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Dissipative operators

Definition

H Hilbert space. A densely defined linear operator A with domain D(A) in
H is called dissipative if =〈Au, u〉 ≥ 0 for all u ∈ D(A). A is called
anti-dissipative if (−A) is dissipative.
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Dissipative operators

Definition

H Hilbert space. A densely defined linear operator A with domain D(A) in
H is called dissipative if =〈Au, u〉 ≥ 0 for all u ∈ D(A). A is called
anti-dissipative if (−A) is dissipative.

Definition

Dissipative operators which have no non-trivial dissipative extensions are
called maximal dissipative operators (MDOs).

A is MDO iff A is dissipative and C
− ⊂ ρ(A).
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Dilations and minimality

Proposition (Sz.-Nagy)

For any MDO A on a Hilbert space H there exists a selfadjoint operator L
on a Hilbert space H ⊇ H such that

e itA = PHe
itLPH , t ≥ 0 or (A− λ)−1 = PH(L − λ)−1PH , λ ∈ C

−.
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Dilations and minimality

Proposition (Sz.-Nagy)

For any MDO A on a Hilbert space H there exists a selfadjoint operator L
on a Hilbert space H ⊇ H such that

e itA = PHe
itLPH , t ≥ 0 or (A− λ)−1 = PH(L − λ)−1PH , λ ∈ C

−.

Definition

L is a selfadjoint dilation of A. A dilation is minimal if it contains no
non-trivial reducing part which is itself a selfadjoint dilation of A.

This allows the use of tools of the theory of self-adjoint operators to study
MDOs, e.g. one obtains a functional calculus via

ψ(A) = PHψ(L)PH for any ψ ∈ H∞(C+)

and ‖ψ(A)‖ = ‖PHψ(L)‖ ≤ ‖ψ(L)‖ ≤ supλ∈C+ |ψ(λ)|.
Ian Wood (Kent) Dilation of MDOs CIRM 2017 3 / 15



Lagrange identity

Lemma

Let A be a maximally dissipative operator on a Hilbert space H. Then

there exists a Hilbert space E and an operator Γ : D(A) → E such that

‖Γu‖E ≤ ‖u‖H + ‖Au‖H ,

i.e. Γ is bounded in the graph norm of A, Γ has dense range in E and such

that for all u, v ∈ D(A) we have

〈Au, v〉H − 〈u,Av〉H = i 〈Γu, Γv〉E .
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Let A be a maximally dissipative operator on a Hilbert space H. Then

there exists a Hilbert space E and an operator Γ : D(A) → E such that

‖Γu‖E ≤ ‖u‖H + ‖Au‖H ,

i.e. Γ is bounded in the graph norm of A, Γ has dense range in E and such

that for all u, v ∈ D(A) we have

〈Au, v〉H − 〈u,Av〉H = i 〈Γu, Γv〉E .

Similarly, there exists a Hilbert space E∗ and an operator Γ∗ : D(A∗) → E∗

which is bounded in the graph norm of A∗, has dense range in E∗ and such

that for all u, v ∈ D(A∗) we have

〈A∗u, v〉H − 〈u,A∗v〉H = −i 〈Γ∗u, Γ∗v〉E∗
.

Ian Wood (Kent) Dilation of MDOs CIRM 2017 4 / 15



Example: Schrödinger operator

On H = L2(R+), let (Af )(x) = −f ′′(x) + q(x)f (x), q ∈ L∞(R+) with
=q(x) ≥ 0 for a.e. x ∈ R

+ and

D(A) := {f ∈ H2(R+) : f ′(0) = hf (0)}

with =(h) ≥ 0.
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On H = L2(R+), let (Af )(x) = −f ′′(x) + q(x)f (x), q ∈ L∞(R+) with
=q(x) ≥ 0 for a.e. x ∈ R

+ and

D(A) := {f ∈ H2(R+) : f ′(0) = hf (0)}

with =(h) ≥ 0. Then for u, v ∈ D(A), we have

〈Au, v〉 − 〈u,Av〉 = u′(0)v(0)− u(0)v ′(0) + 2i

∫

∞

0
=q(x) u(x)v(x) dx

= 2i

(

=h u(0)v(0) +

∫

∞

0
=q(x) u(x)v(x) dx

)

.
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=q(x) ≥ 0 for a.e. x ∈ R

+ and

D(A) := {f ∈ H2(R+) : f ′(0) = hf (0)}

with =(h) ≥ 0. Then for u, v ∈ D(A), we have

〈Au, v〉 − 〈u,Av〉 = u′(0)v(0)− u(0)v ′(0) + 2i

∫

∞

0
=q(x) u(x)v(x) dx

= 2i

(

=h u(0)v(0) +

∫

∞

0
=q(x) u(x)v(x) dx

)

.

Let Ω = {x ∈ R
+ : =q(x) > 0}, set E = C⊕ L2(Ω) and

Γu =

( √
2=h u(0)√
2=q u|Ω

)

, u ∈ D(A).

Then 〈Au, v〉H − 〈u,Av〉H = i 〈Γu, Γv〉E .
Here, E∗ = E and Γ∗ acts as Γ, but has a different domain.
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Štraus characteristic function

Lemma

For all u ∈ D(A) and z ∈ C
+ we have

‖Γ∗(A∗ − z)−1(A− z)u‖2 = ‖Γu‖2 − 2=(z)‖(A∗ − z)−1(A− z)u − u‖2.

Hence,

‖Γ∗(A∗ − z)−1(A− z)u‖ ≤ ‖Γu‖,
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Hence,

‖Γ∗(A∗ − z)−1(A− z)u‖ ≤ ‖Γu‖,
and there exists a unique contraction S(z) : E → E∗, analytic in the upper

half-plane, such that

S(z)Γu = Γ∗(A
∗ − z)−1(A− z)u for all u ∈ D(A).

Correspondingly, there exists a contraction S∗(z) : E∗ → E, analytic in the

lower half plane, such that

S∗(z)Γ∗u = Γ(A− z)−1(A∗ − z)u for all u ∈ D(A∗).
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Example: Schrödinger operator

Let H = L2(R+) and (Af )(x) = −f ′′(x) + q(x)f (x), where q ∈ L∞(R+)
with =q ≥ 0,

D(A) := {y ∈ H2(R+) : y ′(0) = hy(0)},

where =h > 0, and

Γu =

( √
2=h u(0)√
2=q u

)

, with E = E∗ = C⊕ L2(Ω).
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Example: Schrödinger operator

Let H = L2(R+) and (Af )(x) = −f ′′(x) + q(x)f (x), where q ∈ L∞(R+)
with =q ≥ 0,

D(A) := {y ∈ H2(R+) : y ′(0) = hy(0)},

where =h > 0, and

Γu =

( √
2=h u(0)√
2=q u

)

, with E = E∗ = C⊕ L2(Ω).

Now, let ϕ∗ and ψ∗ be the fundamental solutions of −y ′′ + q̄y = λy and
let m∗ denote the Weyl-Titchmarsh function associated with −y ′′ + q̄y ,
i.e. m∗(λ)ϕ∗(λ) + ψ∗(λ) is the (unique) L2-solution to −y ′′ + q̄y = λy .
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Example: Schrödinger operator

Then S(z) is given by
(

h−m∗(z)

h̄−m∗(z)
i
√
2=h

∫∞
0

m∗(z)ϕ∗(y)+ψ∗(y)

h̄−m∗(z)

√

2=q(y) · (y) dy
i
√
2=h

√
2=q

h̄−m∗(z)
(m∗(z)ϕ∗(x) + ψ∗(x)) I + i

√
2=q (A∗ − z)−1√2=q

)

.

Ian Wood (Kent) Dilation of MDOs CIRM 2017 8 / 15



Example: Schrödinger operator

Then S(z) is given by
(

h−m∗(z)

h̄−m∗(z)
i
√
2=h

∫∞
0

m∗(z)ϕ∗(y)+ψ∗(y)

h̄−m∗(z)

√

2=q(y) · (y) dy
i
√
2=h

√
2=q

h̄−m∗(z)
(m∗(z)ϕ∗(x) + ψ∗(x)) I + i

√
2=q (A∗ − z)−1√2=q

)

.

Remarks:

The top left entry coincides with the well-known formula by Pavlov
for the case of real q.

The bottom right entry agrees with the Livšic characteristic function
for the case with a selfadjoint boundary condition.

This formula shows the connection between the m-function and the
characteristic function for this example.
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Domain of the selfadjoint dilation

Let µ ∈ C
− and λ ∈ C

+. Define H = L2(R−,E∗)⊕ H ⊕ L2(R+,E ) and

D(L) =







U =





v−
u

v+



 : u ∈ H, v+ ∈ H1(R+,E ), v− ∈ H1(R−,E∗),

(i) u + (Γ∗(A
∗ + µ)−1)∗v−(0) ∈ D(A),

(ii) u + (Γ(A+ λ)−1)∗v+(0) ∈ D(A∗),

(I) v+(0) = S∗(−µ)v−(0) + iΓ
(

u + (Γ∗(A
∗ + µ)−1)∗v−(0)

)

,

(II) v−(0) = S(−λ̄)v+(0)− iΓ∗
(

u + (Γ(A+ λ)−1)∗v+(0)
)

}

.
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Domain of the selfadjoint dilation

Let µ ∈ C
− and λ ∈ C

+. Define H = L2(R−,E∗)⊕ H ⊕ L2(R+,E ) and

D(L) =







U =





v−
u

v+



 : u ∈ H, v+ ∈ H1(R+,E ), v− ∈ H1(R−,E∗),

(i) u + (Γ∗(A
∗ + µ)−1)∗v−(0) ∈ D(A),

(ii) u + (Γ(A+ λ)−1)∗v+(0) ∈ D(A∗),

(I) v+(0) = S∗(−µ)v−(0) + iΓ
(

u + (Γ∗(A
∗ + µ)−1)∗v−(0)

)

,

(II) v−(0) = S(−λ̄)v+(0)− iΓ∗
(

u + (Γ(A+ λ)−1)∗v+(0)
)

}

.

Remarks:

The set is independent of µ and λ in the appropriate half-planes.

(i) and (ii) are equivalent.

(I) and (II) are equivalent
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Domain of the selfadjoint dilation II

Let µ ∈ C
− and λ ∈ C

+. Define H = L2(R−,E∗)⊕ H ⊕ L2(R+,E ) and

D(L) =







U =





v−
u

v+



 : u ∈ H, v+ ∈ H1(R+,E ), v− ∈ H1(R−,E∗),

(i) u + (Γ∗(A
∗ + µ)−1)∗v−(0) ∈ D(A),

(ii) u + (Γ(A+ λ)−1)∗v+(0) ∈ D(A∗),

(I) v+(0) = S∗(−µ)v−(0) + iΓ
(

u + (Γ∗(A
∗ + µ)−1)∗v−(0)

)

,

(II) v−(0) = S(−λ̄)v+(0)− iΓ∗
(

u + (Γ(A+ λ)−1)∗v+(0)
)

}

.

Remarks:

The independence of (II) from λ allows us to take the limit as
λ→ ∞. Whenever the characteristic function S(−λ̄) has a limit, this
gives a more explicit connection between v+(0) and v−(0).
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Definition of the dilation

Definition

Let µ ∈ C
− and λ ∈ C

+. For U ∈ D(L), define

TU := A∗(u + (Γ(A+ λ)−1)∗v+(0)) + λ̄(Γ(A+ λ)−1)∗v+(0),

T∗U := A(u + (Γ∗(A
∗ + µ)−1)∗v−(0)) + µ̄(Γ∗(A

∗ + µ)−1)∗v−(0).
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Definition of the dilation

Definition

Let µ ∈ C
− and λ ∈ C

+. For U ∈ D(L), define

TU := A∗(u + (Γ(A+ λ)−1)∗v+(0)) + λ̄(Γ(A+ λ)−1)∗v+(0),

T∗U := A(u + (Γ∗(A
∗ + µ)−1)∗v−(0)) + µ̄(Γ∗(A

∗ + µ)−1)∗v−(0).

Lemma

For all U ∈ D(L) we have TU = T∗U.

Definition

We define the operator L on H = L2(R−,E∗)⊕ H ⊕ L2(R+,E ) with
domain D(L) by

LU = L





v−
u

v+



 =





iv ′−
TU

iv ′+



 .
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Dilation

Theorem

L is symmetric
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Dilation

Theorem

L is symmetric and for λ ∈ C
−, we have

(L−λ)−1





f

w

g



 =







−i
∫ x

−∞
e iλ(t−x)f (t) dt

(A− λ)−1w + i(Γ∗(A
∗ − λ)−1)∗

∫ 0
−∞

e iλt f (t) dt

v+(0)e
iλx − i

∫ x

0 e iλ(t−x)g(t) dt







where

v+(0) = iΓ(A− λ)−1w − iS∗(λ)

∫ 0

−∞

e iλt f (t) dt.
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Dilation

Theorem

L is symmetric and for λ ∈ C
−, we have

(L−λ)−1





f

w

g


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





−i
∫ x

−∞
e iλ(t−x)f (t) dt

(A− λ)−1w + i(Γ∗(A
∗ − λ)−1)∗

∫ 0
−∞

e iλt f (t) dt

v+(0)e
iλx − i

∫ x

0 e iλ(t−x)g(t) dt







where

v+(0) = iΓ(A− λ)−1w − iS∗(λ)

∫ 0

−∞

e iλt f (t) dt.

In particular, we have

PH (L − λ)−1
PH =

{

(A− λ)−1 λ ∈ C
−,

(A∗ − λ)−1 λ ∈ C
+,

so L is a selfadjoint dilation of A. Moreover, L is minimal.
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Example: Schrödinger operator

Let H = L2(R+) and

(Af )(x) = −f ′′(x) + q(x)f (x),

where q ∈ L∞(R+) with =q ≥ 0, and

D(A) := {y ∈ H2(R+) : y ′(0) = hy(0)},

where =h > 0. Then

Γu =

( √
2=h u(0)√
2=q u

)

= Γ∗u

with E = E∗ = C⊕ L2(Ω)
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Example: Schrödinger operator

Let H = L2(R+) and

(Af )(x) = −f ′′(x) + q(x)f (x),

where q ∈ L∞(R+) with =q ≥ 0, and

D(A) := {y ∈ H2(R+) : y ′(0) = hy(0)},

where =h > 0. Then

Γu =

( √
2=h u(0)√
2=q u

)

= Γ∗u

with E = E∗ = C⊕ L2(Ω) and we get

u + (Γ∗(A
∗ + µ)−1)∗v−(0) = u +

√
2=h G∗(0, y ,−µ)(v−(0))1

+(A− µ)−1
√

2=q (v−(0))2.
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Example: Schrödinger operator II

Then u + (Γ∗(A
∗ + µ)−1)∗v−(0) ∈ D(A) gives

u′(0)− hu(0) =
√
2=h (v−(0))1.
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u′(0)− hu(0) =
√
2=h (v−(0))1.

Similarly,
TU = −u′′ + qu +

√

2=q (v−(0))2.

Using the limit of the characteristic function at i∞ gives
v+(0) = v−(0) + iΓu.
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Example: Schrödinger operator II

Then u + (Γ∗(A
∗ + µ)−1)∗v−(0) ∈ D(A) gives

u′(0)− hu(0) =
√
2=h (v−(0))1.

Similarly,
TU = −u′′ + qu +

√

2=q (v−(0))2.

Using the limit of the characteristic function at i∞ gives
v+(0) = v−(0) + iΓu. Hence,

D(L) =







U =





v−
u

v+



 : u ∈ H2(R+), v± ∈ H1(R±,E ),

u′(0)− hu(0) =
√
2=h (v−(0))1, v+(0) = v−(0) + iΓu

}

,
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Example: Schrödinger operator II

Then u + (Γ∗(A
∗ + µ)−1)∗v−(0) ∈ D(A) gives

u′(0)− hu(0) =
√
2=h (v−(0))1.

Similarly,
TU = −u′′ + qu +

√

2=q (v−(0))2.

Using the limit of the characteristic function at i∞ gives
v+(0) = v−(0) + iΓu. Hence,

D(L) =







U =





v−
u

v+



 : u ∈ H2(R+), v± ∈ H1(R±,E ),

u′(0)− hu(0) =
√
2=h (v−(0))1, v+(0) = v−(0) + iΓu

}

,

and

LU = L





v−
u

v+



 =





iv ′−
−u′′ + qu +

√
2=q (v−(0))2

iv ′+



 .
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Thank you for your attention!
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