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Introduction

I gave a definition of quasi-shuffle products in my Journal of
Algebraic Combinatorics paper in 2000. It was inspired by my
study of multiple zeta values and their generalizations. In the
same year Li Guo and William Keigher gave an essentially
equivalent construction of “mixable shuffle products” in
Advances in Mathematics. It took a few years before this was
generally recognized. My original definition had some technical
conditions that were needlessly restrictive, and starting in 2012
Kentaro Ihara and I generalized the definition, while also
emphasizing some algebraic features neglected by other
authors. Our work has recently appeared (J. Algebra, July) and
I will describe some of its features and applications, particularly
to interpolated multiple zeta values.
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Quasi-shuffle products

Here is the basic construction. Let A be a countable set, k a
field. Suppose we have a commutative product � on kA, so
that, for any a, b ∈ A, a � b is a finite sum of elements of A
with coefficients in k . Now let k〈A〉 be the noncommutative
polynomial algebra on A; its elements are sums of monomials in
elements of A with coefficients in k . We define a new product
∗ on k〈A〉 inductively by setting w ∗ 1 = 1 ∗ w = w for any
monomial w , and

au ∗ bv = a(u ∗ bv) + b(au ∗ v) + (a � b)(u ∗ v)

for a, b ∈ A and monomials u, v . Then (k〈A〉, ∗) is
commutative and associative.
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Quasi-shuffle products cont’d

Another commutative, associative product ? on k〈A〉 can be
defined similarly: let w ? 1 = 1 ? w = w for any monomial w ,
and let

au ? bv = a(u ? bv) + b(au ? v)− (a � b)(u ? v)

for a, b ∈ A and monomials u, v . If the product � is trivial, i.e.,
a � b = 0 for all a, b ∈ A, then ∗ = ? is just the shuffle product
� on k〈A〉. But if � is nontrivial, the products ∗ and ? are
different.
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A motivating example

A basic example is provided by multiple zeta values (MZVs)
and multiple zeta-star values (MZSVs) , defined by

ζ(i1, . . . , ik) =
∑

n1>n2>···>nk≥1

1

ni11 n
i2
2 · · · n

ik
k

and

ζ?(i1, . . . , ik) =
∑

n1≥n2≥···≥nk≥1

1

ni11 n
i2
2 · · · n

ik
k

respectively, where i1, . . . , ik are positive integers with i1 > 1.
It is easy to see that the product of two MZVs is a sum of
MZVs, and similarly for MZSVs.
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A motivating example cont’d

To put this in the framework of quasi-shuffle products, let
A = {z1, z2, . . . }, with product zi � zj = zi+j . Then the ∗
product on the underlying vector space H1 of Q〈A〉 is given by

zi ∗ zj = zizj + zjzi + zi+j ,

zizj ∗ zk = zkzizj + zizkzj + zizjzk + zi+kzj + zizj+k ,

and so on. If we let H0 be the subspace of H1 generated by 1
and monomials that don’t start with z1, then the linear
function ζ : H0 → R given by ζ(zi1 · · · zik ) = ζ(i1, . . . , ik) and
ζ(1) = 1 is a homomorphism from (H0, ∗) to the reals with
their usual product.
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A motivating example cont’d

The ? product on H1 looks like

zi ? zj = zizj + zjzi − zi+j

zizj ? zk = zkzizj + zizkzj + zizjzk − zi+kzj − zizj+k ,

etc. The linear function ζ? : H0 → R sending zi1 · · · zik to
ζ?(i1, . . . , ik) is a homomorphism from (H0, ?) to R. There is
an isomorphism Σ : (H1, ?)→ (H1, ∗) so that ζ? = ζΣ; it is
given by Σ(zi ) = zi , Σ(zizj) = zizj + zi+j ,

Σ(zizjzk) = zizjzk + zi+jzk + zizj+k + zi+j+k ,

and so forth.
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A motivating example cont’d

We’ll return to Σ later, but first let’s look at just what the
algebra (H1, ∗) is in our example: it turns out to be the
rational algebra QSym of quasi-symmetric functions, first
defined by Ira Gessel in 1984. The algebra QSym contains the
well-known algebra Sym of symmetric functions. Recognizing
that MZVs are homomorphic images of quasi-symmetric
functions was a key insight of my 1997 Journal of Algebra
paper: since Sym ⊂ QSym, this meant that identities of MZVs
can be obtained from identities of symmetric functions. Also,
by a 1995 theorem of Malvenuto and Reutenauer, QSym is a
polynomial algebra: we can think of (H1, ∗) as the polynomial
algebra on “Lyndon words” in the zi .
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Exotic MZVs

Quasi-shuffle algebras apply to other quantities besides MZVs
and MZSVs. For example, if we let a1 > a2 > · · · be the zeros
of the Airy function Ai(z) (all real and negative), then the sum

ζAi(i1, . . . , ik) =
∑

n1>···>nk≥1

1

ai1n1 · · · a
ik
nk

converges when i1 > 1. These “Airy MZVs” are the images of
the same quasi-shuffle algebra as the MZVs, but they are
certainly different in many ways. For example, every ζAi(n),
n ≥ 2, is a rational polynomial in

κ =
3

5
6 Γ( 2

3 )2

2π
≈ 0.729011.

Cf. Wakhare and Vignat arXiv 1702.05534.
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Multiple Polylogarithms

Other sets of numbers are homomorphic images of different
quasi-shuffle algebras. For a positive integer r , we can define
multiple polylogarithms at rth roots of unity by

Li(i1,...,ik )(ωj1 , . . . , ωjk ) =
∑

n1>···>nk≥1

ωn1j1···+nk jk

ni11 · · · n
ik
k

,

where ω = e
2πi
r , and there is an obvious “starred” version.

These are homormorphic images of the algebra (k〈A〉, ∗) with
A = {zi ,j : i ≥ 1, 0 ≤ j ≤ r − 1} and product

zi ,j � zp,q = zi+p,j+q,

with the second subscript is understood mod r . The case r = 1
is MZVs; for r ≥ 2 one has “colored” MZVs.
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q-MZVs and q-MZSVs

Another application is to the q-versions of MZVs and MZSVs.
If one defines

ζq(i1, . . . , ik) =
∑

n1>n2>···>nk≥1

qn1(i1−1)+···+nk (ik−1)

[n1]i1 [n2]i2 · · · [nk ]ik
,

where [n] = (1− qn)/(1− q) (and similarly for ζ?q), then the
algebra of these quantities the homomorphic image of the
quasi-shuffle algebra (k〈A〉, ∗) with A = {z1, z2, . . . } and

zi � zj = zi+j + (1− q)zi+j−1.
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Formal power series

Returning to the general framework of a quasi-shuffle algebra
(k〈A〉, ∗), consider a formal power series

f = c1t + c2t
2 + c3t

3 + · · · ∈ tk[[t]].

Then f induces a linear function Ψf from k〈A〉 to itself as
follows. For w = a1a2 · · · an a word in k〈A〉 and I = (i1, . . . , ik)
a composition of n (i.e., a sequence of positive integers whose
sum is n), let

I [w ] = (a1 � · · · � ai1)(ai1+1 � · · · � ai1+i2) · · · (an−ik+1 � · · · � an).

Now define

Ψf (w) =
∑

compositions I = (i1, . . . , ik ) of n

ci1 · · · cik I [w ]
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Formal power series cont’d

Given two formal power series

f = c1t + c2t
2 + · · · and g = d1t + d2t

2 + · · ·

in tk[[t]], there is a “functional composition”

f ◦ g = c1(d1t + d2t
2 + · · · ) + c2(d1t + d2t

2 + · · · )2 + · · ·
= c1d1t + (c1d2 + c2d

2
1 )t2 + · · · ∈ tk[[t]].

The following result, proved in a special case in my 2000 paper,
has been a key feature of my joint work with Ihara.

Theorem (Composition)

For f , g ∈ tk[[t]], Ψf ◦g = Ψf Ψg .
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Functions Ψf

The functions Ψf need not preserve the algebra structures
(k〈A〉, ∗) or (k〈A〉, ?), but we will shortly see some examples
that do. In our joint work Ihara and I proved the following.

Theorem (Ψf of a geometric series)

If f = c1t + c2t
2 + · · · ∈ tk[[t]], then

Ψf

(
1

1− tz

)
=

1

1− f�(tz)

for any z ∈ kA[[t]] .

Here f�(tz) means

tc1z + t2c2z � z + t3c3z � z � z + · · ·
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Specific examples

Evidently Ψt = id. The function T = Ψ−t sends a word w to
(−1)deg ww . In fact we have the following result.

Proposition

T : (k〈A〉, ?)→ (k〈A〉, ∗) is an algebra homomorphism, and so
is T : (k〈A〉, ∗)→ (k〈A〉, ?).

Clearly T 2 = id, so T is an isomorphism. Here are two more
functions: exp = Ψet−1, with inverse log = Ψlog(1+t). In my
2000 paper I proved the following.

Theorem

exp : (k〈A〉,�)→ (k〈A〉, ∗) is an isomorphism of algebras,
where � is the usual shuffle product.

This allows one to deduce the algebra structure of (k〈A〉, ∗)
from known results about (k〈A〉,�).
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The isomorphism Σ

But perhaps the most interesting function is Σ = Ψ t
1−t

. Using

the composition theorem above it is easy to show that
TΣT = Σ−1 and Σ = expT logT . Since T logT is an algebra
isomorphism from (k〈A〉, ?) to (k〈A〉,�) and exp is an algebra
isomorphism from (k〈A〉,�) to (k〈A〉, ∗), we have the
following.

Theorem

Σ : (k〈A〉, ?)→ (k〈A〉, ∗) is an algebra isomorphism that
factors through (k〈A〉,�).

But things get even more interesting when we specialize to the
case k〈A〉 = H1.
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Σ takes MZVs to MZSVs

We have already noted that ζ(Σ(w)) = ζ?(w) for w ∈ H0. By
the “Ψf of a geometric series” theorem,

Σ

(
1

1− tzi

)
=

1

1− (tzi + t2z2i + · · · )
. (1)

Now one can show that

∑
n≥0

ζ(znk )tn = exp

∑
i≥1

(−1)i−1ζ(ik)

i
t i

 (2)

Call this generating function Zk(t).
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Σ takes MZVs to MZSVs cont’d

Eq. (1) and the relation ζ? = ζΣ imply∑
n≥0

ζ?(znk )tn = ζ

(
Σ

(
1

1− tzk

))
=

1

Zk(−t)
.

For example, from the well-known result

ζ(zn2 ) =
π2n

(2n + 1)!
, i.e., Z2(t) =

sinhπ
√
t

π
√
t

we get ∑
n≥0

ζ?(zn2 )tn =
π
√
t

sinπ
√
t
,

and thus

ζ?(zn2 ) =
(−1)n2(22n−1 − 1)B2nπ

2n

(2n)!
.
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Σ takes MZVs to MZSVs cont’d

But one can do much more. There is the following identity in
k〈A〉[[t]].

Theorem (Ihara-Kajikawa-Ohno-Okuda, H-Ihara)

For a, b ∈ A,

Σ

(
1

1− tab

)
=

1

1− tab
∗ Σ

(
1

1− ta � b

)
.

Applying ζ to the theorem with a = z2, b = z1 gives∑
n≥0

ζ?((z2z1)n)tn =
∑
p≥0

ζ((z2z1)p)tp
∑
q≥0

ζ?(zq3 )tq.

ME Hoffman Quasi-shuffle Algebras



Quasi-shuffle
Algebras

ME Hoffman

Outline

Introduction

Quasi-shuffle
products

Formal power
series

Hopf algebra
structures

Interpolated
MZVs of
repeated and
even
arguments

Further
results on
interpolated
MZVs

Σ takes MZVs to MZSVs cont’d

Using the duality relation ζ((z2z1)n) = ζ(zn3 ), this implies∑
n≥0

ζ?((z2z1)n)tn =
Z3(t)

Z3(−t)
. (3)

Eq. (3) implies (using Eq. (2)) that

ζ?((z2z1)n) =
∑

i1+3i3+5i5+···=n

2i1+i3+i5+···ζ(3)i1ζ(9)i3ζ(15)i5 · · ·
1i1 i1!3i3 i3!5i5 i5! · · ·

.

Note that this involves zeta values of only odd multiples of 3:
3, 9, 15, etc.
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Hopf algebras

We have the deconcatenation coproduct ∆ defined on k〈A〉 by

∆(a1 · · · an) =
n∑

j=0

a1 · · · aj ⊗ aj+1 · · · an.

If R : k〈A〉 → k〈A〉 reverses words, i.e.,

R(a1a2 · · · an) = anan−1 · · · a1,

then we have the following result.

Theorem

(k〈A〉, ∗,∆) and (k〈A〉, ?,∆) are both Hopf algebras, with
respective antipodes S∗ = ΣTR and S? = TΣR.
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A noncommuative algebra

There is a noncommutative product � on k〈A〉 defined by
w � 1 = w = 1 � w and

a1 · · · an � b1 · · · bm = a1 · · · an−1(an � b1)b2 · · · bm

for m, n ≥ 1. If we let ∆̃ be the reduced coproduct, i.e.,
∆̃(1) = 0 and ∆̃(w) = ∆(w)− w ⊗ 1− 1⊗ w , then (k〈A〉, �)
has a canonical derivation D = �∆̃, i.e., D(1) = D(a) = 0 for
all a ∈ A, and

D(a1a2 · · · an) =
n−1∑
i=1

a1 · · · ai � ai+1 · · · an

for n ≥ 2. Note that Dn(w) = 0 when n is greater than or
equal to the length of the word w .
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An infinitesimal Hopf algebra

In fact we have the following result.

Theorem

(k〈A〉, �, ∆̃) is an infinitesimal Hopf algebra, with antipode
S� = −Σ−1.

This means that

∆̃(w � v) =
∑
v

(w � v(1))⊗ v(2) +
∑
w

w(1) ⊗ (w(2) � v),

where

∆̃(w) =
∑
w

w(1) ⊗ w(2), ∆̃(v) =
∑
v

v(1) ⊗ v(2),

and also∑
w

S�(w(1))�w(2)+S�(w)+w = 0 =
∑
w

w(1)�S�(w(2))+S�(w)+w . =
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An infinitesimal Hopf algera cont’d

Since D is nilpotent on any given word,

eD =
∞∑
n=0

Dn

n!

makes sense as an element of Homk(k〈A〉, k〈A〉). From the
general theory of infinitestimal Hopf algebras it follows that
Σ−1 = −S� = e−D , and this can easily be improved to
Σr = erD for any r ∈ k . It follows (since the exponential of a
derivation is an automorphism) that Σr is an automorphism of
(k〈A〉, �) for all r ∈ k.
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Interpolated MZVs

Shuji Yamamoto (J. Algebra, 2013) defined interpolated
multiple zeta values. It is easiest to describe them by an
example: the interpolated MZV ζr (2, 3, 1) is

ζ(2, 3, 1) + rζ(5, 1) + rζ(2, 4) + r2ζ(7),

where each term comes from combining adjacent integers in
the string, and the power of r tells how many combinations
have occurred. Evidently ζ0(i1, . . . , ik) = ζ(i1, . . . , ik) and
ζ1(i1, . . . , ik) = ζ?(i1, . . . , ik). This definition allows one to give
unified proofs of results on MZVs and MZSVs, but there is
more to say here.
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Interpolated MZVs cont’d

Yamamoto proved that the interpolated MZVs have a product
r∗, in the sense that ζr (u

r∗ v) = ζr (u)ζr (v) for u, v ∈ H0.

Actually we can define
r∗ for any set A with a product � as

above. First define, for a ∈ A and w ∈ k〈A〉,

a � w =

{
0, if w = 1;

(a � b)w ′, if w = bw ′ for b ∈ A.

Now set w
r∗ 1 = 1

r∗ w for w ∈ k〈A〉, and

au
r∗ bv = a(u

r∗ bv) + b(au
r∗ v) + (1− 2r)(a � b)(u

r∗ v)

+ (r2 − r)(a � b) � (u
r∗ v)

for a, b ∈ A, u, v ∈ k〈A〉.
ME Hoffman Quasi-shuffle Algebras



Quasi-shuffle
Algebras

ME Hoffman

Outline

Introduction

Quasi-shuffle
products

Formal power
series

Hopf algebra
structures

Interpolated
MZVs of
repeated and
even
arguments

Further
results on
interpolated
MZVs

Interpolated MZVs cont’d

Note that the fourth term is zero for r = 0, 1, and indeed that
r∗ is ∗ for r = 0 and ? for r = 1. Another exceptional case is
r = 1

2 , where the third term vanishes; we will see more about
this later. To see how the product operates, note that in the
case A = {z1, z2, . . . } with zi � zj = zi+j ,

zi
r∗ zj = zizj + zjzi + (1− 2r)zi+j

and

zi
r∗ zj

r∗ zk = zizjzk + zizkzj + zjzizk + zjzkzi + zkzizj + zkzjzi

(1− 2r)(zizj+k + zj+kzi + zjzi+k + zi+kzj + zkzi+j + zi+jzk)

(1− 5r − 5r2)zi+j+k .

ME Hoffman Quasi-shuffle Algebras



Quasi-shuffle
Algebras

ME Hoffman

Outline

Introduction

Quasi-shuffle
products

Formal power
series

Hopf algebra
structures

Interpolated
MZVs of
repeated and
even
arguments

Further
results on
interpolated
MZVs

Interpolated MZVs cont’d

Note that the fourth term is zero for r = 0, 1, and indeed that
r∗ is ∗ for r = 0 and ? for r = 1. Another exceptional case is
r = 1

2 , where the third term vanishes; we will see more about
this later. To see how the product operates, note that in the
case A = {z1, z2, . . . } with zi � zj = zi+j ,

zi
r∗ zj = zizj + zjzi + (1− 2r)zi+j

and

zi
r∗ zj

r∗ zk = zizjzk + zizkzj + zjzizk + zjzkzi + zkzizj + zkzjzi

(1− 2r)(zizj+k + zj+kzi + zjzi+k + zi+kzj + zkzi+j + zi+jzk)

(1− 5r − 5r2)zi+j+k .
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Σr and Yamamoto’s product

For any r ∈ k we can define Σr as Ψ t
1−rt

. The composition

theorem then gives us the following.

Proposition

For any r , s ∈ k, ΣrΣs = Σr+s .

Ihara and I got some interesting results involving fractional Σr

already in 2012, e.g.,

Σr

(
1

1− tzi

)
∗ Σ1−r

(
1

1 + tzi

)
= 1

for any rational r , but the key result is the relation to

Yamamoto’s product
r∗.

Theorem

For all monomials u, v ∈ k〈A〉, Σr (u
r∗ v) = Σr (u) ∗ Σr (v).
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MZVs of repeated arguments

Any MZV of repeated arguments (k , k , . . . , k) is a rational
polynomial in the ζ(ik). As above, we write Zk(t) for the
generating function

1 +
∞∑
i=1

ζ(z ik)t i = exp

∑
i≥1

(−1)i−1

i
t iζ(ik)

 .

We have already seen that Z2(t) = sinh(π
√
t)/(π

√
t), and

there are formulas for other Zk(t), k even (see Broadhurst,
Borwein and Bradley, Electron. J. of Combin. 1997).
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Interpolated MZVs of repeated arguments

To relate these to interpolated MZVs, we need the following
identity in the quasi-shuffle algebra (k〈A〉, ∗), which comes
from Ihara’s and my joint work.

Theorem (Σr of a geometric series)

For z ∈ kA[[t]],

Σr

(
1

1− tz

)
∗ 1

1 + rtz
=

1

1− (1− r)tz
.

Taking z = zk in this result and then applying ζ to both sides
gives the following formula for interpolated MZVs of repeated
arguments.
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Interpolated MZVs of repeated arguments cont’d

Corollary

For integers k ≥ 2,

∞∑
n=0

ζr (znk )tn =
Zk((1− r)t)

Zk(−rt)
.

In particular, taking r = 1
2 and k = 2 gives

∞∑
n=0

ζ
1
2 (zn2 )tn =

Z2

(
t
2

)
Z2

(
− t

2

) =
sinh(π

√
t
2 )

sin(π
√

t
2 )

=

1 +
π2

6
t +

π4

72
t2 +

13π6

15120
t3 + · · ·
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Interpolated MZVs of repeated arguments cont’d

Another case of the corollary is r = 1
2 and k = 3:

∞∑
n=0

ζ
1
2 (zn3 )tn =

Z3

(
t
2

)
Z3

(
− t

2

)
Comparing this with Eq. (3) above, we have

ζ
1
2 (zn3 ) =

1

2n
ζ?((z2z1)n).

This is a special case of the “two-one formula” relating ζ
1
2 of

odd arguments to ζ?, a proof of which has recently been
published by J. Zhao.
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MZVs of even arguments

If for k ≤ n we let E (2n, k) be the sum of all MZVs of even
arguments having depth k and weight 2n, then I showed (Int.
J. Number Theory, 2017) that

E (2n, k) =

b k−1
2
c∑

j=0

(−1)jπ2jζ(2n − 2j)

22n−2j−2(2j + 1)!

(
2k − 2j − 1

k

)
as follows from the explicit generating function

F (t, s) = 1 +
∞∑
n=1

n∑
k=1

E (2n, k)tnsk =
sin(π

√
(1− s)t)√

1− s sin(π
√
t)

=

1 +
π2t

6
s +

π4t2

360
(4s + 3s2) +

π6t3

15120
(16s + 12s2 + 3s3) + · · ·
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Generating functions

The generating function F (t, s) is the image under an
appropriate homomorphism of the generating function

F(t, s) = 1 +
∞∑
n=1

n∑
k=1

Nn,kt
nsk ∈ QSym[[t, s]],

where Nn,k is the sum of all monomial symmetric functions
corresponding of partitions of n with k parts. In fact

F (t, s) = ζP2F(t, s).

where P2 : QSym→ QSym sends each zi to z2i . The formula
on the preceding slide then follows from

F(t, s) = H(t)E ((s − 1)t),

where H(t) and E (t) are respectively the generating functions
for the complete and elementary symmetric functions.
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Interpolated MZVs of even arguments

Now we find the corresponding genenerating function for
interpolated MZVs. In any quasi-shuffle algebra (k〈A〉, ∗), the
“Σr of a geometric series” theorem gives, for p ∈ k,
z ∈ kA[[t]],

Σp

(
1

1− tz

)
=

1

1− (1− p)tz
∗
(

1

1 + ptz

)−∗
.

Specialize to H1 and let z = z1 to get

ΣpE (t) = E ((1− p)t)E (−pt)−1 = E ((1− p)t)H(pt)

and hence

ΣrF(t, s) = Σr (E ((s − 1)t)H(t)) = ΣrΣ
1
s E (st)

= Σr+ 1
s E (st) = E ((s − rs − 1)t)H((1 + rs)t)
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Interpolated MZVs of even arguments cont’d

Now if we let E r (2n, k) be just like E (2n, k), but with ζr

replacing ζ, then

F r (t, s) = 1 +
∑

n≥k≥1

E r (2n, k)tnsk

is ζrP2F(t, s) = ζΣrP2F(t, s). On the last slide we showed
ΣrF(t, s) = E ((s − rs − 1)t)H((1 + rs)t), and since P2

commutes with Σr this gives

F r (t, s) = ζP2E ((s − rs − 1)t)ζP2(H((1 + rs)t)

=
sinh(π

√
(s − rs − 1)t)

√
(1 + rs)t√

(s − rs − 1)t sin(π
√

(1 + rs)t)
=

F (t, (1− r)s)

F (t,−rs)
.
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Interpolated MZVs of even arguments cont’d

In particular,

F 1(t, s) =
F (t, 0)

F (t,−s)
=

1

F (t,−s)
,

a result I had already proved by other methods, and

F
1
2 (t, s) =

F (t, s2 )

F (t,− s
2 )

=

√
1 + s

2 sin
(
π
√

(1− s
2 )t
)√

1− s
2 sin

(
π
√

(1 + s
2 )t
)

= 1+
π2t

6
s+

π4t2

360
(4s+5s2)+

π6t3

15120
(16s+28s2 +13s3)+· · ·

so, e.g.,

ζ
1
2 (2, 4)+ζ

1
2 (4, 2) =

28π6

15120
=

π6

540
and ζ

1
2 (2, 2, 2) =

13π6

15120
.
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Symmetric sums of MZVs

Finally, I want to talk about some recent results of mine for
interpolated MZVs. I begin with symmetric sums, which might
be called an extension of some of my oldest results to
interpolated MZVs. If we sum ζ(i1, . . . , ik) over all
permutations of i1, . . . , ik (necessarily each ij ≥ 2), we always
get a rational polynomial in ordinary zeta values: for example

ζ(i1, i2) + ζ(i2, i1) = ζ(i1)ζ(i2)− ζ(i1 + i2)

and

ζ(i1, i2, i3) + ζ(i1, i3, i2) + ζ(i2, i1, i3) + ζ(i2, i3, i1)+

ζ(i3, i1, i2) + ζ(i3, i2, i1) = ζ(i1)ζ(i2)ζ(i3)− ζ(i1)ζ(i2 + i3)

− ζ(i2)ζ(i1 + i3)− ζ(i3)ζ(i1 + i2) + 2ζ(i1 + i2 + i3).
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Symmetric sums of MZVs cont’d

I gave the general result in my 1992 Pacific Journal paper. Let
Sk be the symmetric group on {1, . . . , k}, Πk the set of
partitions of {1, . . . , k}. For B = {B1, . . . ,Bl} ∈ Πk , define

c(B) = (−1)k−l(cardB1 − 1)! · · · (cardBl − 1)!

Theorem (Symmetric sums of MZVs)

For integers i1, . . . , ik ≥ 2,∑
σ∈Sk

ζ(iσ(1), . . . , iσ(k)) =

∑
B={B1,...,Bl}∈Πk

c(B)ζ(
∑
j∈B1

ij) · · · ζ(
∑
j∈Bl

ij).
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Symmetric sums of MZSVs

Not much change is required if ζ is replaced by ζ?. In my 1992
paper I also proved the following.

Theorem (Symmetric sums of MZSVs)

For integers i1, . . . , ik ≥ 2,∑
σ∈Sk

ζ?(iσ(1), . . . , iσ(k)) =

∑
B={B1,...,Bl}∈Πk

c̄(B)ζ(
∑
j∈B1

ij) · · · ζ(
∑
j∈Bl

ij),

where for B = {B1, . . . ,Bl} ∈ Πk ,

c̄(B) = (cardB1 − 1)! · · · (cardBl − 1)!

ME Hoffman Quasi-shuffle Algebras



Quasi-shuffle
Algebras

ME Hoffman

Outline

Introduction

Quasi-shuffle
products

Formal power
series

Hopf algebra
structures

Interpolated
MZVs of
repeated and
even
arguments

Further
results on
interpolated
MZVs

Symmetric sums in H1

In fact, these results follow from identities in the quasi-shuffle
algebras (H1, ∗) and (H1, ?). If, for a block Ba of a partition B
of {1, . . . , k} we define zBa = zi for i =

∑
j∈Ba

j , then the
theorem about symmetric sums of MZVs follows from∑

σ∈Sk

ziσ(1)
ziσ(2)

· · · ziσ(k)
=

∑
B={B1,...,Bl}∈Πk

c(B)zB1 ∗ · · · ∗ zBl

and the one about symmetric sums of MZSVs follows from∑
σ∈Sk

ziσ(1)
ziσ(2)

· · · ziσ(k)
=

∑
B={B1,...,Bl}∈Πk

c̄(B)zB1 ? · · · ? zBl
.
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Symmetric sums of interpolated MZVs

Indeed this generalizes to interpolated MZVs. For rational r
and B = {B1, . . . ,Bl} ∈ Πk , define

cr (B) = (−1)k−l
l∏

j=1

(cardBj − 1)!pcardBj
(r),

where

pm(r) =
m−1∑
j=0

(
m

j

)
(−r)j = (1− r)m − (−r)m.

Then I have proved that∑
σ∈Sk

ziσ(1)
ziσ(2)

· · · ziσ(k)
=

∑
B={B1,...,Bl}∈Πk

cr (B)zB1

r∗ · · · r∗ zBl
.
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Symmetric sums of interpolated MZVs cont’d

By applying ζr = ζΣr to this we obtain the following result.

Theorem (Symmetric sums of interpolated MZVs)

For integers i1, . . . , ik ≥ 2,∑
σ∈Sk

ζr (iσ(1), . . . , iσ(k)) =

∑
B={B1,...,Bl}∈Πk

cr (B)ζ(
∑
j∈B1

ij) · · · ζ(
∑
j∈Bl

ij).

Since c0(B) = c(B) and c1(B) = c̄(B), this result generalizes
the results for symmetric sums of MZVs and MZSVs. But the
case r = 1

2 is also interesting.
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The case r = 1
2

We note that

pm

(
1

2

)
=

{
0, if m even,

21−m, if m odd.

Thus

c 1
2
(B) =

{
( 1

2 )k−l
∏l

j=1(cardBj − 1)!, if cardBj odd for all j ,

0, otherwise,

so when r = 1
2 we need only sum over partitions in which every

block has odd cardinality, e.g.,

ζ
1
2 (4, 3, 2) + ζ

1
2 (4, 2, 3) + ζ

1
2 (3, 4, 2) + ζ

1
2 (3, 2, 4) + ζ

1
2 (2, 3, 4)

+ ζ
1
2 (2, 4, 3) = ζ(4)ζ(3)ζ(2) +

1

2
ζ(9).
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Interpolated MZVs of repeated arguments

From the theorem on symmetric sums of interpolated MZVs
above we obtain the following corollary, which complements the
generating function result we gave earlier.

Corollary

For i ≥ 2 and positive integer n,

ζr (zni ) =∑
partitions λ =
(λ1,...,λl ) of n

(−1)n−l

1m1(λ)m1(λ)!2m2(λ)m2(λ)! · · ·

l∏
j=1

pλj (r)ζ(iλj),

where mj(λ) is the multiplicity of j in λ.
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Interpolated MZVs of repeated arguments cont’d

In the case r = 1
2 this is

ζ
1
2 (zni ) = ∑

partitions λ =
(λ1,...,λl ) of n

all λi odd

2l−n

1m1(λ)m1(λ)!3m3(λ)m3(λ)! · · ·

l∏
j=1

ζ(iλj).

For example,

ζ
1
2 (2, 2, 2) =

2−2

3
ζ(6) +

1

6
ζ(2)3 =

13π6

15120
.

ME Hoffman Quasi-shuffle Algebras



Quasi-shuffle
Algebras

ME Hoffman

Outline

Introduction

Quasi-shuffle
products

Formal power
series

Hopf algebra
structures

Interpolated
MZVs of
repeated and
even
arguments

Further
results on
interpolated
MZVs

Totally odd sum theorem for 1
2-MZVs

By combining the two-one theorem of Zhao with the cyclic sum
theorem of Ohno and Wakabayashi, I can prove the following
“totally odd sum theorem” for interpolated MZVs with r = 1

2 .

Theorem

Let n ≥ 2, and let l < n be a positive integer of the same
parity. Then∑

a1+···+al=n
ai odd, a1>1

ζ
1
2 (a1, . . . , al) =

n − 1

s − 1

(
s − 1

l − 1

)
ζ(n)

2l
,

where s = n+l
2 .

ME Hoffman Quasi-shuffle Algebras



Quasi-shuffle
Algebras

ME Hoffman

Outline

Introduction

Quasi-shuffle
products

Formal power
series

Hopf algebra
structures

Interpolated
MZVs of
repeated and
even
arguments

Further
results on
interpolated
MZVs

Totally odd sum theorem for 1
2-MZVs cont’d

Since

ζ
1
2 (a, b, c) = ζ(a, b, c)+

1

2
(ζ(a+b, c)+ζ(a, b+c))+

1

4
ζ(a+b+c),

this has the following corollary.

Corollary

If n is odd, then ∑
a1+a2+a3=n
ai odd, a1>1

ζ(a1, a2, a3)

is a polynomial in ordinary zeta values with rational coefficients.

(Recall that the parity theorem says that ζ(w) is a rational
polynomial in multiple zeta values of lesser depth when the
weight and depth of w have opposite parity.)
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