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The objects discussed

Let P be the Weyl quantization of a degree-2 complex-valued
polynomial p(x, ξ) and let Q be the Weyl quantization of a quadratic
form q(x, ξ).
Our goal is to describe how to get information about the Schrödinger
evolution

U(t, x) = exp(−itP)u(x)

from elementary symplectic linear algebra. Specifically, we’ll get
under suitable conditions the L2(Rn) operator norm using the
Hamilton flow

K = exp(tHq)

of the quadratic part. Recall that Hq = (∂ξq,−∂xq), which we will
regard as a matrix.



Application: the NSAHO

For θ ∈ (−π/2, π/2), let

Qθ =
1
2

(
e−iθD2 + eiθx2

)
.

For t ∈ C, let
a = | cos t|2 + cos(2θ)| sin t|2.

Then [V. 2016, 2017] when =t ≤ 0 and a ≥ 1,

‖e−itQθ‖L(L2(R)) =
(

a−
√

a2 − 1
)1/4
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Application: the shifted harmonic oscillator
Let

P =
1
2
(D2 + (x− i)2)

be obtained by shifting the harmonic oscillator Q0 by v = (i, 0). Then

G =
‖e−itP‖
‖e−itQ‖

= exp
(

cos t1 − cosh t2
sinh t2

)
.

(The image is log log G, so “3” represents 1.9× 108.)
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The NSAHO

The non-self-adjoint harmonic oscillator

Qθ =
1
2
(e−iθD2 + eiθx2), θ ∈ (−π/2, π/2)

has symbol

qθ(x, ξ) =
1
2
(e−iθξ2 + eiθx2).

These operators are obtained from the self-adjoint harmonic oscillator
Q0 via a formal change of variables: if

Vµu(x) = µ1/2u(µx), µ = eiθ/2,

then
Qθ = VµQ0V−1

µ .



The Hamilton flow of the NSAHO

Any change of variables is associated with a formal Egorov theorem

VµawV−1
µ = (a ◦ V−1

µ )w, Vµ =

(
µ−1 0

0 µ>

)
.

This allows us to decompose the Hamilton vector field

Hqθ =

(
0 µ−2

−µ2 0

)
= Vµ

(
0 1
−1 0

)
V−1
µ

and the Hamilton flow

exp(tHqθ) = Vµ

(
cos t sin t
− sin t cos t

)
V−1
µ .



Hamilton-Schrödinger connection: Egorov

We have (at least formally) the Egorov relation

exp(−iQ)aw = (a ◦K−1)w exp(−iQ).

If we write a coherent state1 as the kernel of an annihilation operator,
we can track the center using the Egorov relation.

1Taken to mean f (x) = eϕ(x) ∈ L2 where ϕ(x) is a degree 2 polynomial



Example: the quantum harmonic oscillator

If f (x) = e−(x−20)2/2, then (D− i(x− 20))f (x) = 0. Setting
a(x, ξ) = ξ − i(x− 20), we see that

(a ◦ exp(tHq0)
−1)(x, ξ) = eit((ξ + 20 sin t)− i(x− 20 cos t))
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Example: the quantum harmonic oscillator

If f (x) = e−(x−20)2/2, then (D− i(x− 20))f (x) = 0. Setting
a(x, ξ) = ξ − i(x− 20), we see that

(a ◦ exp(tHq0)
−1)(x, ξ) = eit((ξ + 20 sin t)− i(x− 20 cos t))
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Example: blowup for the NSAHO

When we try to do the same thing for the non-self-adjoint harmonic
oscillator, the norm doesn’t stay constant (here θ = π/180).
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Rotation on the Bargmann side

The Bargmann transform lets us represent a coherent state as function
of two variables.
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Bent phase space for the NSAHO

The complex scaling for the NSAHO induces a bend in phase space,
which allows us to heuristically understand the non-unitary evolution.
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Egorov and boundedness

Notice that

(e−iQ)∗
Egorov∼ K−1

, (e−iQ)∗e−iQ Egorov∼ K−1K.

In order for bounded Gaussians to stay bounded, we need to assume
that

iσ(z,K−1Kz) ≥ iσ(z, z), ∀z = (x, ξ) ∈ C2n,

where σ((x, ξ), (y, η)) = ξ · y− η · x. When this holds strictly on
z 6= 0, we say that K is strictly positive.



Classical-quantum correspondence

Egorov and annihilation operators don’t tell us the norm because we
ignore a constant multiple.

Let Qj = qw
j and Kj = exp(Hqj) for j = 1, 2, 3. Then from Egorov it’s

obvious that

e−iQ1e−iQ2 = Ce−iQ3 =⇒ K1K2 = K3.

Using the Mehler formula, we can find the remarkable inverse

K1K2 = K3 =⇒ e−iQ1e−iQ2 = ±e−iQ3

(See Hörmander, 1995; he calls this the “metaplectic semigroup.”)
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Proof that ‖e−iQ‖ =
∏
{µ1/4

j : µj ∈ Spec(K−1K) ∩ (0, 1)}

Proof.
With this miracle in hand,

(e−iQ)∗e−iQ Egorov∼ K−1K.

Defining q1 so that exp Hq1 = K−1K, we get

(e−iQ)∗e−iQ = ±e−iQ1 .

Since this operator is real positive definite, we can take iQ1 of
harmonic oscillator type (iq1 pos. def.)
We find ‖e−iQ‖ from ‖e−iQ1‖from Spec Q1from Spec Hq1from
Spec exp Hq1 = Spec K−1K.
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Polynomials of degree 2

When K is strictly positive, it’s enough to consider

p(x, ξ) = q((x, ξ)− v), v ∈ C2n

to describe all lower-degree perturbations. With

S(vx,vξ)u(x) = e−
i
2 vx·vξ+ivξ·xu(x− vx),

Egorov gives that
P = SvQS−1

v .

Example:

P =
1
2
(D2 + (x− i)2)

= S(i,0)Q0S−1
(i,0).



The norm

Imitating the singular-value decomposition (but with symplectic
linear algebra), we can find a1, a2 ∈ R2n such that

e−iP = Sve−iQS−1
v

Egorov∼ Sa2e−iQS∗a1

Applying some half-Egorov theorems to Mehler formulas, we get
equality up to a geometric correction factor:

e−iP = e
i
2σ(a2−a1,v)Sa2e−iQS∗a1

.

Since the real shifts are unitary and we know ‖e−iQ‖, we get the norm.
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Correction
Knowing the geometry gives a simple correction:

e−iP = e
i
2σ(v,a2−a1)Sa2e−iQS∗a1
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