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Schrödinger operators and generalised eigenfunctions

Let V ∈ C∞c (Rd ;R). We consider on L2(Rd) the Schrödinger
operator

Ph = −h2∆ + V .

Let φin ∈ C∞(Sd−1). There exists
u ∈ C∞(Rd) a solution of

(Ph − 1)u = 0.

such that

u(x) = |x |−(d−1)/2
(
e−i |x |/hφin(−ω)+e i |x |/hφout(ω)

)
+O(|x |−(d+1)/2).

We then set
Shφin := e iπ(d−1)/2φout .
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From scattering amplitudes to the scattering matrix

For any ω′ ∈ Sd−1, we may find a function Eh(x ;ω′) such that
(Ph − 1)Eh = 0 and

Eh(x ;ω′) = e
i
h
〈ω′,x〉 + e i |x |/h|x |−

1
2

(d−1)
(
ah(ω′;ω) + O

( 1

|x |

))
,

where x = |x |ω.
ah is called the scattering amplitude.

We have

Sh(φin)(ω) = φin(ω) +

∫
Sd−1

ah(ω, ω′)φin(ω′)dω′.
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Figure: Here, ω is directed towards the right, and h = 2π.

Picture made with µ-diff, a program developed by X. Antoine and
B. Thierry



Properties of Sh

Sh is unitary.

Sh − Id is trace class.

For every h > 0, Sh has discrete spectrum, accumulating only
at 1.

These eigenvalues are called phase shifts. We will write these
eigenvalues as (e iβh,n)n∈N.



Main theorem

We suppose that 1 is a non-degenerate energy level, and that the
non-trivial periodic points of the scattering relation have volume
zero.

Theorem (I. 2016)

Let f ∈ C 0(S1,C) such that 1 /∈ suppf . Then

lim
h→0
〈µh, f 〉 = lim

h→0
(2πh)d−1

∑
n∈N

f (e iβh,n) =
Vol(I)

2π

∫ 2π

0
f (e iθ)dθ.

Corollary

Let 0 < φ1 < φ2 < 2π be two angles, and let Nh(φ1, φ2) be the
number of eigenvalues e iβh,n of Sh with φ1 ≤ βh,n ≤ φ2 modulo 2π.
We then have:

lim
h→0

(2πh)d−1Nh(φ1, φ2) = Vol(I)
φ2 − φ1

2π
.



Similar results

80’s, Birman, Yafaev and Sobolev studied βh,n for a fixed h,
when n→∞.

1999, Zelditch and Zworski: very precise results on the
repartition of phase shifts for certain surfaces of revolution.

2010’s, Bulger and Pushnitski, then Nakamura: study of the
high energy behaviour, i.e. for V = h2Ṽ .

2014, Datchev, Gell-Redman, Hassell and Humphries: first
equidistribution result, for a radial potential.

2015, Gell-Redmann, Hassell and Zelditch: equidistribution
result for a compactly supported non-trapping potential.

2015, Gell-Redmann and Hassell: (very) short-range potential,
completely different behaviour!
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Idea of proof

We have
Nh(φ1, φ2) = Tr(1[φ1,φ2](Sh)).

We approach 1[φ1,φ2] by polynomials vanishing at 1.

Proposition

Suppose that the potential V is such that the hypotheses of
diversion and weak trapping are satisfied. Let k ∈ Z\{0}. We then
have

Tr
(
(Sk

h − Id)
)

= − Vol(I)

(2πh)d−1
+ o(h−(d−1)).
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Sketch of proof of the proposition

We fix k , and we cut T ∗Sd−1 into three parts, and do a quantum
partition of unity using pseudo-differential operators:

The points in T ∗Sd−1\I that don’t see supp V . In this set,
we have Sh ' Id .

The bad points in I, where κk is not well-defined, or which
are periodic, or which are close to the boundary of I.

The points in I where κk is well-defined, and which are not
periodic.

To obtain Tr
(
(Sk

h − Id)
)

= − Vol(I)
(2πh)d−1 + o(h−(d−1)), we have to

show that the trace of Sk
h in this last set is negligible, since the

trace of Id in I is Vol(I)
(2πh)d−1 .
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Link between the scattering matrix and the scattering map

2005 : Alexandrova showed that the scattering matrix is a
Fourier Integral Operator quantizing the scattering map κ, for
compactly supported potentials or metric perturbation.

2006 : Alexandrova extended this result to short-range
potentials.

2008 : Hassell-Wunsch showed an analogous result for
non-trapping metric perturbations of asymptotically conical
manifolds.
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Gaussian states at infinity

Let (ω0, η0) ∈ T ∗Sd−1, and Γ0 be a d × d symmetric matrix, with
positive definite real part, and let Q0 be a polynomial of d
variables. We shall write

φω0,η0,Γ0,Q0(ω; h) = Q0

(ω − ω0√
h

)
e−

i
h
η0·ωe−

1
2h

(ω−ω0)·Γ0(ω−ω0).

If A is a trace-class operator, we have

Tr(A) = ch

∫
T∗Sd−1

dω0dη0〈φω0,η0,Id ,1,Aφω0,η0,Id ,1〉,

where ch ∼h→0 (2πh)−3(d−1)/2.
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The scattering matrix and Gaussian states

Suppose to simplify that K = ∅.

Theorem (I. 2017)

Let (ω0, η0) ∈ T ∗Sd−1, and Γ0 be a d × d symmetric matrix, with
positive definite real part, and let Q0 be a polynomial of d
variables.
Then there exists δ1 ∈ R, Γ1 a d × d symmetric matrix, with
positive definite real part, and, for any N ∈ N, a polynomial of d
variables QN

1 such that

Shφω0,η0,Γ0,Q0 = e i
δ1
h φω1,η1,Γ1,QN

1
+ OC0(h(N−1)/2),

with
(ω1, η1) = κ(ω0, η0).



Corollary

Let (ω0, η0) ∈ T ∗Sd−1 be such that κk(ω0, η0) is well-defined, and
that κk(ω0, η0) 6= (ω0, η0). Then we have

〈Sk
hφω0,η0,Id ,1, φω0,η0,Id ,1〉 = O(h∞).

Proof.

By iterating the previous theorem, we have
Shφω0,η0,Id ,1 = φωk ,ηk ,Γk ,Q

N
k

+ O(hN), with (ωk , ηk) 6= (ω0, η0).



Is it possible to obtain an estimate on the remainder ?



The case of convex obstacles



The case of convex obstacles



The diversion hypothesis

Fact

For a strictly convex obstacle, the diversion hypothesis is
equivalent to Ivrii’s conjecture, that the periodic orbits of the
interior billiard map have measure zero.

It holds for analytic obstacles, as well as for generic obstacles
(Petkov-Soyanov, 88).



Equidistribution of phase shifts for obstacle scattering

Theorem (Gell-Redman, I., work in progress)

Let Ω be a smooth strictly convex obstacle, which is analytic or
generic. Let k ∈ Z\{0}. We then have

Tr
(
(Sk

h − Id)
)

= − Vol(I)

(2πh)d−1
+ O(h−(d−1)−1/3).

Let 0 < φ1 < φ2 < 2π be two angles. Recall that Nh(φ1, φ2) be
the number of eigenvalues e iβh,n of Sh with φ1 ≤ βh,n ≤ φ2 modulo
2π.

Corollary

There exists ε > 0 such that

(2πh)d−1Nh(φ1, φ2) = Vol(I)
φ2 − φ1

2π
+ O

(
| log h|ε

)
.
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Kirchhoff’s approximation

Recall that ah is the integral kernel of Sh − Id .

Theorem (Melrose-Taylor 85)

ah(ω, ω′)

= −1

2
(2πh)1−d ×

∫
∂Ω

e
i
h

(ω−ω′)·y (−νy · ω′ + |νy · ω|+ Rh(ω, y))dy

with
Rh ∈ h1/3S1/3.

Here νy is the outgoing normal vector at y .



Idea of proof which does not work

ah(ω, ω′)

= −1

2
(2πh)1−d ×

∫
∂Ω

e
i
h

(ω−ω′)·y (−νy · ω′ + |νy · ω|+ Rh(ω, y))dy

Compute directly Tr(Sh − Id)k using the formula for ah and
stationary phase.

Problems occur close to points (y , ω) such that |νy · ω| < h1/2.

Vol{(y , ω) such that |νy · ω| < h1/2} = O
(
h(d−1)/2

)
,

which does not compensate the factor (2πh)1−d when k becomes
large...
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Idea of proof which does work

Use Gaussian states !
〈φω0,η0 , (Sh − Id)kφω0,η0〉 can be computed easily, as long as
(ω0, η0) is far away from the glancing set.
The set of (ω0, η0) close to the glancing set has a small volume,
and (Sh − Id)k is bounded by 2k , so that∫

(ω0,η0) almost glancing
〈φω0,η0 , (Sh − Id)kφω0,η0〉

gives a negligible contribution.



Open problems and future projects

Is the diversion hypothesis generic ?

Can we say something about the associated eigenfunctions ?

Can we obtain a more precise asymptotic development ?

Is the equidistribution result true for non-convex obstacles ?

Can we use the Gaussian states construction to describe the
properties of the scattering matrix close to the trapped
trajectories ?
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Thank you for your attention


