Construction of the selfadjoint dilation of a maximal dissipative operator

Ian Wood
University of Kent

Mathematical aspects of the physics with non-self-adjoint operators
Luminy
June 9, 2017
joint work with
B.M. Brown, M. Marletta (Cardiff), and S. Naboko (St. Petersburg)

Dissipative operators

Definition

H Hilbert space. A densely defined linear operator A with domain $D(A)$ in H is called dissipative if $\Im\langle A u, u\rangle \geq 0$ for all $u \in D(A)$. A is called anti-dissipative if $(-A)$ is dissipative.

Dissipative operators

Definition

H Hilbert space. A densely defined linear operator A with domain $D(A)$ in H is called dissipative if $\Im\langle A u, u\rangle \geq 0$ for all $u \in D(A)$. A is called anti-dissipative if $(-A)$ is dissipative.

Definition

Dissipative operators which have no non-trivial dissipative extensions are called maximal dissipative operators (MDOs).

Dissipative operators

Definition

H Hilbert space. A densely defined linear operator A with domain $D(A)$ in H is called dissipative if $\Im\langle A u, u\rangle \geq 0$ for all $u \in D(A)$. A is called anti-dissipative if $(-A)$ is dissipative.

Definition

Dissipative operators which have no non-trivial dissipative extensions are called maximal dissipative operators (MDOs).
A is MDO iff A is dissipative and $\mathbb{C}^{-} \subset \rho(A)$.

Dilations and minimality

Proposition (Sz.-Nagy)

For any MDO A on a Hilbert space H there exists a selfadjoint operator \mathcal{L} on a Hilbert space $\mathcal{H} \supseteq H$ such that

$$
e^{i t A}=P_{H} e^{i t \mathcal{L}} P_{H}, t \geq 0 \quad \text { or } \quad(A-\lambda)^{-1}=P_{H}(\mathcal{L}-\lambda)^{-1} P_{H}, \quad \lambda \in \mathbb{C}^{-} .
$$

Dilations and minimality

Proposition (Sz.-Nagy)

For any MDO A on a Hilbert space H there exists a selfadjoint operator \mathcal{L} on a Hilbert space $\mathcal{H} \supseteq H$ such that

$$
e^{i t A}=P_{H} e^{i t \mathcal{L}} P_{H}, t \geq 0 \quad \text { or } \quad(A-\lambda)^{-1}=P_{H}(\mathcal{L}-\lambda)^{-1} P_{H}, \quad \lambda \in \mathbb{C}^{-} .
$$

Definition

\mathcal{L} is a selfadjoint dilation of A. A dilation is minimal if it contains no non-trivial reducing part which is itself a selfadjoint dilation of A.

Dilations and minimality

Proposition (Sz.-Nagy)

For any MDO A on a Hilbert space H there exists a selfadjoint operator \mathcal{L} on a Hilbert space $\mathcal{H} \supseteq H$ such that

$$
e^{i t A}=P_{H} e^{i t \mathcal{L}} P_{H}, t \geq 0 \quad \text { or } \quad(A-\lambda)^{-1}=P_{H}(\mathcal{L}-\lambda)^{-1} P_{H}, \quad \lambda \in \mathbb{C}^{-} .
$$

Definition

\mathcal{L} is a selfadjoint dilation of A. A dilation is minimal if it contains no non-trivial reducing part which is itself a selfadjoint dilation of A.

This allows the use of tools of the theory of self-adjoint operators to study MDOs, e.g. one obtains a functional calculus via

$$
\psi(A)=P_{H} \psi(\mathcal{L}) P_{H} \text { for any } \psi \in H^{\infty}\left(\mathbb{C}_{+}\right)
$$

and $\|\psi(A)\|=\left\|P_{H} \psi(\mathcal{L})\right\| \leq\|\psi(\mathcal{L})\| \leq \sup _{\lambda \in \mathbb{C}^{+}}|\psi(\lambda)|$.

Lagrange identity

Lemma

Let A be a maximally dissipative operator on a Hilbert space H. Then there exists a Hilbert space E and an operator $\Gamma: D(A) \rightarrow E$ such that

$$
\|\Gamma u\|_{E} \leq\|u\|_{H}+\|A u\|_{H},
$$

i.e. Γ is bounded in the graph norm of A, Γ has dense range in E and such that for all $u, v \in D(A)$ we have

$$
\langle A u, v\rangle_{H}-\langle u, A v\rangle_{H}=i\langle\Gamma u, \Gamma v\rangle_{E} .
$$

Lagrange identity

Lemma

Let A be a maximally dissipative operator on a Hilbert space H. Then there exists a Hilbert space E and an operator $\Gamma: D(A) \rightarrow E$ such that

$$
\|\Gamma u\|_{E} \leq\|u\|_{H}+\|A u\|_{H}
$$

i.e. Γ is bounded in the graph norm of A, Γ has dense range in E and such that for all $u, v \in D(A)$ we have

$$
\langle A u, v\rangle_{H}-\langle u, A v\rangle_{H}=i\langle\Gamma u, \Gamma v\rangle_{E} .
$$

Similarly, there exists a Hilbert space E_{*} and an operator $\Gamma_{*}: D\left(A^{*}\right) \rightarrow E_{*}$ which is bounded in the graph norm of A^{*}, has dense range in E_{*} and such that for all $u, v \in D\left(A^{*}\right)$ we have

$$
\left\langle A^{*} u, v\right\rangle_{H}-\left\langle u, A^{*} v\right\rangle_{H}=-i\left\langle\Gamma_{*} u, \Gamma_{*} v\right\rangle_{E_{*}} .
$$

Example: Schrödinger operator

On $H=L^{2}\left(\mathbb{R}^{+}\right)$, let $(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x), q \in L^{\infty}\left(\mathbb{R}^{+}\right)$with $\Im q(x) \geq 0$ for a.e. $x \in \mathbb{R}^{+}$and

$$
D(A):=\left\{f \in H^{2}\left(\mathbb{R}^{+}\right): f^{\prime}(0)=h f(0)\right\}
$$

with $\Im(h) \geq 0$.

Example: Schrödinger operator

On $H=L^{2}\left(\mathbb{R}^{+}\right)$, let $(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x), q \in L^{\infty}\left(\mathbb{R}^{+}\right)$with $\Im q(x) \geq 0$ for a.e. $x \in \mathbb{R}^{+}$and

$$
D(A):=\left\{f \in H^{2}\left(\mathbb{R}^{+}\right): f^{\prime}(0)=h f(0)\right\}
$$

with $\Im(h) \geq 0$. Then for $u, v \in D(A)$, we have

$$
\begin{aligned}
\langle A u, v\rangle-\langle u, A v\rangle & =u^{\prime}(0) \overline{v(0)}-u(0) \overline{v^{\prime}(0)}+2 i \int_{0}^{\infty} \Im q(x) u(x) \overline{v(x)} d x \\
& =2 i\left(\Im h u(0) \overline{v(0)}+\int_{0}^{\infty} \Im q(x) u(x) \overline{v(x)} d x\right)
\end{aligned}
$$

Example: Schrödinger operator

On $H=L^{2}\left(\mathbb{R}^{+}\right)$, let $(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x), q \in L^{\infty}\left(\mathbb{R}^{+}\right)$with $\Im q(x) \geq 0$ for a.e. $x \in \mathbb{R}^{+}$and

$$
D(A):=\left\{f \in H^{2}\left(\mathbb{R}^{+}\right): f^{\prime}(0)=h f(0)\right\}
$$

with $\Im(h) \geq 0$. Then for $u, v \in D(A)$, we have
$\langle A u, v\rangle-\langle u, A v\rangle=u^{\prime}(0) \overline{v(0)}-u(0) \overline{v^{\prime}(0)}+2 i \int_{0}^{\infty} \Im q(x) u(x) \overline{v(x)} d x$
$=2 i\left(\Im h u(0) \overline{v(0)}+\int_{0}^{\infty} \Im q(x) u(x) \overline{v(x)} d x\right)$.
Let $\Omega=\left\{x \in \mathbb{R}^{+}: \Im q(x)>0\right\}$, set $E=\mathbb{C} \oplus L^{2}(\Omega)$ and

$$
\Gamma u=\binom{\sqrt{2 \Im h} u(0)}{\left.\sqrt{2 \Im q} u\right|_{\Omega}}, \quad u \in D(A)
$$

Then

$$
\langle A u, v\rangle_{H}-\langle u, A v\rangle_{H}=i\langle\Gamma u, \Gamma v\rangle_{E} .
$$

Example: Schrödinger operator

On $H=L^{2}\left(\mathbb{R}^{+}\right)$, let $(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x), q \in L^{\infty}\left(\mathbb{R}^{+}\right)$with $\Im q(x) \geq 0$ for a.e. $x \in \mathbb{R}^{+}$and

$$
D(A):=\left\{f \in H^{2}\left(\mathbb{R}^{+}\right): f^{\prime}(0)=h f(0)\right\}
$$

with $\Im(h) \geq 0$. Then for $u, v \in D(A)$, we have
$\langle A u, v\rangle-\langle u, A v\rangle=u^{\prime}(0) \overline{v(0)}-u(0) \overline{v^{\prime}(0)}+2 i \int_{0}^{\infty} \Im q(x) u(x) \overline{v(x)} d x$

$$
=2 i\left(\Im h u(0) \overline{v(0)}+\int_{0}^{\infty} \Im q(x) u(x) \overline{v(x)} d x\right)
$$

Let $\Omega=\left\{x \in \mathbb{R}^{+}: \Im q(x)>0\right\}$, set $E=\mathbb{C} \oplus L^{2}(\Omega)$ and

$$
\Gamma u=\binom{\sqrt{2 \Im h} u(0)}{\left.\sqrt{2 \Im q} u\right|_{\Omega}}, \quad u \in D(A)
$$

Then

$$
\langle A u, v\rangle_{H}-\langle u, A v\rangle_{H}=i\langle\Gamma u, \Gamma v\rangle_{E} .
$$

Here, $E_{*}=E$ and Γ_{*} acts as Γ, but has a different domain.

Štraus characteristic function

Lemma

For all $u \in D(A)$ and $z \in \mathbb{C}^{+}$we have

$$
\left\|\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u\right\|^{2}=\|\Gamma u\|^{2}-2 \Im(z)\left\|\left(A^{*}-z\right)^{-1}(A-z) u-u\right\|^{2} .
$$

Hence,

$$
\left\|\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u\right\| \leq\|\Gamma u\|,
$$

Štraus characteristic function

Lemma

For all $u \in D(A)$ and $z \in \mathbb{C}^{+}$we have

$$
\left\|\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u\right\|^{2}=\|\Gamma u\|^{2}-2 \Im(z)\left\|\left(A^{*}-z\right)^{-1}(A-z) u-u\right\|^{2}
$$

Hence,

$$
\left\|\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u\right\| \leq\|\Gamma u\|
$$

and there exists a unique contraction $S(z): E \rightarrow E_{*}$, analytic in the upper half-plane, such that

$$
S(z) \Gamma u=\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u \text { for all } u \in D(A)
$$

Štraus characteristic function

Lemma

For all $u \in D(A)$ and $z \in \mathbb{C}^{+}$we have

$$
\left\|\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u\right\|^{2}=\|\Gamma u\|^{2}-2 \Im(z)\left\|\left(A^{*}-z\right)^{-1}(A-z) u-u\right\|^{2}
$$

Hence,

$$
\left\|\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u\right\| \leq\|\Gamma u\|
$$

and there exists a unique contraction $S(z): E \rightarrow E_{*}$, analytic in the upper half-plane, such that

$$
S(z) \Gamma u=\Gamma_{*}\left(A^{*}-z\right)^{-1}(A-z) u \text { for all } u \in D(A) .
$$

Correspondingly, there exists a contraction $S_{*}(z): E_{*} \rightarrow E$, analytic in the lower half plane, such that

$$
S_{*}(z) \Gamma_{*} u=\Gamma(A-z)^{-1}\left(A^{*}-z\right) u \text { for all } u \in D\left(A^{*}\right)
$$

Example: Schrödinger operator

Let $H=L^{2}\left(\mathbb{R}^{+}\right)$and $(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x)$, where $q \in L^{\infty}\left(\mathbb{R}^{+}\right)$ with $\Im q \geq 0$,

$$
D(A):=\left\{y \in H^{2}\left(\mathbb{R}^{+}\right): y^{\prime}(0)=h y(0)\right\},
$$

where $\Im h>0$, and

$$
\Gamma u=\binom{\sqrt{2 \Im h} u(0)}{\sqrt{2 \Im q} u}, \quad \text { with } \quad E=E_{*}=\mathbb{C} \oplus L^{2}(\Omega)
$$

Example: Schrödinger operator

Let $H=L^{2}\left(\mathbb{R}^{+}\right)$and $(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x)$, where $q \in L^{\infty}\left(\mathbb{R}^{+}\right)$ with $\Im q \geq 0$,

$$
D(A):=\left\{y \in H^{2}\left(\mathbb{R}^{+}\right): y^{\prime}(0)=h y(0)\right\},
$$

where $\Im h>0$, and

$$
\Gamma u=\binom{\sqrt{2 \Im h} u(0)}{\sqrt{2 \Im q} u}, \quad \text { with } \quad E=E_{*}=\mathbb{C} \oplus L^{2}(\Omega)
$$

Now, let φ_{*} and ψ_{*} be the fundamental solutions of $-y^{\prime \prime}+\bar{q} y=\lambda y$ and let m_{*} denote the Weyl-Titchmarsh function associated with $-y^{\prime \prime}+\bar{q} y$, i.e. $m_{*}(\lambda) \varphi_{*}(\lambda)+\psi_{*}(\lambda)$ is the (unique) L^{2}-solution to $-y^{\prime \prime}+\bar{q} y=\lambda y$.

Example: Schrödinger operator

Then $S(z)$ is given by
$\left(\begin{array}{c}\frac{h-m_{*}(z)}{h-m_{*}(z)} \\ i \frac{\sqrt{2 S h} \sqrt{2 S G}}{\bar{h}-m_{*}(z)}\left(m_{*}(z) \varphi_{*}(x)+\psi_{*}(x)\right)\end{array}\right.$

$$
\left.\begin{array}{c}
i \sqrt{2 \Im h} \int_{0}^{\infty} \frac{m_{*}(z) \varphi_{*}(y)+\psi_{*}(y)}{h-m_{*}(z)} \sqrt{2 \Im q(y)} \cdot(y) d y \\
\quad I+i \sqrt{2 \Im q}\left(A^{*}-z\right)^{-1} \sqrt{2 \Im q}
\end{array}\right)
$$

Example: Schrödinger operator

Then $S(z)$ is given by
$\left(\begin{array}{cc}\frac{h-m_{*}(z)}{h-m_{*}(z)} & i \sqrt{2 \Im h} \int_{0}^{\infty} \frac{m_{*}(z) \varphi_{*}(y)+\psi_{*}(y)}{h-m_{*}(z)} \sqrt{2 \Im q(y)} \cdot(y) d y \\ i \frac{\sqrt{2 \Im h} \sqrt{2 \Im q}}{h-m_{*}(z)}\left(m_{*}(z) \varphi_{*}(x)+\psi_{*}(x)\right) & 1+i \sqrt{2 \Im q}\left(A^{*}-z\right)^{-1} \sqrt{2 \Im q}\end{array}\right)$
Remarks:

- The top left entry coincides with the well-known formula by Pavlov for the case of real q.
- The bottom right entry agrees with the Livšic characteristic function for the case with a selfadjoint boundary condition.
- This formula shows the connection between the m-function and the characteristic function for this example.

Domain of the selfadjoint dilation

Let $\mu \in \mathbb{C}^{-}$and $\lambda \in \mathbb{C}^{+}$. Define $\mathcal{H}=L^{2}\left(\mathbb{R}_{-}, E_{*}\right) \oplus H \oplus L^{2}\left(\mathbb{R}_{+}, E\right)$ and

$$
\begin{aligned}
& D(\mathcal{L})=\left\{u=\left(\begin{array}{c}
v_{-} \\
u \\
v_{+}
\end{array}\right): u \in H, v_{+} \in H^{1}\left(\mathbb{R}_{+}, E\right), v_{-} \in H^{1}\left(\mathbb{R}_{-}, E_{*}\right),\right. \\
& \text { (i) } u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A) \text {, } \\
& \text { (ii) } u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0) \in D\left(A^{*}\right) \text {, } \\
& \text { (I) } v_{+}(0)=S^{*}(-\mu) v_{-}(0)+i \Gamma\left(u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0)\right) \text {, } \\
& \text { (II) } v_{-}(0)=S(-\bar{\lambda}) v_{+}(0)-i \Gamma_{*}\left(u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0)\right)
\end{aligned}
$$

Domain of the selfadjoint dilation

Let $\mu \in \mathbb{C}^{-}$and $\lambda \in \mathbb{C}^{+}$. Define $\mathcal{H}=L^{2}\left(\mathbb{R}_{-}, E_{*}\right) \oplus H \oplus L^{2}\left(\mathbb{R}_{+}, E\right)$ and

$$
\begin{aligned}
D(\mathcal{L})= & \left\{U=\left(\begin{array}{c}
v_{-} \\
u \\
v_{+}
\end{array}\right): u \in H, v_{+} \in H^{1}\left(\mathbb{R}_{+}, E\right), v_{-} \in H^{1}\left(\mathbb{R}_{-}, E_{*}\right),\right. \\
& \text { (i) } u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A), \\
& \text { (ii) } u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0) \in D\left(A^{*}\right), \\
& \text { (I) } v_{+}(0)=S^{*}(-\mu) v_{-}(0)+i \Gamma\left(u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0)\right), \\
& \text { (II) } \left.v_{-}(0)=S(-\bar{\lambda}) v_{+}(0)-i \Gamma_{*}\left(u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0)\right)\right\}
\end{aligned}
$$

Remarks:

- The set is independent of μ and λ in the appropriate half-planes.
- (i) and (ii) are equivalent.
- (I) and (II) are equivalent

Domain of the selfadjoint dilation II

Let $\mu \in \mathbb{C}^{-}$and $\lambda \in \mathbb{C}^{+}$. Define $\mathcal{H}=L^{2}\left(\mathbb{R}_{-}, E_{*}\right) \oplus H \oplus L^{2}\left(\mathbb{R}_{+}, E\right)$ and

$$
\begin{aligned}
& D(\mathcal{L})=\left\{u=\left(\begin{array}{c}
v_{-} \\
u \\
v_{+}
\end{array}\right): u \in H, v_{+} \in H^{1}\left(\mathbb{R}_{+}, E\right), v_{-} \in H^{1}\left(\mathbb{R}_{-}, E_{*}\right),\right. \\
& \text { (i) } u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A) \text {, } \\
& \text { (ii) } u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0) \in D\left(A^{*}\right) \text {, } \\
& \text { (I) } v_{+}(0)=S^{*}(-\mu) v_{-}(0)+i \Gamma\left(u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0)\right) \text {, } \\
& \text { (II) } v_{-}(0)=S(-\bar{\lambda}) v_{+}(0)-i \Gamma_{*}\left(u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0)\right)
\end{aligned}
$$

Remarks:

- The independence of (II) from λ allows us to take the limit as $\lambda \rightarrow \infty$. Whenever the characteristic function $S(-\bar{\lambda})$ has a limit, this gives a more explicit connection between $v_{+}(0)$ and $v_{-}(0)$.

Definition of the dilation

Definition

Let $\mu \in \mathbb{C}^{-}$and $\lambda \in \mathbb{C}^{+}$. For $U \in D(\mathcal{L})$, define

$$
\begin{gathered}
T U:=A^{*}\left(u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0)\right)+\bar{\lambda}\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0), \\
T_{*} U:=A\left(u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0)\right)+\bar{\mu}\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) .
\end{gathered}
$$

Definition of the dilation

Definition

Let $\mu \in \mathbb{C}^{-}$and $\lambda \in \mathbb{C}^{+}$. For $U \in D(\mathcal{L})$, define

$$
\begin{gathered}
T U:=A^{*}\left(u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0)\right)+\bar{\lambda}\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0), \\
T_{*} U:=A\left(u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0)\right)+\bar{\mu}\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) .
\end{gathered}
$$

Lemma

For all $U \in D(\mathcal{L})$ we have $T U=T_{*} U$.

Definition of the dilation

Definition

Let $\mu \in \mathbb{C}^{-}$and $\lambda \in \mathbb{C}^{+}$. For $U \in D(\mathcal{L})$, define

$$
\begin{gathered}
T U:=A^{*}\left(u+\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0)\right)+\bar{\lambda}\left(\Gamma(A+\lambda)^{-1}\right)^{*} v_{+}(0), \\
T_{*} U:=A\left(u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0)\right)+\bar{\mu}\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) .
\end{gathered}
$$

Lemma

For all $U \in D(\mathcal{L})$ we have $T U=T_{*} U$.

Definition

We define the operator \mathcal{L} on $\mathcal{H}=L^{2}\left(\mathbb{R}_{-}, E_{*}\right) \oplus H \oplus L^{2}\left(\mathbb{R}_{+}, E\right)$ with domain $D(\mathcal{L})$ by

$$
\mathcal{L} U=\mathcal{L}\left(\begin{array}{c}
v_{-} \\
u \\
v_{+}
\end{array}\right)=\left(\begin{array}{c}
i v_{-}^{\prime} \\
T U \\
i v_{+}^{\prime}
\end{array}\right) .
$$

Dilation

Theorem
 \mathcal{L} is symmetric

Dilation

Theorem

\mathcal{L} is symmetric and for $\lambda \in \mathbb{C}^{-}$, we have
$(\mathcal{L}-\lambda)^{-1}\left(\begin{array}{c}f \\ w \\ g\end{array}\right)=\left(\begin{array}{c}-i \int_{-\infty}^{x} e^{i \lambda(t-x)} f(t) d t \\ (A-\lambda)^{-1} w+i\left(\Gamma_{*}\left(A^{*}-\bar{\lambda}\right)^{-1}\right)^{*} \int_{-\infty}^{0} e^{i \lambda t} f(t) d t \\ v_{+}(0) e^{i \lambda x}-i \int_{0}^{x} e^{i \lambda(t-x)} g(t) d t\end{array}\right)$
where

$$
v_{+}(0)=i \Gamma(A-\lambda)^{-1} w-i S^{*}(\bar{\lambda}) \int_{-\infty}^{0} e^{i \lambda t} f(t) d t
$$

Dilation

Theorem

\mathcal{L} is symmetric and for $\lambda \in \mathbb{C}^{-}$, we have
$(\mathcal{L}-\lambda)^{-1}\left(\begin{array}{c}f \\ w \\ g\end{array}\right)=\left(\begin{array}{c}-i \int_{-\infty}^{x} e^{i \lambda(t-x)} f(t) d t \\ (A-\lambda)^{-1} w+i\left(\Gamma_{*}\left(A^{*}-\bar{\lambda}\right)^{-1}\right)^{*} \int_{-\infty}^{0} e^{i \lambda t} f(t) d t \\ v_{+}(0) e^{i \lambda x}-i \int_{0}^{x} e^{i \lambda(t-x)} g(t) d t\end{array}\right)$
where

$$
v_{+}(0)=i \Gamma(A-\lambda)^{-1} w-i S^{*}(\bar{\lambda}) \int_{-\infty}^{0} e^{i \lambda t} f(t) d t
$$

In particular, we have

$$
P_{H}(\mathcal{L}-\lambda)^{-1} P_{H}= \begin{cases}(A-\lambda)^{-1} & \lambda \in \mathbb{C}^{-} \\ \left(A^{*}-\lambda\right)^{-1} & \lambda \in \mathbb{C}^{+}\end{cases}
$$

so \mathcal{L} is a selfadjoint dilation of A. Moreover, \mathcal{L} is minimal.

Example: Schrödinger operator

Let $H=L^{2}\left(\mathbb{R}^{+}\right)$and

$$
(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x)
$$

where $q \in L^{\infty}\left(\mathbb{R}^{+}\right)$with $\Im q \geq 0$, and

$$
D(A):=\left\{y \in H^{2}\left(\mathbb{R}^{+}\right): y^{\prime}(0)=h y(0)\right\},
$$

where $\Im h>0$. Then

$$
\Gamma u=\binom{\sqrt{2 \Im h} u(0)}{\sqrt{2 \Im q} u}=\Gamma_{*} u
$$

with $E=E_{*}=\mathbb{C} \oplus L^{2}(\Omega)$

Example: Schrödinger operator

Let $H=L^{2}\left(\mathbb{R}^{+}\right)$and

$$
(A f)(x)=-f^{\prime \prime}(x)+q(x) f(x)
$$

where $q \in L^{\infty}\left(\mathbb{R}^{+}\right)$with $\Im q \geq 0$, and

$$
D(A):=\left\{y \in H^{2}\left(\mathbb{R}^{+}\right): y^{\prime}(0)=h y(0)\right\}
$$

where $\Im h>0$. Then

$$
\Gamma u=\binom{\sqrt{2 \Im h} u(0)}{\sqrt{2 \Im q} u}=\Gamma_{*} u
$$

with $E=E_{*}=\mathbb{C} \oplus L^{2}(\Omega)$ and we get

$$
\begin{aligned}
u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0)= & u+\sqrt{2 \Im h} \overline{G_{*}(0, y,-\mu)}\left(v_{-}(0)\right)_{1} \\
& +(A-\mu)^{-1} \sqrt{2 \Im q}\left(v_{-}(0)\right)_{2}
\end{aligned}
$$

Example: Schrödinger operator II

Then $u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A)$ gives

$$
u^{\prime}(0)-h u(0)=\sqrt{2 \Im h}\left(v_{-}(0)\right)_{1}
$$

Example: Schrödinger operator II

Then $u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A)$ gives

$$
u^{\prime}(0)-h u(0)=\sqrt{2 \Im h}\left(v_{-}(0)\right)_{1}
$$

Similarly,

$$
T U=-u^{\prime \prime}+q u+\sqrt{2 \Im q}\left(v_{-}(0)\right)_{2}
$$

Example: Schrödinger operator II

Then $u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A)$ gives

$$
u^{\prime}(0)-h u(0)=\sqrt{2 \Im h}\left(v_{-}(0)\right)_{1}
$$

Similarly,

$$
T U=-u^{\prime \prime}+q u+\sqrt{2 \Im q}\left(v_{-}(0)\right)_{2} .
$$

Using the limit of the characteristic function at $i \infty$ gives $v_{+}(0)=v_{-}(0)+i \Gamma u$.

Example: Schrödinger operator II

Then $u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A)$ gives

$$
u^{\prime}(0)-h u(0)=\sqrt{2 \Im h}\left(v_{-}(0)\right)_{1} .
$$

Similarly,

$$
T U=-u^{\prime \prime}+q u+\sqrt{2 \Im q}\left(v_{-}(0)\right)_{2} .
$$

Using the limit of the characteristic function at $i \infty$ gives $v_{+}(0)=v_{-}(0)+i \Gamma u$. Hence,

$$
D(\mathcal{L})=\left\{U=\left(\begin{array}{c}
v_{-} \\
u \\
v_{+}
\end{array}\right): u \in H^{2}\left(\mathbb{R}^{+}\right), v_{ \pm} \in H^{1}\left(\mathbb{R}_{ \pm}, E\right)\right.
$$

$$
\left.u^{\prime}(0)-h u(0)=\sqrt{2 \Im h}\left(v_{-}(0)\right)_{1}, v_{+}(0)=v_{-}(0)+i \Gamma u\right\}
$$

Example: Schrödinger operator II

Then $u+\left(\Gamma_{*}\left(A^{*}+\mu\right)^{-1}\right)^{*} v_{-}(0) \in D(A)$ gives

$$
u^{\prime}(0)-h u(0)=\sqrt{2 \Im h}\left(v_{-}(0)\right)_{1} .
$$

Similarly,

$$
T U=-u^{\prime \prime}+q u+\sqrt{2 \Im q}\left(v_{-}(0)\right)_{2} .
$$

Using the limit of the characteristic function at $i \infty$ gives $v_{+}(0)=v_{-}(0)+i \Gamma u$. Hence,

$$
D(\mathcal{L})=\left\{U=\left(\begin{array}{c}
v_{-} \\
u \\
v_{+}
\end{array}\right): u \in H^{2}\left(\mathbb{R}^{+}\right), v_{ \pm} \in H^{1}\left(\mathbb{R}_{ \pm}, E\right)\right.
$$

$$
\left.u^{\prime}(0)-h u(0)=\sqrt{2 \Im h}\left(v_{-}(0)\right)_{1}, v_{+}(0)=v_{-}(0)+i \Gamma u\right\}
$$

and

$$
\mathcal{L} U=\mathcal{L}\left(\begin{array}{c}
v_{-} \\
u \\
v_{+}
\end{array}\right)=\left(\begin{array}{c}
i v_{-}^{\prime} \\
-u^{\prime \prime}+q u+\sqrt{2 \Im q}\left(v_{-}(0)\right)_{2} \\
i v_{+}^{\prime}
\end{array}\right)
$$

Thank you for your attention!

