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Hamiltonian operator matrix

Hamiltonian operator matrix from mathematical systems theory:

T =

(
A −BB∗

−C ∗C −A∗
)

Setting:

I A closed, densely defined operator on Hilbert space H,

I B : U → H, C : H → Y bounded,

I U,Y Hilbert spaces.

Then

I BB∗,C ∗C : H → H bounded,

I T closed, densely defined on H × H.
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Hamiltonian and Riccati equation

Hamiltonian

T =

(
A −BB∗

−C ∗C −A∗
)
.

Operator Riccati equation associated with Hamiltonian:

A∗X + XA− XBB∗X + C ∗C = 0

Connection (formal)

Linear operator X is solution of Riccati equation if and only if its

graph subspace Γ(X ) =
{( v

Xv

) ∣∣∣ v ∈ D(X )
}

is invariant under T .

Systems theory: interested in bounded selfadjoint nonnegative
solution X .
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The role of A,B ,C in systems theory

Linear system described by operators A,B,C :

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t)

I A generator of a strongly continuous semigroup

I B control or input operator

I C observation or output operator
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General properties of the Hamiltonian

T =

(
A −BB∗

−C ∗C −A∗
)
.

Note: T is (in general) not selfadjoint or normal.

But T has a symmetry:
Consider indefinite inner product [·, ·] on H × H:

[·, ·] = (J·, ·), J =

(
0 −iI
iI 0

)
.

T is J-skew-selfadjoint, T [∗] = −T .

Consequence: σ(T ) symmetric w.r.t. imaginary axis.
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Existence of invariant graph subspaces

Theorem (Langer, Ran, van de Rotten (2002))

Let A be sectorial, 0 ∈ %(A). Let B,C bounded as above. Then T
is bisectorial and dichotomous, in particular

V = V+ ⊕ V− with V± T-invariant, σ(T |V±) ⊂ C±.

If moreover ⋂
λ∈iR

kerB∗(A∗ − λ)−1 = {0}, (ac)

then V± = Γ(X±) where X+ selfadjoint nonpositive, X− bounded
selfadjoint nonnegative.

σ(A): σ(T ):
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Idea of the proof

I T = S + R =

(
A 0
0 −A∗

)
+

(
0 −BB∗

−C ∗C 0

)

I S is bisectorial and dichotomous σ(S):
σ(A) σ(−A∗)

I structure of T : iR ⊂ %(T )

I perturbation (R bounded): T is bisectorial and dichotomous

I T J-skew-selfadjoint & cond. (ac) ⇒ V± = Γ(X±),
X± selfadjoint

I T J̃-dissipative ⇒ X+ nonpositive, X− nonnegative

I X− bounded . . .
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Generalisation 1: BB∗,C ∗C unbounded on H

Tretter, W. (2013): Generalisation of theorem to

T =

(
A −Q1

−Q2 A∗

)
where

I Q1,Q2 symmetric nonnegative operators on H,

I Q1,Q2 p-subordinate to A∗,A, respectively, with 0 ≤ p < 1;
e.g.

‖Q1x‖ ≤ β‖x‖1−p‖A∗x‖p, x ∈ D(A∗).

However: Setting does not allow for systems with boundary control
or observation.
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Generalisation 2: Extrapolation spaces

Setting:

I A closed, densely defined operator on Hilbert space H,

I To simplify the notation: A normal

I B : U → H−r , C : Hs → Y bounded, r + s ≤ 1

Here
H1 ⊂ Ht ⊂ H ⊂ H−t ⊂ H−1, 0 < t < 1,

scale of Hilbert spaces defined by

Ht = D(|A|t), H−t = completion of H w.r.t. ‖(I + |A|t)−1 · ‖.

Duality:

I (Ht)
′ ∼= H−t via inner product of H

I B∗ : Hr → U, C ∗ : Y → H−s
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Example: heat equation with bndry. control & observation

∂tv = ∆v on Ω ⊂ Rd bounded,

∂nv = u on ∂Ω smooth, (u control)

y = v |∂Ω on ∂Ω. (y observation)

Reformulation as linear system:

I H = L2(Ω), U = Y = L2(∂Ω)

I A = ∆, D(A) = W 2,2(Ω) + Neumann b. c.

I B∗,C : W
1
2
,2(Ω)→ L2(∂Ω) Dirichlet trace

Then

H1 = D(A) ⊂W 2,2(Ω) ⇒ H1/4 ⊂W
1
2
,2(Ω)

⇒ B∗,C : H1/4 → L2(∂Ω)

Remark: B∗,C not closable as unbounded operators on L2(Ω).
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Hamiltonian in extrapolation setting

I A normal on H,

I B : U → H−r , C : Hs → Y bounded, r + s ≤ 1.

Then

I B∗ : Hr → U, C ∗ : Y → H−s
I BB∗ : Hr → H−r , C ∗C : Hs → H−s
I extensions A : H1−r → H−r , A∗ : H1−s → H−s
I H1−r ⊂ Hs , H1−s ⊂ Hr

We obtain (under mild add. assumptions):

T0 =

(
A −BB∗

−C ∗C −A∗
)

: H1−r × H1−s → H−r × H−s well defined,

T = T0|H×H (part of T0 in H × H),

T is J-skew-selfadjoint, σ(T ) symmetric to iR.

Christian Wyss Hamiltonian operator matrices 11 / 15



The case r , s < 1
2

Theorem

Let A normal, sectorial, 0 ∈ %(A). Let B : U → H−r , C : Hs → Y
bounded with r , s < 1

2 . Then T is bisectorial and dichotomous.
If in addition ⋂

λ∈iR
kerB∗(A∗ − λ)−1 ∩ H = {0}, (ac)

then V± = Γ(X±) where X+ selfadjoint nonpositive, X− selfadjoint
nonnegative.

Heat equation example: theorem applies.
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The case r + s < 1

Theorem

Let A normal, sectorial, 0 ∈ %(A). Let B : U → H−r , C : Hs → Y
bounded with r + s < 1. Then T is almost bisectorial, i.e.
iR ⊂ %(T ) and

‖(T − λ)−1‖ ≤ M/|λ|β, λ ∈ iR,

with some 0 < β < 1, M > 0. In particular, there exist V± closed,
T -invariant,

V+ ⊕ V− ⊂ V , σ(T |V±) ⊂ C±.

If in addition (ac) holds, then V± = Γ(X±) and exist X0± ⊂ X±
where X0+ symmetric nonpositive, X0− symmetric nonnegative,
and X ∗0± = X±.
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Idea of the proof

T0 = S0 + R =

(
A 0
0 −A∗

)
+

(
0 −BB∗

−C ∗C 0

)
on H−r × H−s

I S0 bisectorial on H−r × H−s
I r , s < 1

2 : BB∗ : Hr → H−r , C ∗C : Hs → H−s “less
unbounded” than A,A∗  T bisectorial

I r + s < 1 and (e.g.) r ≥ 1
2 : BB∗ “more unbounded” than

A,A∗  T almost bisectorial
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Closing remarks

Generalisations:

I A normal is not needed

I If A has compact resolvent: condition 0 ∈ σ(A) can be
relaxed, spectra of A and −A∗ may touch

Open:

I X− bounded ?

I Case r + s < 1: role of X0± ?
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