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Hamiltonian operator matrix

Hamiltonian operator matrix from mathematical systems theory:
A —-BB*
T =
(—C*C —A* >
Setting:

A closed, densely defined operator on Hilbert space H,
B:U— H, C:H— Y bounded,
U, Y Hilbert spaces.
Then
BB*,C*C : H — H bounded,
T closed, densely defined on H x H.
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Hamiltonian and Riccati equation

A —BB*
T_<—C*C —A*)'

Operator Riccati equation associated with Hamiltonian:

Hamiltonian

A X+ XA—XBB*X +C*C=0

Connection (formal)

Linear operator X is solution of Riccati equation if and only if its

graph subspace I'(X) = {<)‘</v> ‘ v e D(X)} is invariant under T.

Systems theory: interested in bounded selfadjoint nonnegative
solution X.
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The role of A, B, C in systems theory

Linear system described by operators A, B, C:
x(t) = Ax(t) + Bu(t), x(0) = xo,
y(t) = Cx(1)

A generator of a strongly continuous semigroup
B control or input operator

C observation or output operator
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General properties of the Hamiltonian

A —BB*
r=(be B)
Note: T is (in general) not selfadjoint or normal.

But T has a symmetry:
Consider indefinite inner product [-,-] on H x H:

[]=(), J= (2 Oil) |

T is J-skew-selfadjoint, TH = —T.

Consequence: o(T) symmetric w.r.t. imaginary axis.
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Existence of invariant graph subspaces

Theorem (Langer, Ran, van de Rotten (2002))

Let A be sectorial, 0 € o(A). Let B, C bounded as above. Then T
is bisectorial and dichotomous, in particular

V = V4 & V_ with Vi T-invariant, o(T|y.) C Cx.

If moreover

(] ker B*(A* = \)~* = {0}, (ac)

AEIR

then Vy = I'(Xy) where X selfadjoint nonpositive, X_ bounded
selfadjoint nonnegative.

a(A): o(T):
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|dea of the proof

A 0 0 —-BB*
r=sir=(y S)+ (Lo T5)

S is bisectorial and dichotomous a(S): AN | @EA)
structure of T: iR C o(T)
perturbation (R bounded): T is bisectorial and dichotomous
T J-skew-selfadjoint & cond. (ac) = V4 =T(Xy),

X4 selfadjoint
T J~—dissipative = X4 nonpositive, X_ nonnegative
X_ bounded ...
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Generalisation 1: BB*, C*C unbounded on H

Tretter, W. (2013): Generalisation of theorem to
A =G
T =
(o &)

@1, Q2 symmetric nonnegative operators on H,

where

@1, Q2 p-subordinate to A*, A, respectively, with 0 < p < 1;

e.g.
1Qux|| < BlIx|I*PlIA*x[|P,  x € D(A").

However: Setting does not allow for systems with boundary control
or observation.
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Generalisation 2: Extrapolation spaces

Setting:
A closed, densely defined operator on Hilbert space H,
To simplify the notation: A normal
B:U—H_,, C:Hs— Y bounded, r+s <1
Here
HcHCHCH_: CH_, O<t<l,

scale of Hilbert spaces defined by
H. = D(JA]*), H_; = completion of H w.r.t. |[(/ 4+ |A))~L-|.

Duality:
(Ht)' = H_; via inner product of H
B*:H — U C":Y —H_
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Example: heat equation with bndry. control & observation

Oiv = Av on Q c RY bounded,
Onv=1u on 02 smooth, (u control)

y=vlpa on I (v observation)

Reformulation as linear system:
H=1L1%(Q), U=Y = L%(09)
A=A, D(A) = W?2(Q) + Neumann b.c.
B*, C: W22(Q) — [2(09) Dirichlet trace
Then

Hi=D(A) C W2A(Q) = Hyy C W32(Q)
= B*,C: Hyy— [2(0Q)

Remark: B*, C not closable as unbounded operators on L2().
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Hamiltonian in extrapolation setting

A normal on H,

B:U— H_,, C:Hs— Y bounded, r +s < 1.
Then

B*:H — U, C*:Y — H

BB*:H, - H_,, C"C:Hs — H_,

extensions A: Hi_, = H_,, A* : H_s — H_;

Hi_, CHs, Hi_s C H,

We obtain (under mild add. assumptions):

To= (—?*C __BAB* ) cHi_r X Hi_s — H_, x H_s well defined,
T = Tolpxn (part of T in H x H),

T is J-skew-selfadjoint, o(T) symmetric to /R.
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The case r,s < %

Theorem

Let A normal, sectorial, 0 € o(A). Let B: U — H_,, C: Hs — Y
bounded with r,s < % Then T is bisectorial and dichotomous.
If in addition

[ ker B*(A* = \)"'nH = {0}, (ac)
AEIR

then Vi = I'(Xy) where X selfadjoint nonpositive, X_ selfadjoint
nonnegative.

Heat equation example: theorem applies.
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Thecaser+s<1

Theorem

Let A normal, sectorial, 0 € o(A). Let B: U — H_,, C: Hs =Y
bounded with r +s < 1. Then T is almost bisectorial, i.e.
iR C o(T) and

(T =N <M/NP, AeiR,

with some 0 < 8 < 1, M > 0. In particular, there exist V1 closed,
T -invariant,

V.g Vo cCV, O’(T’Vi)c@i.

If in addition (ac) holds, then Vi =T (Xy) and exist Xo+ C Xy
where Xyt symmetric nonpositive, Xo— symmetric nonnegative,
and X5, = Xt.
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|dea of the proof

A 0 0 —BB*
To—50+R—<O —A*>+<—C*C 0 )onH,xHS

So bisectorial on H_, x H_;

r,s < %: BB* :H, - H_,, C*C: Hs — H_ "less
unbounded” than A, A* ~ T bisectorial

r+s<1and (eg.) r>3: BB* “more unbounded” than
A, A* ~~ T almost bisectorial
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Closing remarks

Generalisations:
A normal is not needed

If A has compact resolvent: condition 0 € o(A) can be
relaxed, spectra of A and —A* may touch

Open:
X_ bounded ?
Case r +s < 1: role of Xo+ 7
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