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Question: Spectral decomposition?

Let S be a closed operator on a Banach space X with iR ⊆ %(S).

Question: Do there exist closed subspaces X+ and X− such that

1 X = X+ ⊕ X−,

2 X+ and X− are S-invariant,

3 σ(S |X+) ⊆ C+, σ(S |X−) ⊆ C−.

In that case, S is called dichotomous with
respect to the decomposition X = X+ ⊕ X−.

If in addition

4 ‖(S |X+ − λ)−1‖ is bounded on C− and

‖(S |X− − λ)−1‖ is bounded on C+

then S is called strictly dichotomous.
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2 X+ and X− are S-invariant,

3 σ(S |X+) ⊆ C+, σ(S |X−) ⊆ C−.

In that case, S is called dichotomous with
respect to the decomposition X = X+ ⊕ X−.

If in addition

4 ‖(S |X+ − λ)−1‖ is bounded on C− and

‖(S |X− − λ)−1‖ is bounded on C+

then S is called strictly dichotomous.

If S is dichotomous with
respect to X = X+ ⊕ X−, then
S has a diagonal block operator
matrix representation:

S =

(
S |X+ 0

0 S |X−

)
.



Examples

3 Let X = C3, S =

1 1 0
0 1 0
0 0 −1

 and
X+ = span {e1, e2} ,
X− = span {e3} .

I Clearly, σ(S) = {−1, 1}, S is dichotomous for X = X+ ⊕ X− and

(S − λ)−1 =

(1− λ)−1 −(1− λ)−2 0
0 (1− λ)−1 0
0 0 −(1 + λ)−1

 for λ 6= ±1.

I (S − λ)−1 cannot be extended analytically to either C+ or C−.

I But:
F for x+ ∈ X+, the vectorvalued function λ 7→ (S − λ)−1x+ has a bounded

analytic extension to C−

F for x− ∈ X−, the vectorvalued function λ 7→ (S − λ)−1x−has a bounded
analytic extension to C+

I Actually:

X+ = {x ∈ X : (S − λ)−1x has a bounded analytic extension to C−},

X− = {x ∈ X : (S − λ)−1x has a bounded analytic extension to C+}.
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Examples
1 X = l2(N), S = diag(S1,S2, . . . ) with Sn =

(
n 2n2

0 −n

)
.

I σ(S) = σp(S) = N ∪ (−N), all eigenvalues are simple.

I Natural choice for X+,X−:
X+ = closed linear hull of eigenvectors with positive eigenvalues,
X− = closed linear hull of eigenvectors with negative eigenvalues,

Then: X± are S-invariant and σ(S |X±) = ±N, but X 6= X+ ⊕ X−.

Reason: The projections of X+ ⊕ X− onto X± along X∓ are unbounded
because P± = diag(P±1 , P±2 , . . . ) with

P+
n =

(
1 n
0 0

)
, P−n =

(
0 −n
0 1

)
,

therefore only
X = X+ ⊕ X− 6= X+ ⊕ X−.

Hence S is not dichotomous.

=⇒ iR ⊂ %(S) alone is not enough to decompose X into spectral
subspaces of S .
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Examples

2 S = generator of a nilpotent contraction semigroup (e.g., generator of a shift
semigroup on a bounded interval)

Then: σ(S) = ∅ and (S − λ)−1 is uniformly bounded on C+. Therefore

I S is strictly dichotomous with respect to X+ = {0}, X− = X ,

I S is not strictly dichotomous with respect to X+ = X , X− = {0}.

S is dichotomous with respect to both decompositions.

In general:
I if S is dichotomous, then the corresponding decomposition of X may not be

unique,

I if S is strictly dichotomous, then the corresponding decomposition of X is
always unique because . . .

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 5 / 19



Examples

2 S = generator of a nilpotent contraction semigroup (e.g., generator of a shift
semigroup on a bounded interval)

Then: σ(S) = ∅ and (S − λ)−1 is uniformly bounded on C+.

Therefore

I S is strictly dichotomous with respect to X+ = {0}, X− = X ,

I S is not strictly dichotomous with respect to X+ = X , X− = {0}.

S is dichotomous with respect to both decompositions.

In general:
I if S is dichotomous, then the corresponding decomposition of X may not be

unique,

I if S is strictly dichotomous, then the corresponding decomposition of X is
always unique because . . .

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 5 / 19



Examples

2 S = generator of a nilpotent contraction semigroup (e.g., generator of a shift
semigroup on a bounded interval)

Then: σ(S) = ∅ and (S − λ)−1 is uniformly bounded on C+. Therefore

I S is strictly dichotomous with respect to X+ = {0}, X− = X ,

I S is not strictly dichotomous with respect to X+ = X , X− = {0}.

S is dichotomous with respect to both decompositions.

In general:
I if S is dichotomous, then the corresponding decomposition of X may not be

unique,

I if S is strictly dichotomous, then the corresponding decomposition of X is
always unique because . . .

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 5 / 19



Examples

2 S = generator of a nilpotent contraction semigroup (e.g., generator of a shift
semigroup on a bounded interval)

Then: σ(S) = ∅ and (S − λ)−1 is uniformly bounded on C+. Therefore

I S is strictly dichotomous with respect to X+ = {0}, X− = X ,

I S is not strictly dichotomous with respect to X+ = X , X− = {0}.

S is dichotomous with respect to both decompositions.

In general:
I if S is dichotomous, then the corresponding decomposition of X may not be

unique,

I if S is strictly dichotomous, then the corresponding decomposition of X is
always unique because . . .

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 5 / 19



Examples

2 S = generator of a nilpotent contraction semigroup (e.g., generator of a shift
semigroup on a bounded interval)

Then: σ(S) = ∅ and (S − λ)−1 is uniformly bounded on C+. Therefore

I S is strictly dichotomous with respect to X+ = {0}, X− = X ,

I S is not strictly dichotomous with respect to X+ = X , X− = {0}.

S is dichotomous with respect to both decompositions.

In general:
I if S is dichotomous, then the corresponding decomposition of X may not be

unique,

I if S is strictly dichotomous, then the corresponding decomposition of X is
always unique because . . .

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 5 / 19



Examples

2 S = generator of a nilpotent contraction semigroup (e.g., generator of a shift
semigroup on a bounded interval)

Then: σ(S) = ∅ and (S − λ)−1 is uniformly bounded on C+. Therefore

I S is strictly dichotomous with respect to X+ = {0}, X− = X ,

I S is not strictly dichotomous with respect to X+ = X , X− = {0}.

S is dichotomous with respect to both decompositions.

In general:
I if S is dichotomous, then the corresponding decomposition of X may not be

unique,

I if S is strictly dichotomous, then the corresponding decomposition of X is
always unique because . . .

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 5 / 19



Uniqueness of decomposition of X = X+ ⊕ X−

Lemma

S(X → X ) with iR ∈ %(S). Let

G± = {x ∈ X : (S − λ)−1x has a bounded analytic extension to C∓}.

Then: 1 G+ ∩ G− = {0}.
2 If S is strictly dichotomous for X = X+ ⊕ X−, then X± = G±.

Proof.

1 If x ∈ G+ ∩ G−, then (S − λ)−1x has a bounded analytic extension to C, so
it must be constant (Liouville theorem). Therefore x = 0.

2 By definition of strict dichotomy, X± ⊂ G± and X = X+ ⊕ X−. Hence
X± = G± follows.

How can we compute X±?
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Special Case: One spectral set is bounded

Assume that σ(S) ∩ C+ is bounded.

Then: Riesz projection defined as

P+ :=
1

2πi

∫
Γ

(λ− S)−1 dλ,

P− := 1−P+.

P± are bounded complementary projections,

X± := Rg(P±) are S-invariant,

σ(S |X±) = σ(S) ∩ C±.

Γ

R

iR

σ(S)

=⇒ S is strictly dichotomous with respect to X = X+ ⊕ X−.

Does not work if both σ(S) ∩ C± are unbounded!

Idea: Deform contour Γ and modify the integral.
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Heuristic derivation of formula for P±
Assume S is bounded and deform path Γ to path ΓR

P+x =
1

2πi

∫
ΓR

(λ− S)−1x dλ

=
1

2πi
S2

∫
ΓR

λ−2(λ− S)−1x dλ

=
1

2πi
S2

∫
ΓR,↓

λ−2(λ− S)−1x dλ

+
1

2πi
S2

∫
Γ
R,

x

λ−2(λ− S)−1x dλ

iR

−iR

h

R

iR

σ(S)

ΓR

Take limit R →∞: P+ =
1

2πi
S2

∫ h+i∞

h−i∞
λ−2(S − λ)−1 dλ.

Problems for unbounded S : Does the integral converge? Does the integral map
to D(S2)? . . .

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 8 / 19



Heuristic derivation of formula for P±
Assume S is bounded and deform path Γ to path ΓR

P+x =
1

2πi

∫
ΓR

(λ− S)−1x dλ

=
1

2πi
S2

∫
ΓR

λ−2(λ− S)−1x dλ

=
1

2πi
S2

∫
ΓR,↓

λ−2(λ− S)−1x dλ

+
1

2πi
S2

∫
Γ
R,

x

λ−2(λ− S)−1x dλ

iR

−iR

h

R

iR

σ(S)

ΓR

Take limit R →∞: P+ =
1

2πi
S2

∫ h+i∞

h−i∞
λ−2(S − λ)−1 dλ.

Problems for unbounded S : Does the integral converge? Does the integral map
to D(S2)? . . .
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Spectral splitting along imaginary axis

Let S(X → X ) with iR ∈ %(S).

Additional assumption: (S − λ)−1 is uniformly bounded on the imaginary axis.

=⇒ {λ ∈ C : |Re(λ)| ≤ h} ⊂ %(S) for some h > 0,

sup|Re λ|≤h ‖(S − λ)−1‖ <∞.

=⇒ A± =
±1

2πi

∫ ±h+i∞

±h−i∞
λ−2(S − λ)−1 dλ well-defined bounded operators!
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Spectral splitting along imaginary axis

Theorem

Let S(X → X ) densely defined, with iR ⊂ %(S) and (S − λ)−1 uniformly bounded
on iR.

Let G± and A± as before and set P± := S2A±. Then:

1 P± are complementary projections with D(P+) = D(P−) = G+ ⊕ G− and

G± = Rg(P±) = ker(A∓).

2 G± are S- and (S − λ)−1-invariant closed subspaces and

σ(S |G±) = σ(S) ∩ C±,

‖(S |G± − λ)−1‖ ≤ M for λ ∈ C∓.

3 D(S2) ⊂ D(P±) and

P±x =
±1

2πi

∫ ±h+i∞

±h−i∞
λ−2(S − λ)−1S2x dλ, x ∈ D(S2).

In particular, P± are densely defined.
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By the previous theorem: uniform boundedness of (S − λ)−1 on iR is sufficient for
existence of S-invariant subspaces G± with

σ(S |G±) = σ(S) ∩ C±,

‖(S |G± − λ)−1‖ ≤ M on C∓,

G+ ⊕ G− = X .

Missing for S to be dichotomous: X = G+ ⊕ G−!

This equality depends on P± because D(P±) = G+ ⊕ G−.

Corollary

Let S as above. Then the following is equivalent:

1 S is strictly dichotomous.

2 X = G+ ⊕ G−.

3 P± is bounded.

In this case, X = G+ ⊕ G− is the corresponding unique spectral decomposition.
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The formula P+ =
1

2πi

∫ h+i∞

h−i∞
λ−2(S − λ)−1S2 dλ appears already in

Bart, Gohberg, Kaashoek (1986). They proved:
I If P+ is bounded on D(S2), then S is dichotomous and P+ is projection

on X+.
I G± ⊂ ker(A∓) = Rg(P±).

The similar integral formula P+x − P−x =
1

πi

∫ i∞ ′

i∞
(S − λ)−1x dλ was

proved in Langer, Tretter (2001) under the assumption that
lim|t|→∞ ‖(S − it)−1‖ = 0 and the additional assumption that the integral
exists for every x ∈ X .
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Bisectorial operators

An operator S(X → X ) is called bisectorial if iR \ {0} ⊂ %(S) and

‖(S − λ)−1‖ ≤ M

|λ|
, λ ∈ iR \ {0}. (∗)

If S is bisectorial, then there exists 0 < θ < π/2
such that the bisector

Ωθ = C \
(
Σθ ∪ (−Σθ)

)
= {λ ∈ C : θ < | arg λ| < π − θ}

belongs to %(S) and (∗) holds on Ωθ.

θ
Ωθ

σ(S)
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Bisectorial operators

For bisectorial operators S with 0 ∈ %(S) the formula for the spectral projections
simplify:

P+ =
1

2πi
S2

∫ h+i∞

h−i∞
λ−2(S − λ)−1 dλ

=
1

2πi
S1

∫ h+i∞

h−i∞
λ−1(S − λ)−1 dλ

because due to the decay of ‖(S − λ)−1‖ the power −1 of λ is sufficient to
guarantee existence of the integral.

Set B± =
1

2πi

∫ ±h+i∞

±h−i∞
λ−1(S − λ)−1 dλ. Then we obtain the following theorem.
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Bisectorial operators

Theorem

Let S(X → X ) be bisectorial with 0 ∈ %(S) and P± as in the theorem on spectral
splitting. Then:

1 P± = SB±, D(S) ⊂ D(P±) and

P±x =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ
(S − λ)−1Sx dλ, x ∈ D(S).

2 Let S be bisectorial with 0 ∈ %(S) and θ as before. Then ±S |G± are sectorial
with angle θ and unchanged constant M.

As before: S is strictly dichotomous if and only if the projections P± are bounded.
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Perturbation Results

Theorem

Let S(X → X ) be densely defined and strictly dichotomous.
Let T (X → X ) densely defined such that there exist h > 0, ε > 0 with:

1 {λ ∈ C : |Reλ| ≤ h} ⊂ %(S) ∩ %(T );

2 sup|Re λ|≤h |λ|1+ε‖(S − λ)−1 − (T − λ)−1‖ <∞;

3 D(S2) ∩ D(T 2) ⊂ X dense.

Then T is strictly dichotomous too.
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Perturbation Results

Theorem

Let S(X → X ) be densely defined, bisectorial and strictly dichotomous.
Let T (X → X ) densely defined and ε > 0 such that the following conditions hold:

1 iR ⊂ %(T );

2 supλ∈iR |λ|1+ε‖(S − λ)−1 − (T − λ)−1‖ <∞;

3 D(S) ∩ D(T ) is dense in X .

Then T is also strictly dichotomous and bisectorial.

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 17 / 19



Perturbation Results

Theorem

Let S(X → X ) be densely defined, bisectorial and strictly dichotomous.
Let T (X → X ) densely defined and ε > 0 such that the following conditions hold:

1 iR ⊂ %(T );

2 supλ∈iR |λ|1+ε‖(S − λ)−1 − (T − λ)−1‖ <∞;

3 D(S) ∩ D(T ) is dense in X .

Then T is also strictly dichotomous and bisectorial.

M. Winklmeier, Universidad de los Andes Spectral decomposition of linear operators CIRM, June 06, 2017 17 / 19



Thank you for the attention!
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