Dichotomy of Hamiltonian operator matrices from systems theory

Christian Wyss

University of Wuppertal, Germany

Mathematical aspects of the physics with non-self-adjoint operators, CIRM 2017

Hamiltonian operator matrix

Hamiltonian operator matrix from mathematical systems theory:

$$
T=\left(\begin{array}{cc}
A & -B B^{*} \\
-C^{*} C & -A^{*}
\end{array}\right)
$$

Setting:

- A closed, densely defined operator on Hilbert space H,
- B:U $\mathrm{U} \rightarrow \mathrm{C}: H \rightarrow Y$ bounded,
- U, Y Hilbert spaces.

Then

- $B B^{*}, C^{*} C: H \rightarrow H$ bounded,
- T closed, densely defined on $H \times H$.

Hamiltonian and Riccati equation

Hamiltonian

$$
T=\left(\begin{array}{cc}
A & -B B^{*} \\
-C^{*} C & -A^{*}
\end{array}\right)
$$

Operator Riccati equation associated with Hamiltonian:

$$
A^{*} X+X A-X B B^{*} X+C^{*} C=0
$$

Connection (formal)

Linear operator X is solution of Riccati equation if and only if its graph subspace $\Gamma(X)=\left\{\left.\binom{v}{X v} \right\rvert\, v \in \mathcal{D}(X)\right\}$ is invariant under T.

Systems theory: interested in bounded selfadjoint nonnegative solution X.

The role of A, B, C in systems theory

Linear system described by operators A, B, C :

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
& y(t)=C x(t)
\end{aligned}
$$

- A generator of a strongly continuous semigroup
- B control or input operator
- C observation or output operator

General properties of the Hamiltonian

$$
T=\left(\begin{array}{cc}
A & -B B^{*} \\
-C^{*} C & -A^{*}
\end{array}\right)
$$

Note: T is (in general) not selfadjoint or normal.
But T has a symmetry:
Consider indefinite inner product $[\cdot, \cdot]$ on $H \times H$:

$$
[\cdot, \cdot]=(J \cdot, \cdot), \quad J=\left(\begin{array}{cc}
0 & -i I \\
i l & 0
\end{array}\right)
$$

T is J-skew-selfadjoint, $T^{[*]}=-T$.
Consequence: $\sigma(T)$ symmetric w.r.t. imaginary axis.

Existence of invariant graph subspaces

Theorem (Langer, Ran, van de Rotten (2002))

Let A be sectorial, $0 \in \varrho(A)$. Let B, C bounded as above. Then T is bisectorial and dichotomous, in particular

$$
V=V_{+} \oplus V_{-} \text {with } V_{ \pm} T \text {-invariant, } \sigma\left(\left.T\right|_{V_{ \pm}}\right) \subset \mathbb{C}_{ \pm}
$$

If moreover

$$
\begin{equation*}
\bigcap_{\lambda \in i \mathbb{R}} \operatorname{ker} B^{*}\left(A^{*}-\lambda\right)^{-1}=\{0\}, \tag{ac}
\end{equation*}
$$

then $V_{ \pm}=\Gamma\left(X_{ \pm}\right)$where X_{+}selfadjoint nonpositive, X_{-}bounded selfadjoint nonnegative.

Idea of the proof

- $T=S+R=\left(\begin{array}{cc}A & 0 \\ 0 & -A^{*}\end{array}\right)+\left(\begin{array}{cc}0 & -B B^{*} \\ -C^{*} C & 0\end{array}\right)$
- S is bisectorial and dichotomous

- structure of $T: i \mathbb{R} \subset \varrho(T)$
- perturbation (R bounded): T is bisectorial and dichotomous
- T J-skew-selfadjoint \& cond. (ac) $\Rightarrow V_{ \pm}=\Gamma\left(X_{ \pm}\right)$, $X_{ \pm}$selfadjoint
- T J -dissipative $\Rightarrow X_{+}$nonpositive, X_{-}nonnegative
- X_{-}bounded...

Generalisation 1: $B B^{*}, C^{*} C$ unbounded on H

Tretter, W. (2013): Generalisation of theorem to

$$
T=\left(\begin{array}{cc}
A & -Q_{1} \\
-Q_{2} & A^{*}
\end{array}\right)
$$

where

- Q_{1}, Q_{2} symmetric nonnegative operators on H,
- $Q_{1}, Q_{2} p$-subordinate to A^{*}, A, respectively, with $0 \leq p<1$; e.g.

$$
\left\|Q_{1} x\right\| \leq \beta\|x\|^{1-p}\left\|A^{*} x\right\|^{p}, \quad x \in \mathcal{D}\left(A^{*}\right)
$$

However: Setting does not allow for systems with boundary control or observation.

Generalisation 2: Extrapolation spaces

Setting:

- A closed, densely defined operator on Hilbert space H,
- To simplify the notation: A normal
- $B: U \rightarrow H_{-r}, C: H_{s} \rightarrow Y$ bounded, $r+s \leq 1$

Here

$$
H_{1} \subset H_{t} \subset H \subset H_{-t} \subset H_{-1}, \quad 0<t<1
$$

scale of Hilbert spaces defined by

$$
H_{t}=\mathcal{D}\left(|A|^{t}\right), \quad H_{-t}=\text { completion of } H \text { w.r.t. }\left\|\left(I+|A|^{t}\right)^{-1} \cdot\right\| \text {. }
$$

Duality:

- $\left(H_{t}\right)^{\prime} \cong H_{-t}$ via inner product of H
- $B^{*}: H_{r} \rightarrow U, C^{*}: Y \rightarrow H_{-s}$

Example: heat equation with bndry. control \& observation

$$
\begin{aligned}
\partial_{t} v & =\Delta v & & \text { on } \Omega \subset \mathbb{R}^{d} \text { bounded, } & & \\
\partial_{n} v & =u & & \text { on } \partial \Omega \text { smooth, } & & (u \text { control) } \\
y & =\left.v\right|_{\partial \Omega} & & \text { on } \partial \Omega . & & (y \text { observation })
\end{aligned}
$$

Reformulation as linear system:

- $H=L^{2}(\Omega), U=Y=L^{2}(\partial \Omega)$
- $A=\Delta, \mathcal{D}(A)=W^{2,2}(\Omega)+$ Neumann b.c.
- $B^{*}, C: W^{\frac{1}{2}, 2}(\Omega) \rightarrow L^{2}(\partial \Omega)$ Dirichlet trace

Then

$$
\begin{gathered}
H_{1}=\mathcal{D}(A) \subset W^{2,2}(\Omega) \quad \Rightarrow \quad H_{1 / 4} \subset W^{\frac{1}{2}, 2}(\Omega) \\
\Rightarrow \quad B^{*}, C: H_{1 / 4} \rightarrow L^{2}(\partial \Omega)
\end{gathered}
$$

Remark: B^{*}, C not closable as unbounded operators on $L^{2}(\Omega)$.

Hamiltonian in extrapolation setting

- A normal on H,
- $B: U \rightarrow H_{-r}, C: H_{s} \rightarrow Y$ bounded, $r+s \leq 1$.

Then

- $B^{*}: H_{r} \rightarrow U, C^{*}: Y \rightarrow H_{-s}$
- BB* $: H_{r} \rightarrow H_{-r}, C^{*} C: H_{s} \rightarrow H_{-s}$
- extensions $A: H_{1-r} \rightarrow H_{-r}, A^{*}: H_{1-s} \rightarrow H_{-s}$
- $H_{1-r} \subset H_{s}, H_{1-s} \subset H_{r}$

We obtain (under mild add. assumptions):
$T_{0}=\left(\begin{array}{cc}A & -B B^{*} \\ -C^{*} C & -A^{*}\end{array}\right): H_{1-r} \times H_{1-s} \rightarrow H_{-r} \times H_{-s} \quad$ well defined,
$T=\left.T_{0}\right|_{H \times H}\left(\right.$ part of T_{0} in $\left.H \times H\right)$,
T is J-skew-selfadjoint, $\sigma(T)$ symmetric to $i \mathbb{R}$.

The case $r, s<\frac{1}{2}$

Theorem

Let A normal, sectorial, $0 \in \varrho(A)$. Let $B: U \rightarrow H_{-r}, C: H_{s} \rightarrow Y$ bounded with $r, s<\frac{1}{2}$. Then T is bisectorial and dichotomous. If in addition

$$
\begin{equation*}
\bigcap_{\lambda \in i \mathbb{R}} \operatorname{ker} B^{*}\left(A^{*}-\lambda\right)^{-1} \cap H=\{0\} \tag{ac}
\end{equation*}
$$

then $V_{ \pm}=\Gamma\left(X_{ \pm}\right)$where X_{+}selfadjoint nonpositive, X_{-}selfadjoint nonnegative.

Heat equation example: theorem applies.

The case $r+s<1$

Theorem

Let A normal, sectorial, $0 \in \varrho(A)$. Let $B: U \rightarrow H_{-r}, C: H_{s} \rightarrow Y$ bounded with $r+s<1$. Then T is almost bisectorial, i.e. $i \mathbb{R} \subset \varrho(T)$ and

$$
\left\|(T-\lambda)^{-1}\right\| \leq M /|\lambda|^{\beta}, \quad \lambda \in i \mathbb{R}
$$

with some $0<\beta<1, M>0$. In particular, there exist $V_{ \pm}$closed, T-invariant,

$$
V_{+} \oplus V_{-} \subset V, \quad \sigma\left(\left.T\right|_{V_{ \pm}}\right) \subset \mathbb{C}_{ \pm}
$$

If in addition (ac) holds, then $V_{ \pm}=\Gamma\left(X_{ \pm}\right)$and exist $X_{0 \pm} \subset X_{ \pm}$ where X_{0+} symmetric nonpositive, X_{0-} symmetric nonnegative, and $X_{0 \pm}^{*}=X_{ \pm}$.

Idea of the proof

$T_{0}=S_{0}+R=\left(\begin{array}{cc}A & 0 \\ 0 & -A^{*}\end{array}\right)+\left(\begin{array}{cc}0 & -B B^{*} \\ -C^{*} C & 0\end{array}\right)$ on $H_{-r} \times H_{-s}$

- S_{0} bisectorial on $H_{-r} \times H_{-s}$
- $r, s<\frac{1}{2}: B B^{*}: H_{r} \rightarrow H_{-r}, C^{*} C: H_{s} \rightarrow H_{-s}$ "less unbounded" than $A, A^{*} \rightsquigarrow T$ bisectorial
- $r+s<1$ and (e.g.) $r \geq \frac{1}{2}: B B^{*}$ "more unbounded" than $A, A^{*} \rightsquigarrow T$ almost bisectorial

Closing remarks

Generalisations:

- A normal is not needed
- If A has compact resolvent: condition $0 \in \sigma(A)$ can be relaxed, spectra of A and $-A^{*}$ may touch
Open:
- X_{-}bounded ?
- Case $r+s<1$: role of $X_{0 \pm}$?

