exists (explicitly computable!)
1
B = pB(M,A) > max (0, 5 5)
such that By has an asymptotic spectral gap of size 5:

limsup Ry < M~% < 1 (1)

N—oo



Results: spectral gap

Let Ry be the spectral radius of By:
Ry := max{|A| : A € Spec(Bn)}.
Theorem 1 [Dyatlov-J '16]
There exists (explicitly computable!)
1
B = pB(M,A) > max (0, 5 5)
such that By has an asymptotic spectral gap of size 5:

limsup Ry < M~% < 1 (1)

N—oo

Remark: The pressure gap is given by § = —P(1/2) = % — 6, valid
under the pressure condition ¢ < 1/2.



Numerical example: M =5, A = {1,3}, N = M°
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Figure: For some cases the gap of Theorem 1 approximates the spectral
radius well.



Numerical example: M =5, A = {1,2}, N = M

Figure: and for some cases, this upper bound is far from sharp.
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» Pressure Gap: § = —P(1/2) if P(1/2) < 0. Patterson '76,
Sullivan '79, lkawa '88, Gaspard-Rice '89,
Nonnenmacher-Zworski '09.

» Improved Gap 8 = —P(1/2) + € for some systems with
P(1/2) < 0 where € > 0 depends on the system in an
unspecified way. Naud '05, Petkov-Stoyanov '10, Stoyanov
'11, '12, Bourgain-Gamburd-Sarnak '11, Oh-Winter '16,
Magee-Oh-Winter '14. The ideas originate from Dolgopyat
'98 on spectral radius of transfer operator for Anosov flow.
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recently.
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surfaces

For convex co-compact hyperbolic surfaces, using Fractal
uncertainty principle, improvement over both the pressure gap
g=—-P(1/2) = % — § and the trivial gap 8 = 0 has been obtained
recently.

» Dyatlov-Zahl '16: Improved gap 8 > 0 for hyperbolic surfaces
with P(1/2) = 0 and nearby surfaces, some with P(1/2) > 0;
5 is given explicitly in terms of the Ahlfors-David regularity
constant Cr and the Hausdorff dimension ¢ of the limit set.
(Additive energy, Freiman theorem)

» Dyatlov-J '17: Improved spectral gap g > % — ¢ with explicit
B in terms of Cgr and d. (A quantitative version of Naud '05,
combining Dolgopyat's idea with the fractal structure)

» Bourgain-Dyatlov '16: Improved spectral gap 8 > 0 with 3
unspecified, but only depending on Cg and §.
(Beurling-Mallivan multiplier theorem, harmonic measures)
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The proof: Reduction to fractal uncertainty principle

Let (By — A)u =0, ||u||€%l =1and |A| > ¢ > 0. Iterate Egorov’s
theorem k times (N = M¥),
By Opy(a)u = Opy(b)Byu + O(N™>) = Opy(b)A u + O(N™)
if a(Xag) = b()’a’?) + -+ when %k(ng) = (%77)

»a=1 b= Iy = u= OpN(er)u + O(N~°);

s b=1a=1_ = | Opy(l, Jull = A — O(N—)

» Contradiction if |[A\| > M~? and the fractal uncertainty

principle holds with exponent :

| OpN(lrk—)OpN(lr;)”g%’_%%’ < CN7P.



Fractal uncertainty principle
The fractal uncertainty principle

10PN (1) Opn(1rt)llez e, < CN—F
can be rewritten as
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Fractal uncertainty principle

The fractal uncertainty principle

—B
10PN (1) Opn(Lrt )l 2 < CN
can be rewritten as

||1ck]:N1ck||g;V_>z;V < CN~ P,

frequency.

Figure: Functions cannot be localized on Ci both in position and in
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Recovering the pressure gap
In the fractal uncertainty principle

e Fnlelle e < CN—2,

we can easily recover the pressure gap 8 = 5 — 0 by the volume
count:
N =M [C| = A = M = N°

and the /1 — ¢ bound for the discrete Fourier transform
~1/2
1Fnll ez < N7H2.

We can improve both of the trivial gap 5 = 0 and the pressure gap
8= % -0
Theorem 2 [Dyatlov-J '16]

The fractal uncertainty principle holds for some

g = p(M,A) > max (0,%—5).
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Proof of the fractal uncertainty principle

Observation: For N = Mk, Ny = M¥, Nb = M*k2, k = ky + ko, the
Walsh quantization satisfies the tensor product formula:

Wy = (Wn, @ 1)1 @ Why,).

Although this is no longer true for Fp due to the entanglement,
we can still get the submultiplicavity on the norm. Let

Me ' = chk‘FNleHéfVava

then we have
rk1+k2 S rkl : rkz'

Therefore it is enough to show that for some k,

re < min(1, N°71/2).
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Proof of FUP: improve the trivial gap
First, we show r, < 1: If not, then we can find u such that
HUH% =1, u=1lcgu, Fnyu=0o0nZy\Ck.

We may assume that M — 1 ¢ A by cyclic shift. Consider the
polynomial

> It has degree < maxCy < (M — 1)I\/Ik_l.
» It has at least |Zy \ Cx| > M¥ — (M — 1)¥ zeroes:

p(e_27rij/N) = \/N]-"Nu(j).

» Contradiction for large k.
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Proof of FUP: improve the pressure gap

Now we show that r, < N%~/2 = |C,|/+/N: If not, then
Ilc, Fnlc, |2 2_@_”1 Fnle, |
Cx/ " NLCy eN%ZN - \/N - Cix’y NLCy|IHS-

» This only happens when
le, Frnle,

has rank 1.
» So all 2 x 2 minors are zero.
» Contradiction when |A| > 1, k > 2.



More on fractal uncertainty exponents
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Figure: X axis: ¢; Y axis: FUP exponent 8 (numerics); all alphabets
with M < 10. Solid line: 3 = max(0, 3 — ) (trivial /pressure gap),
dashed line: g = -2 =12




More on fractal uncertainty exponents
Bounds on 8 as M — oo:

0<1/2:
1

B-(3-9)2 M®log M

0 ~ 1/2: using additive energy,
1
B 2 log M

0>1/2:

B2 exp (= Mrs o)

0 0.5 " 1

Solid: 3 = max(0, 1 — 6), dashed: 3 = %



More on fractal uncertainty exponents
Bounds on 8 as M — oo:

60<1/2:

B—(3-9) 2 tmegm

0 ~ 1/2: using additive energy,

62 IoglM
0>1/2:
6 2 exp ( o M%Jro(l)) )

0.5

Solid: 8 = max(0, % — ), dashed: g = 132

» Examples of alphabets (arithmetic progressions) with 6 < 1/2
and
1 M2671
ﬂ_ (5_5) S log M

» Examples of special alphabets with § = 1775
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Special alphabets with maximal

We call A a special alphabet, if

forall j,te A, j#{, wehave Fy(la)(i—4)=0 (2)

Such A have § = 1%5 = P(l) , which is the largest possible value

of 8 and all nonzero singular values of 1¢, Fnle, are equal to N™ B

Example: M =8, A= {1,2,5,6}, N = M*



Conjecture on band structure for special alphabets

Conjecture 1 (band structure)

Assume that A is a special alphabet. Then there exists u > 1775

such that:

> For any € > 0 and N large, there is a second gap
Spec(By) N {M~" < [\ < M~'2" ¢} =0
» Eigenvalues in the first band satisfy exact fractal Weyl law:

| Spec(Bn) N {|A| = M~#}| = |A]* = N°



Open quantum baker's map with general N

In the definition of open quantum baker's map By (again, say
M =3, A={0,2})

xn/3Fnszxngz 0 0
By = Fj 0 0 0 03— 03
0 0 xny3Fny/3xngs

we can take N to be any multiple of M. The spectral gap still
follows from fractal uncertainty principle:

e, (v Fnle,mlla -z < CN7.

Here k is chosen so that Mk < N < Mk+1 and Ck(N)CZpis a
set of size |A|¥ that looks like Cx C Zy. Cx(N) do not have good
“tensor” structures like Cy, but they are still Ahlfors-David regular!



Ahlfors-David regular sets

Let X C R be a non-empty compact set, 6 € (0,1), Cr > 1, and
0 < ag < aj < oo, we say that X is d-regular with constant Cg on
scales from ag to « if there exists a Borel measure px on R such
that

> ux is supported on X: ux(R\ X) =0;

» for any interval / of size [ag, a;], we have ux(/) < Cg|/|’;

» if in additionally / is centered at a point in X, then

ux(1) > ClI°



Ahlfors-David regular sets

Let X C R be a non-empty compact set, 6 € (0,1), Cr > 1, and
0 < ag < aj < oo, we say that X is d-regular with constant Cg on
scales from ag to « if there exists a Borel measure px on R such
that
> ux is supported on X: ux(R\ X) =0;
» for any interval / of size [ag, a;], we have ux(/) < Cg|/|’;
» if in additionally / is centered at a point in X, then
ux(1) > ClI°
Examples:
» The limit Cantor set is 6-regular with constant M2 from
scales 0 to 1 where ¢ = log|.A|/log M.
» N7ICk(N) is d-regular with constant 8 M3% from scales N~!
to 1 where § = log|.A|/ log M.



FUP for 1-dimensional regular sets |: General form
Theorem (Dyatlov-J. '17)

Assume that (X, ux) is 6-regular, and (Y, uy) is 0'-regular, from
scales h to 1 with constant Cr, where 0 < 4,8’ < 1, and

X Cly, Y C Jy for some intervals Iy, Jo. Consider an operator
By : LAY, y) — L=(X, ux) of the form

Bif() = [ e (02 6 0) v )

where ®(x,y) € C?(lp x Jo; R) satisfies 8)20,4) # 0 and
G(X,y) € Cl(/o X Jo;(C).
Then there exist constants C,eq > 0 such that
IBhll 20y py ) 12(x pux) < Ch™.
Here o depends only on 6,8, Cg as follows

1

o = (5@)*@@*@)



FUP for 1-dimensional regular sets |: Fourier transform

Consider the semiclassical Fourier transform

Fru(€) = (2mh)~Y/2 / e /My (x)dx
R
If A'is d-regular from scales h to 1, and X = A(h) = A+ [—h, h],
then 1
I La(y Frlamylliziz < Ch2a =0+,

Note that X with h%~! times the Lebesgue measure is d-regular
from scale h to 1. The volume bound |A(h)| < Ch'~9 and

L' — L bound for F, gives O(héf‘s).



FUP for 1-dimensional regular sets Il

Theorem (Bourgain-Dyatlov '16)
Let B = B(h) : L?(R) — L?(R) be defined as

Bf(x) = h~1/2 / PN (. ) (y)dy

where ® € C*(U;R), b € C§°(U) on some open set U C R?
satisfy 8)2(y¢ #0on U. Let § € (0,1) and Cr > 0. If X, Y are
d-regular sets from scales 0 to 1 with constant Cg, then there
exists § > 0, p € (0,1) depending only on §, Cg and C >0
depending on ¢, Cr, b, such that for all h € (0,1)

||1X(hp)31y(hp)||L2_>L2 < ChP.



FUP for 1-dimensional regular sets Il: Fourier transform

Again, consider the semiclassical Fourier transform

Fou() = (2mh) 12 /R &4/ (x)

If A'is d-regular from scales h to 1, and X = A(h) = A+ [—h, h],
then

11wy Frlawylliz—si2 < ChP.
Note that the L% — L? bound for F}, gives bound 0(1).

Both results can be translated to discrete Fourier transform to get
FUP for 1Ck(N)]:N1Ck(N)-



Open quantum baker's map with general N

Theorem [Dyatlov-J '17]
There exists
1
B = p(M,A) > max <0, 5~ 6)

such that By has an asymptotic spectral gap of size 5:

limsupRy < M~P <1

N—oco
But we only get explicit constant 5 for 6 < 1/2:
1 35
8> 7—5—1-(40/\4 ) e 5).

(Still polynomially in M)



Results: resonance counting
We count eigenvalues of By in annuli:

#(N,v) = | Spec(Bn) N {|A| > M~}
Theorem 3 [Dyatlov-J. '16]
For each € > 0 and v > 0 we have the fractal Weyl upper bound

#(N,v) < G, e NmOVFE - m(5, 1) = min(6,2v + 26 — 1)



Results: resonance counting
We count eigenvalues of By in annuli:
#(N,v) = | Spec(Bn) N {|A| > M~}

Theorem 3 [Dyatlov-J. '16]
For each € > 0 and v > 0 we have the fractal Weyl upper bound

#(N,v) < G, e NmOVFE - m(5, 1) = min(6,2v + 26 — 1)

> m:5forV217_5:—%P(1);
»m<O0forv<i-s=-P@3).




Conjecture: Fractal Weyl Law

Conjecture 2 (fractal Weyl law)

For each v > —1P(1) = 132, we have

#(N,v) > c,N° > 0.

Note: For convex co-compact hyperbolic surfaces, Jakobson-Naud
conjectured the gap to be of size —1P(1).



Fractal Weyl law in open quantum chaos

» Upper bound on general hyperbolic situations:
N(R,v) < C(v)R%. Sjéstrand '90, Guillopé-Lin-Zworski '04,
Sjostrand-Zworski '07, Nonnenmacher-Sjostrand-Zworski '11,
'14, Datchev-Dyatlov '13.
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Fractal Weyl law in open quantum chaos

» Upper bound on general hyperbolic situations:

N(R,v) < C(v)R%. Sjéstrand '90, Guillopé-Lin-Zworski '04,
Sjostrand-Zworski '07, Nonnenmacher-Sjostrand-Zworski '11,
'14, Datchev-Dyatlov '13.

» Lu-Sridhar-Zworski '03: Concentration of decay rates near
v = —P(1)/2. Jakobson-Naud '12: Conjecture that the actual
gap is of this size.

» Naud '14, Jakobson-Naud '14: N'(R,v) < C(v)R™") for
some m(v) < § when v < % — § for convex co-compact
hyperbolic surfaces.

» Dyatlov '15: N(R,v) < C(v)R™®")+0 where
m(d,v) = min(d,2v + 26 — 1) for convex co-compact
hyperbolic surfaces.
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Numerical example: M =6, A = {1,2,3,4}

—ip— 1 =0.5-0.60

0 1 1 1 1 1 I
2 25 3 35 4 4.5 5

Plot of log #(M¥*,v)/log M as a function of k



Numerical example: M =6, A = {1,2,3,4}
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Linear fits for the growth exponent of # (N, v) and the bound of
Theorem 3




Results: dependence on cutoffs

Recall that the defininition of By = By, involved a cutoff function
X € G°((0,1); [0, 1])

e.g. for M =3, A={0,2}

Xn/3FnzXxnz 0 0
By = F 0 0 0
0 0 Xxwny3Fn/3xng3

Theorem 4 [Dyatlov-J '16]

Assume that x1, x2 € C§°((0,1);[0,1]) and x1 = x2 near the
Cantor set Co, C [0,1]. Then for each v, eigenvalues of By, in
{IA] > M~} are O(N~°°) quasimodes of By ,.



Dependence on cutoff
If 0,M —1¢ Aitis natural to take x = 1 near Cx.

However we cannot take xy = 1:

M=5 A={1,3}, N=M> x1 =2 =1 near Css



Summary

> We obtain results on spectral gap which lie well beyond
what is known for more general systems

» We use fractal uncertainty principle, the fine structure of the
associated Cantor sets, and simple tools from harmonic
analysis, algebra, combinatorics, and number theory

» We also show a fractal Weyl upper bound

» We discover that the studied systems form a rich class
with a variety of different types of behavior



Thanks for your attention!



