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The objects discussed

Let P be the Weyl quantization of a degree-2 complex-valued
polynomial p(x, £) and let Q be the Weyl quantization of a quadratic
form g(x, &).
Our goal is to describe how to get information about the Schrodinger
evolution

U(t,x) = exp(—itP)u(x)

from elementary symplectic linear algebra. Specifically, we’ll get
under suitable conditions the L?(R") operator norm using the
Hamilton flow

K = exp(tH,)

of the quadratic part. Recall that H, = (0¢g, —0xq), which we will
regard as a matrix.



Application: the NSAHO

For 6 € (—7/2,7/2), let
V(o o2
Qp = 3 (e D" +e”x ) .

Fort € C, let
a = |cost|> 4 cos(26)|sint|>.

Then [V. 2016, 2017] when &t < Oanda > 1,

i 1/4
e | c2my) = (a -Va - 1)




Application: the shifted harmonic oscillator

Let

P= (D + (i)

be obtained by shifting the harmonic oscillator Q¢ by v = (i,0). Then
—itP f— ht
G- le ™| exp (cos | — cos 2) .

leie| sinh 1,

(The image is loglog G, so “3” represents 1.9 x 10%.)




The NSAHO

The non-self-adjoint harmonic oscillator

1.
Qg = E(e_'aD2 +e%?), ¢ (—n/2,7/2)

has symbol
g0(x.€) = (ﬂ%2+e%%

These operators are obtained from the self-adjoint harmonic oscillator
Qo via a formal change of variables: if

Vuu(x) = p'Pu(px),  p=e??,

then
0y = V. QoV; .



The Hamilton flow of the NSAHO

Any change of variables is associated with a formal Egorov theorem

V'Vt = (ao V), V, = ( “0 uT >

This allows us to decompose the Hamilton vector field

0 pu? 0 1 4
HQ0:<_#2 0 >:Vu<_1 0>Vu

and the Hamilton flow

cost sint _
exp(tHy,) =V, ( > !

—sint cost B



Hamilton-Schrodinger connection: Egorov

We have (at least formally) the Egorov relation
exp(—iQ)a" = (a o K™')" exp(—iQ).

If we write a coherent state! as the kernel of an annihilation operator,
we can track the center using the Egorov relation.

'Taken to mean f(x) = ¥ € L? where (x) is a degree 2 polynomial



Example: the quantum harmonic oscillator

If f(x) = e~ =20°/2 then (D — i(x — 20))f(x) = 0. Setting
a(x, &) =& —i(x — 20), we see that

(aoexp(tHy) ") (x,&) = e ((€ +20sint) — i(x — 20cost))
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Example: blowup for the NSAHO

When we try to do the same thing for the non-self-adjoint harmonic
oscillator, the norm doesn’t stay constant (here 6 = 7/180).

t=0n
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Rotation on the Bargmann side

The Bargmann transform lets us represent a coherent state as function
of two variables.
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Bent phase space for the NSAHO

The complex scaling for the NSAHO induces a bend in phase space,
which allows us to heuristically understand the non-unitary evolution.
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Egorov and boundedness

Notice that

(eiiQ)* Egr(gov K_l, (eiiQ)*eiiQ Eggov K_lK.
In order for bounded Gaussians to stay bounded, we need to assume
that |

i0(zZ,K Kz)>io(z,z), Vz=(x,¢&)eC™,

where o ((x, &), (v,n)) = & -y — n - x. When this holds strictly on
z # 0, we say that K is strictly positive.



Classical-quantum correspondence

Egorov and annihilation operators don’t tell us the norm because we
ignore a constant multiple.



Classical-quantum correspondence

Egorov and annihilation operators don’t tell us the norm because we
ignore a constant multiple.

Let Q; = g}’ and K; = exp(H,,) for j = 1,2, 3. Then from Egorov it’s
obvious that

e e = Ce7% = KK, =K.
Using the Mehler formula, we can find the remarkable inverse
KK =K; = e @ @ = 7%

(See Hormander, 1995; he calls this the “metaplectic semigroup.”)
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Polynomials of degree 2

When K is strictly positive, it’s enough to consider

p(x, &) =q((x,&) —v), veC™

to describe all lower-degree perturbations. With

i

S(ure)ux) = e 2Vrvetiveyy(

X —Vy),

Egorov gives that
P=5,08".

Example:

P= 0%+ (x—i))

= 5(:.0) Q05 0)-



The norm

Imitating the singular-value decomposition (but with symplectic
linear algebra), we can find a;,a, € R?" such that

—iP _ —iQ ¢o—1 Egorov —iQ o*
e =8e 1S T~ Spe FS,,

Applying some half-Egorov theorems to Mehler formulas, we get
equality up to a geometric correction factor:

i i _ i
e 1P:ezo(az al,v)Saze IQS;:.

Since the real shifts are unitary and we know ||e ¢

, we get the norm.
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-p E
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- p E
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Correction

Knowing the geometry gives a simple correction:
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—j i _ i
e iP_ eza(v,az al)Saze 1Q$;<1
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