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Dissipative operators

Definition

H Hilbert space. A densely defined linear operator A with domain D(A) in
H is called dissipative if S (Au, u) > 0 for all u € D(A). Ais called
anti-dissipative if (—A) is dissipative.
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H Hilbert space. A densely defined linear operator A with domain D(A)
H is called dissipative if S (Au, u) > 0 for all u € D(A). Ais called
anti-dissipative if (—A) is dissipative.

in

Dissipative operators which have no non-trivial dissipative extensions are
called maximal dissipative operators (MDOs).
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Dissipative operators

H Hilbert space. A densely defined linear operator A with domain D(A)
H is called dissipative if S (Au, u) > 0 for all u € D(A). Ais called
anti-dissipative if (—A) is dissipative.

in

Dissipative operators which have no non-trivial dissipative extensions are
called maximal dissipative operators (MDOs).

Ais MDO iff A is dissipative and C~ C p(A).
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Dilations and minimality

Proposition (Sz.-Nagy)

For any MDO A on a Hilbert space H there exists a selfadjoint operator L
on a Hilbert space H O H such that

e™ = Pue™Py, t >0 or (A=AN)"1=Py(L-—N)"tPy, AeC.
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For any MDO A on a Hilbert space H there exists a selfadjoint operator L
on a Hilbert space H O H such that

e™ = Pue™Py, t >0 or (A=AN)"1=Py(L-—N)"tPy, AeC.

Definition

L is a selfadjoint dilation of A. A dilation is minimal if it contains no
non-trivial reducing part which is itself a selfadjoint dilation of A.
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Dilations and minimality

Proposition (Sz.-Nagy)

For any MDO A on a Hilbert space H there exists a selfadjoint operator L
on a Hilbert space H O H such that

e™ = Pue™Py, t >0 or (A=AN)"1=Py(L-—N)"tPy, AeC.

Definition

L is a selfadjoint dilation of A. A dilation is minimal if it contains no
non-trivial reducing part which is itself a selfadjoint dilation of A.

This allows the use of tools of the theory of self-adjoint operators to study
MDOs, e.g. one obtains a functional calculus via

»(A) = Pyp(L)Py for any ¢ € H*(Cy)

and [[P(A)|| = [[PHo(L)]| < [[0(L)]| < suprecs [Y(A)]-
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Lagrange identity

Lemma

Let A be a maximally dissipative operator on a Hilbert space H. Then
there exists a Hilbert space E and an operator I : D(A) — E such that

ITullg < llully + [|Aully

i.e. [ is bounded in the graph norm of A, I has dense range in E and such
that for all u,v € D(A) we have

(Au, vy — (u, Av) y = i (Tu,Tv) .

v
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Lagrange identity

Lemma

Let A be a maximally dissipative operator on a Hilbert space H. Then
there exists a Hilbert space E and an operator I : D(A) — E such that

ITullg < llully + [|Aully

i.e. [ is bounded in the graph norm of A, I has dense range in E and such
that for all u,v € D(A) we have

(Au, vy — (u, Av) y = i (Tu,Tv) .

Similarly, there exists a Hilbert space E, and an operator I, : D(A*) — E.
which is bounded in the graph norm of A*, has dense range in E, and such
that for all u,v € D(A*) we have

(Afu,v)y — (u, A*v) = =i (Tau, Tav)

v
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Example: Schrodinger operator

On H = [2(R*), let (AF)(x) = —F"(x) + g(x)F(x), q € L=(R*) with
Jq(x) > 0 for a.e. x € R and

D(A) := {f € H*(R") : f'(0) = hf(0)}
with S(h) > 0.
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Example: Schrodinger operator

On H = [2(R*), let (AF)(x) = —F"(x) + g(x)F(x), q € L=(R*) with
Jq(x) > 0 for a.e. x € R and

D(A) := {f € H*(R") : f'(0) = hf(0)}

with &(h) > 0. Then for u,v € D(A), we have

(Au,v) — (u,Av) = ' (0)v(0) — u(0)v/(0) + 2i/0 Jq(x) u(x)v(x) dx
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Example: Schrodinger operator

On H = [2(R*), let (AF)(x) = —F"(x) + g(x)F(x), q € L=(R*) with
Jq(x) > 0 for a.e. x € R and

D(A) := {f € H*(R") : f'(0) = hf(0)}

with &(h) > 0. Then for u,v € D(A), we have

(Au,v) — (u,Av) = ' (0)v(0) — u(0)v/(0) + 2i/0OO Jq(x) u(x)v(x) dx

= 2i (Sh u(0)v(0) + /0 h Iq(x) u(x)v(x) dx> .

Let Q@ = {x € RT : Sq(x) > 0}, set E =C @ L?() and

ru= < \/\/%‘Zf’? ) u € D(A).

Then (Au,v)y — (U, Av)y =i (Tu,Tv) .
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Example: Schrodinger operator

On H = [2(R*), let (AF)(x) = —F"(x) + g(x)F(x), q € L=(R*) with
Jq(x) > 0 for a.e. x € R and

D(A) := {f € H*(R") : f'(0) = hf(0)}

with &(h) > 0. Then for u,v € D(A), we have

(Au,v) — (u,Av) = ' (0)v(0) — u(0)v/(0) + 2i/0OO Jq(x) u(x)v(x) dx

= 2i (Sh u(0)v(0) + /0 b Iq(x) u(x)v(x) dx> .

Let Q@ = {x € RT : Sq(x) > 0}, set E =C @ L?() and
[ V2Sh u(0)
Mu— < 2Se e ) uEDA)
Then (A, vy — (1, Ay = (T, T)

Here, E, = E and I, acts as I, but has a different domain.
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Straus characteristic function

For all u € D(A) and z € C* we have

IF(A* = 2)7HA = 2)u|? = |[Tu]]* = 23(2) (A" — 2)H(A = 2)u — u]|*.

Hence,
ITw(A* = 2)"H (A= 2)u|| < [|Tull,

v
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For all u € D(A) and z € C* we have

IF(A* = 2)7HA = 2)u|* = |[Tu]]?* = 23(2) (A" = 2)7H(A = 2)u — u]|*.

Hence,
ITw(A* = 2)"H (A= 2)u|| < [|Tull,

and there exists a unique contraction S(z) : E — E,, analytic in the upper
half-plane, such that

S(z)Fu =T (A" —2) YA = 2)u for all u € D(A).
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Straus characteristic function

For all u € D(A) and z € C* we have

IF(A* = 2)7HA = 2)u|* = |[Tu]]?* = 23(2) (A" = 2)7H(A = 2)u — u]|*.

Hence,
ITw(A* = 2)"H (A= 2)u|| < [|Tull,

and there exists a unique contraction S(z) : E — E,, analytic in the upper
half-plane, such that

S(z)Fu =T (A" —2) YA = 2)u for all u € D(A).

Correspondingly, there exists a contraction S.(z) : E. — E, analytic in the
lower half plane, such that

S.(2)Mwu=T(A—2)"Y(A* — 2)u for all u € D(A¥).
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Example: Schrodinger operator

Let H = L?(R*) and (Af)(x) = —f"(x) + q(x)f(x), where g € L°(R™)
with Sq > 0,

D(A) := {y € H*(R") : y/(0) = hy(0)},
where Sh > 0, and

o V23h U(O) . . o 2
ru_< /254 u , with E=E, =CaL(Q).
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Example: Schrodinger operator

Let H = L?(R*) and (Af)(x) = —f"(x) + q(x)f(x), where g € L°(R™)
with Sq > 0,

D(A) := {y € H*(R") : y/(0) = hy(0)},
where Sh > 0, and

o V23h U(O) . . o 2
ru_< /254 u , with E=E, =CaL(Q).

Now, let ¢, and 9, be the fundamental solutions of —y” + gy = Ay and
let m, denote the Weyl-Titchmarsh function associated with —y” + gy,
i.e. my(N)@«(A) +104()) is the (unique) L2-solution to —y” + gy = My.
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Example: Schrodinger operator

Then S(z) is given by

e VS [;7 A 2Se(y) - () dy
PRI (m. (2)px (%) + (%)) I+ V234 (A" — 2)"1/23q
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Example: Schrodinger operator

Then S(z) is given by

s iV2Sh [;7 mEeatdiiel) | aGq(y) - (y) dy
PEENES (. (2)p. (x) + 1 (x)) I+ V25 (A" - 2)'y/2Sq
Remarks:

@ The top left entry coincides with the well-known formula by Pavlov
for the case of real gq.

@ The bottom right entry agrees with the LivSic characteristic function
for the case with a selfadjoint boundary condition.

@ This formula shows the connection between the m-function and the
characteristic function for this example.
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Domain of the selfadjoint dilation

Let 4 € C~ and A € C*. Define H = L*(R_,E,) ® H® L?(R4, E) and

D(L) = {U ( Vu_ ) - ueH, vp e H(R,,E), v e H(R_,E,),
Vi
(i) u+ (Te(A" + ) "1)*v-(0) € D(A),
(i) u+ (T(A+XN)"H*vy(0) € D(AY),
(1) v(0) = S*(=p)v—(0) +iT (u + (Te(A" + 1) )*v-(0)),

(1) v_(0) = S(—=X)v(0) — iTw (u+ (T(A+A)"1)*v,(0)) }
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Domain of the selfadjoint dilation

Let 4 € C~ and A € C*. Define H = L*(R_,E,) ® H® L?(R4, E) and

v
D(L) = {U ( u ) cu€H, v, € H(R,E), v. € HY(R_,E,),

Vi
(i) u+ (F(A™ + 1) ™) v-(0) € D(A),
(i) v+ (F(A+A)71)"v,.(0) € D(AY),
(1) v4(0) = S*(=p)v—(0) + T (u+ (Tu(A" + 1) ™)"v-(0)) ,

(1) v_(0) = S(—=X)v(0) — i (u+ (T(A+ A)"1)* v (0)) }

Remarks:

@ The set is independent of  and X in the appropriate half-planes.
@ (i) and (ii) are equivalent.
@ (1) and (Il) are equivalent
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Domain of the selfadjoint dilation Il

Let 4 € C~ and A € C*. Define H = L*(R_,E,) ® H® L?(R, E) and

V_
D(L) = {U ( u ) : u€H, vy € HY(R,E), v € HY(R_, E.),

V4
(i) u+ (Ta(A" + 1) 1) "v=(0) € D(A),
(if) u+ (F(A+ )71 "v,.(0) € D(AY),
(1) v4(0) = S*(=)v=(0) +iT (u+ (Te(A" + 1) 71)"v-(0)) ,

(1) v_(0) = S(—=X)v(0) — i (u+ (T(A+ A) 1) * v (0)) }

Remarks:

@ The independence of (Il) from X allows us to take the limit as
A — 0o. Whenever the characteristic function S(—X) has a limit, this
gives a more explicit connection between v, (0) and v_(0).
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Definition of the dilation

Definition
Let u € C~ and A € C*. For U € D(L), define

TU = A*(u+ (T(A + 2) 7)1 (0)) + A(T(A + A) ) v (0),

T.U = Al + (Ta(A" 4+ 1)) v-(0)) + A(T(A + 1)) v-(0).
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Definition of the dilation

Definition
Let u € C~ and A € C*. For U € D(L), define

TU = A*(u+ (T(A + 2) 7)1 (0)) + A(T(A + A) ) v (0),

T.U = Al + (Ta(A" 4+ 1)) v-(0)) + A(T(A + 1)) v-(0).

For all U € D(L) we have TU = T, U.
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Definition of the dilation

Definition
Let 4 € C~ and A € C*. For U € D(L), define

TU := A*(u+ (T(A+ )7 v4.(0)) + AT(A + A) 1) v4.(0),

T.U = Al + (Ta(A" 4+ 1)) v-(0)) + A(T(A + 1)) v-(0).

For all U € D(L) we have TU = T, U.

Definition
We define the operator £ on H = L?>(R_, E,) ® H® L*(R., E) with

domain D(L) by
v v
LU=, v |=1| TU |.
vy vl

lan Wood (Kent) Dilation of MDOs CIRM 2017 11 /15




Dilation

L is symmetric

4
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Dilation

L is symmetric and for A € C~, we have

f —i [*_ eMEF(t) dt
LN w = A=N)"tw+i(r ( —N)H* [0 eMf(t) dt
& v (0)e™ — i [ e tX)g(t) dit
where
0
v (0) = iT(A—XN)"tw —iS*(N) / e™f(t) dt.

4
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Dilation

L is symmetric and for A € C~, we have

f —i [*_ eMEF(t) dt
LN w = A=N)"tw+i(r ( —N)H* [0 eMf(t) dt
& v (0)e™ — i [ e tX)g(t) dit
where
0
v (0) = iT(A—XN)"tw —iS*(N) / e™f(t) dt.

In particular, we have

_ (A-N"1 xecC,
C {( —-A)71 aect,

so L is a selfadjoint dilation of A. Moreover, L is minimal.

v
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Example: Schrodinger operator

Let H = L?(R*) and

(AF)(x) = —F"(x) + a(x)f (x),

where g € L°(R*) with Sg > 0, and

D(A) :={y € H*(R") : y'(0) = hy(0)},

where Sh > 0. Then

with E = E, = C & [2(Q)

lan Wood (Kent) Dilation of MDOs CIRM 2017 13 /15



Example: Schrodinger operator

Let H = L?(R*) and
(AF)(x) = —F"(x) + a(x)f (x),
where g € L°(R*) with Sg > 0, and
D(A) := {y € H*(R") : y'(0) = hy(0)},
where 3h > 0. Then

ru:<¢@u(0)>_

with E = E, = C @ L?(Q) and we get

ut (MU + 1)) v (0) = s VIS GOy, —m)(v-(O)):
+(A = 1) "1V/23q (v-(0))2.
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Example: Schrodinger operator |l

Then u+ (T«(A* + 1) ~1)*v_(0) € D(A) gives
u'(0) — hu(0) = V23h (v—(0))1.
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Example: Schrodinger operator |l

Then u+ (T«(A* + 1) ~1)*v_(0) € D(A) gives
u'(0) — hu(0) = V23h (v—(0))1.

Similarly,
TU = —u" + qu + /23q (v—(0)).
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Example: Schrodinger operator |l

Then u+ (T«(A* + 1) ~1)*v_(0) € D(A) gives
u'(0) — hu(0) = V23h (v—(0))1.
Similarly,

TU = —u" + qu + /23q (v—(0)).
Using the limit of the characteristic function at ico gives
vi(0) = v_(0) + iTu.
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Example: Schrodinger operator |l

Then u+ (T«(A* + 1) ~1)*v_(0) € D(A) gives
u'(0) — hu(0) = V23h (v_(0));.
Similarly,
TU = —u" + qu + /23q (v—(0)).
Using the limit of the characteristic function at ico gives
v4(0) = v_(0) + ilu. Hence,

V_
D(ﬁ) e U = u ) uce H2(R+), V4 S Hl(R:I:7 E)7
Vi

4 (0) — hu(0) = v23h (v_(0))1, v+ (0) = v_(0) + il u }
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Example: Schrodinger operator |l

Then u+ (T«(A* + 1) ~1)*v_(0) € D(A) gives
u'(0) — hu(0) = V23h (v_(0));.
Similarly,
TU = —u" + qu + /23q (v—(0)).
Using the limit of the characteristic function at ico gives
v4(0) = v_(0) + ilu. Hence,

V_
D(ﬁ) e U = u ) uce H2(R+), V4 S Hl(R:I:7 E)7
Vi

4 (0) — hu(0) = v23h (v_(0))1, v+ (0) = v_(0) + il u }

and v v’
LU="L ( u ) = ( —u" + qu+ /25q (v-(0))2 ) :

vy vl
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Thank you for your attention!
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