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Definitions, notations,…

Series occurring in many interesting (as well as uninteresting) problems, such
as perturbation theory, are divergent, understood as zero radius of convergence.
E.g.

∑
k k!zk . Écalle found that, when their origin is “natural” they are resur-

gent.

A resurgent function (in Borel plane, or in the convolutive model) is analytic
except for a discrete set of singularities on any Riemann sheet, and has at most
exponential growth at infinity. Usually zero is assumed to be a point of ana-
lyticity. The singularities of a resurgent functions satisfy a rich set of mutual
relations, the object of alien calculus.

A resurgent series f̃ is the asymptotic series (in 1/x) of f = LF =
∫∞

0 e−xpF (p)dp
of a resurgent function F . If F is resurgent, f is also called resurgent (in the ge-
ometric model, or physical domain).

Resurgent series can be convergent, i� F is entire. Otherwise their domain
of convergence is empty: if we for instance integrate by parts, we get that
LF ∼ f̃ = F (0)/x+F ′(0)/x2 +· · ·+F (n)(0)/xn+· · · , the Taylor series stripped
of the 1/n!, the Laplace transform of the series of F (Watson’s Lemma).
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Stokes Phenomena

F (p) = (1− p)−1 is perhaps the simplest nontrivial resurgent function, giving
by Laplace transform,

f (x) =

∫ ∞−0i

0
e−xp(1− p)−1dp =: e−xEi+(x)

For large x , e−xEi+(x) ∼ L
∞∑
k=0

pk =
∑
k

k!x−k−1 = f̃ .

Rotating the contour up gives the Stokes transition

e−xEi+(x) :=

∫ ∞+0i

0
e−xp(1− p)−1dp− 2πie−x =: e−xEi−(x)− 2πie−x

a jump in Laplace representation across the Stokes line R+.

O Costin, R D Costin, G Dunne Div2Conv 3 / 33



Stokes Phenomena

F (p) = (1− p)−1 is perhaps the simplest nontrivial resurgent function, giving
by Laplace transform,

f (x) =

∫ ∞−0i

0
e−xp(1− p)−1dp =: e−xEi+(x)

For large x , e−xEi+(x) ∼ L
∞∑
k=0

pk =
∑
k

k!x−k−1 = f̃ .

Rotating the contour up gives the Stokes transition

e−xEi+(x) :=

∫ ∞+0i

0
e−xp(1− p)−1dp− 2πie−x =: e−xEi−(x)− 2πie−x

a jump in Laplace representation across the Stokes line R+.

O Costin, R D Costin, G Dunne Div2Conv 3 / 33



Stokes Phenomena

F (p) = (1− p)−1 is perhaps the simplest nontrivial resurgent function, giving
by Laplace transform,

f (x) =

∫ ∞−0i

0
e−xp(1− p)−1dp =: e−xEi+(x)

For large x , e−xEi+(x) ∼ L
∞∑
k=0

pk =
∑
k

k!x−k−1 = f̃ .

Rotating the contour up gives the Stokes transition

e−xEi+(x) :=

∫ ∞+0i

0
e−xp(1− p)−1dp− 2πie−x =: e−xEi−(x)− 2πie−x

a jump in Laplace representation across the Stokes line R+.

O Costin, R D Costin, G Dunne Div2Conv 3 / 33



Further rotation shows that for x ∈ iR+, the antistokes line,

e−xEi+(x) ∼ −2πie−i|x| + f̃

to leading order f now oscillates. A qualitative change of asymptotic behavior
of f , the Stokes phenomenon, would be impossible had f̃ converged to f
(Dyson’s argument).

Likewise, as the Gamma function has poles at all negative integers, the power
series in the Stirling formula

Γ(x + 1) ∼
√

2πx
(x
e

)x (
1− 1

12x
− 1

144x2 · · ·
)

must be divergent.

Power series cannot represent, globally, functions with qualitative changes of
behavior.
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In particular, resurgent series are Borel summable (or generalized summable,
a�er Écalle medianization). Starting from the divergent series, Borel summa-
tion consists of formal inverse Laplace transform, analytic continuation on R+

and Laplace transform. Of these, analytic continuation is the most problematic,
from a practical standpoint.

Plan. •We develop tools to extract maximal information from resurgent se-
ries, perhaps “numerically” given, and to provide e�icient ways of analytic con-
tinuation.

•We find simple convergent, while global and asymptotic rational expansions
for resurgent functions. (Convergent expansions can only exist in terms of sin-
gular, or nontrivial, functions, as discussed.)

• Combining the above we show how divergent resurgent series can be reex-
panded convergently.

• We illustrate this approach, which is otherwise general, on Painlevé P1, an
important equation for which there is still need for e�icient methods to calcu-
late the values of the so-called tronquée solutions in their analyticity sectors.
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An analog of Mi�ag-Le�ler for resurgent functions:
the resurgent function decomposition

The classical Mi�ag-Le�ler theorem: any meromorphic function is a conver-
gent sum of ck,l/(z − zk)pl + Polynomkl plus an entire function (generalizing
the usual partial fraction decomposition).

There is a similar decomposition for resurgent functions, regardless of the sin-
gularity types.

Theorem (OC, R Costin)
On the first Riemann sheet, any resurgent function is an entire function plus a geomet-
rically convergent sum of resurgent elements, resurgent functions with only one singu-
larity and algebraic decay at infinity.

π√
1− p2

= −
2i arccos

(√
1−p√

2

)
√

1− p2
+

2i arccosh
(√

p+1√
2

)
√

1− p2
(1)

The proof relies on the solution of a modified Riemann-Hilbert problem.
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Lemma
Let F be resurgent, eν|p| its exponential bound and ω a singular point. Define

Fω(p) =
exp(µωp)

2πi

∫
C

F (s) exp(−µωs)
s − p

ds (2)

where µω > ν and C a surrounds the singularity as shown. Then Fω − F is analytic at
ω and on the first Riemann sheet, Fω is only singular at ω. Fω = O(1/p) for large p.

Note
If yk = LYk are the series in the transseries of y0, if the singularities of Yk are L1 and
Yk(p) = O(1/p) for large p, then 2πiFω =

∫∞
0 (ωk + s − p)−1Yk(s)ds.
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Fω(p) =
exp(µωp)

2πi

∫
C

F (s) exp(−µωs)
s − p

ds (3)

The function Fω is manifestly analytic outside or inside the contour (the inte-
grand is analytic in p), which can be deformed if p 6→ ω. But the di�erence
between the integral with p outside and inside is the residue, F (p). So F − Fω
is analytic at ω.
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Fω(p) =
exp(µωp)

2πi

∫
C

F (s) exp(−µωs)
s − p

ds (4)

Lemma
There are (concrete) choices of µω which make the sum S(p) =

∑
ω Fω convergent. The

function F − S is entire.

The proof of the first part is technical. The second part is immediate since F−S
is singularity-free on the first (thus only) Riemann sheet.
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Dyadic expansions: convergent rational functions
re-expansions of divergent series

Fω(p) =

∫
C

F (s)
s − p

ds (5)

To find rapidly convergent representations of Laplace transforms of resurgent
functions in terms of rational functions (ultimately in terms of ai/(x − xi)).

Since
ai/(x − xi) = aiL[exip]

In Borel plane we need rapidly convergent representations of resurgent func-
tions in terms of exponentials valid in a half plane, to ensure a 2π sector in
the geometric model.

By (5) we only need to obtain exponential expansions for 1/(s − p).
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Proposition (A curious identity)
∀p ∈ C (all singularities are removable)

1
p

+
1

e−p − 1
+
∞∑
k=1

2−k

e−2−kp + 1
= 0

By changes of variable, ∀a ∈ C useful in choosing the domain of convergence

1
a

1
s − p

=
eas

eas − eap
−
∞∑
k=1

2−kea2−ks

ea2−ks + ea2−kp

Proof.

The partial fraction decomposition of 1/(1− x2n) with x = e−p/2n gives

1

2n(1− e−
p

2n )
=

1
1− e−p

−
n∑

k=1

2−k

e−
p

2k + 1
(6)

The equality follows by passing to the limit n→∞.
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An even more elementary proof relies on the fact that any integer is even or
odd… The fact that any integer is 3k, 3k + 1 or 3k + 2 yields an expansion in
base 3 etc.

The convergence is obviously geometric and uniform on compact sets, and re-
mains geometric convergent a�er Laplace transform.

We then write

eas

eas − eap
=

eas

eas − 1 + (1− eap)
= −aeas

∞∑
k=0

(1− eap)k

(1− eas)k+1

(same for the 2−k terms), integrate in s and note that

L(1− eap)k =
k!

x(x + a) · · · (x + ka)
=:

k!

ak(x/a)k+1
= O(a−kka−x/a)

where (x)k+1 := x(x + 1) · · · (x + k).
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(same for the 2−k terms), integrate in s and note that

L(1− eap)k =
k!

x(x + a) · · · (x + ka)
=:

k!

ak(x/a)k+1
= O(a−kka−x/a)

where (x)k+1 := x(x + 1) · · · (x + k).
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Theorem
If F is resurgent, then f = LF has a generalized Mi�ag-Le�ler decomposition∑

k
ck

x−xk , where all xk lie on one ray (where they are typically dense), and the
convergence is geometric in the sector where f has transseries representation(s).

Examples

Ψ(x + 1) = ln x +
∞∑
k=1

∞∑
m=0

m!

2m+1(2kx + 1)m+1
; x /∈ R− (7)

e−xEi+(x) = −
∞∑
m=1

Γ(m)

2m(y)m
+
∞∑
k=1

∞∑
m=1

Γ(m)e−
iπ
2k

(1 + e−
iπ
2k )m

1
(2ky)m

; y = − ix
π

; x /∈ −iR+

(8)
Unlike classical factorial series, these dyadic expansions converge geometri-
cally, and in a sector of width 2π rather than π (the partial fraction decompo-
sition of usual factorial series does not converge).
More at arXiv:1608.01010 (with R Costin),
arXiv:1705.09687 (with G Dunne)
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Figure: Exact (ψ(1 + x) − ln x) and large x dyadic expansion (dashed red and blue
curves), contrasted with the first 4 partial sums of the standard asymptotic expan-
sion (do�ed curves). Even at very small x , the dyadic expansion is very accurate,
while the asymptotic expansions show the typical behavior of breaking down at
small x .
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Global information from the divergent series (with
G Dunne)

This important in the many problems where the exact solution is unavailable,
or worse the origin problem is too complicated to be rigorously analyzed.

I’ll take a particularly important solution of the Painlevé equation P1,

f ′′ = 6f 2 + z

In normalized, Boutroux variables, the equation becomes

y ′′(x) +
y ′(x)

x
−
(

1 +
4

25x2

)
y(x)− 1

2
y(x)2 − 4

25x2 = 0

All solutions have poles in some sectors. Modulo symmetries, there is a unique
one, the tritronquée which is pole free in a sector of width 8π/5. It has a
(divergent) asymptotic series in the sector of analyticity,

y(x) ∼ − 4
25x2 −

392
625x4 −

6272
625x6 − · · ·
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We took 200 nonzero terms of the divergent series (∼ 200 terms are available
in a number of interesting models in physics), with the purpose of devising
e�icient ways to obtain accurate information about (1) the structure of singu-
larities in Borel plane; (2) obtaining higher terms in the transseries (giving thus
an approximation for all the tronquée solutions, those which are pole-free in
some sector); (3) finding connection formulae: the Stokes constant (known)
and the central connection (infinity to zero), not known exactly.

The methods we are seeking should be provable with concrete estimates for
resurgent functions and be general.

The radius of convergence of the Borel plane Ỹ0(p) series is one. How can we
see what the function does past the unit disk? Analytic continuation by series
re-expansion is known as very ine�icient. Padé approximants are much be�er
and o�en used, but quite suboptimal for resurgent functions.

Padé[n,m] of a series S is the unique rational function Rnm = Pn/Qm such that
S − Rnm = o(pm+n). Clearly Rnm converge wherever S does, and o�en beyond.
For a meromorphic function f , convergence holds in C \ {the poles of f }.
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Poles of the Padé approximation of P1, p plane
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Figure: Placement of the poles of the Padé[98, 98] of the tritronquée in Borel plane,
Y0. The actual singularities of Y0 are, however, exactly the nonzero integers.

O Costin, R D Costin, G Dunne Div2Conv 17 / 33



Improvement by conformal maps

The Taylor series of Y0, as such, does not give any information past the disk of
convergence; Padé only shows one singularity per ray.

Y0 = L−1ỹ0 is analytic in the simply connected domain D := C\±[1,∞). This
is known, and can be determined based on the series.

ϕ(z) =
2z

1 + z2 maps the unit disk D conformally onto D. Thus the Taylor series

of Y0(ϕ(z)) also has radius of convergence one. With ϕ−1(p) =
p√

1− p2 + 1
,

the series Ỹ0(ϕ)(ϕ−1(p)), a function series in powers of
p√

1− p2 + 1
now con-

verges in the whole of D! It is known that zn is the best polynomial basis in D,
so this is the best approximation in powers of a function. Conformal-Taylor ex-
pansions (our ad-hoc name) are be�er than Padé, especially near singularities.

It turned out that the idea of conformal-Taylor was known, and in fact intro-
duced for Borel plane analysis (D.I. Kazakov, O.V. Tarasov, D.V. Shirkov, (1979)).
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Taylor series are however optimal in D only in the class polynomial approxima-
tions. Padé is known to provide more accurate representation of meromorphic
functions, and in practice, of most functions.

It is natural to combine conformal maps with Padé, both nearly optimal: use
Padé of Y0(ϕ) instead of the Taylor series. Call the combination conformal-
Padé.

The resulting accuracy is quite surprising, at least to us.

Experimentally, if the error of Pade or conformal-Taylor is ε, then conformal-
Padé gives roughly ε2. On the singular line conformal-Padé works very well,
Padé fails, and conformal-Taylor would only see the position of the singularities
and their rough type.

To summarize conformal-Padé:

(1) We calculate the Taylor series of Y0 ◦ ϕ : D→ C, where ϕ(D) = D.

(2) We find the Padé[m,m] of the series in (1), Pm(z).

(3) Y0(p) = (Y0 ◦ ϕ)(ϕ−1)(p) ≈ Pm(ϕ−1)(p) : D → C.

O Costin, R D Costin, G Dunne Div2Conv 19 / 33



Taylor series are however optimal in D only in the class polynomial approxima-
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tions. Padé is known to provide more accurate representation of meromorphic
functions, and in practice, of most functions.

It is natural to combine conformal maps with Padé, both nearly optimal: use
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The conformal-Padé method for y0 of P1, 200 terms

Some features of conformal-Padé, P1:

The accuracy conformal-Padé on a circle of radius 55 in p is at least∼ 10−18 at
±55 and ∼ 10−33 at ±55i, farthest away from the singularities.

Upon Laplace transform, this yields 34 accurate digits for the tritronquée when
the un-normalized variable |z| = 1.

Curiously perhaps, conformal-Padé works on the second Riemann sheet of Y0,
on a distance less than the separation of the singularities (1 here).

From the given truncation, conformal-Padé gives an approximate Stokes con-
stant with 96 digits. If the resurgent element decomposition is used together
with the asymptotics of y1, ..., y10 (formally obtainable from P1) up to a multi-
plicative constant, and we use their resurgence relations the accuracy im-
proves to 716 digits.
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Poles of the Padé [98, 98] approximation of Y0

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Figure: Placement of the poles of the Padé[98, 98] of the tritronquée in Borel plane,
Y0. The actual singularities of Y0 are, however, exactly the nonzero integers.
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The [98,98] Padé of Y0(ϕ(z)), P ◦ S ◦ ϕ

The poles of Pade S(ϕ(z)))

in red, are outside the

closed unit disk

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure:
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Poles, in p plane. If not on R, they are on the 2nd
Riemann sheet

Figure:
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Poles of the Padé [98, 98] approximation of Y0
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Figure: Placement of the poles of the Padé[98, 98] of the tritronquée in Borel plane,
Y0. The “brilliance” is proportional to the residue, and it is additive.
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Poles of the Padé [98, 98] approximation of Y0

-4 -2 2 4

-4

-2
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4

Figure: Placement of the poles of the conformal-Padé[98, 98] of the tritronquée in
p-plane, Y0. The actual singularities of Y0 are, however, exactly the nonzero integers.
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The Stokes constant and the series for Y1

Y0 is now approximated by Ỹ0 := (P ◦ S ◦ ϕ)(ϕ−1). The leading term in the
Puiseux series of Ỹ0 at 1 is C(1− p)−1/2 where C = (−i/

√
2π)S. We get

C = 0.2465617776245999222 · · ·

which di�ers from the correct value S1 = π−1
√

3/5 by 3.3 · 10−96.

The rest of the series at 1 is of the form A(1−p)+
√

1− pB(1−p), A,B analytic.
The singular part is the expansion of S1Y1 and A is the analytic part of Y0. We
calculated the first 60 terms, and the accuracy, with respect to the known Y1

is 10−94 for the first one down to 10−31 for the 60th. Higher terms can be cal-
culated by other means (I’ll describe them later.) Using the resurgent element
approach, with the current method and 200 coe�icients, S can be calculated
with about 710 digits.

O Costin, R D Costin, G Dunne Div2Conv 26 / 33



Resonance method for determining the Stokes
constant S

For resurgent functions such as the tritronquée, the Yk are calculable algorith-
mically, up to multiplicative constants. All these constants are linearly related
through alien calculus to S = π−1

√
3/5, the multiplicative constant of Y1 (pre-

tend it’s unknown).

The Stokes constant S is the unique one with the property that subtracting from
Y0 the resurgent elements corresponding to S, Y0 becomes entire. In P1, sub-
tracting out Y1, ...Y10 with the correct constant results in a drop of the highest
order coe�icient of the series of Y0 by a factor of 10716.

The high order Taylor coe�icients of the resurgent elements,

ckm =
1

2πi

∮
Yk(s)

(k + s)m+1 ds

can be, in turn, calculated with very high accuracy: the integrand becomes a
simple rational function and the integral is explicit, if we change variables to D
and expand the D− Padé approximant by partial fractions.

Next: pictures.
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Plot of Y0 on the imaginary axis
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Figure: Y0 on the imaginary line (red=real part, blue=imaginary part; it looks essen-
tially the same in all directions except for the Stokes ray.
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Plot of Y0 on the singularity line
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Figure: Y0 on the real line, which is a Stokes ray, a ray of singularities (red=real part,
blue=imaginary part. Note: conformal-Padé is calculated on the very singular line.

O Costin, R D Costin, G Dunne Div2Conv 29 / 33



Plot of y0 in the domain of analyticity
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Figure: y0 on −iR+ ; it looks essentially the same inside the analyticity sector.
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The Stokes transition: Im ex
√
x(y+

0 − y−0 ) on the
Stokes line R+
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Figure: At x = 110 one gets S with 3 digits, where the real part is about 1050.
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Plot of y0 on the edge of the sector of analyticity, an
antistokes line
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Figure: y0 on iR+ (red=real part, blue=imaginary part
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Thank you!
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