The Hamilton flow and the Schrödinger evolution for degree-2 complex-valued Hamiltonians

Joe Viola
Laboratoire de Mathématiques Jean Leray
Université de Nantes
Joseph.Viola@univ-nantes.fr

5 June 2017

The objects discussed

Let P be the Weyl quantization of a degree- 2 complex-valued polynomial $p(x, \xi)$ and let Q be the Weyl quantization of a quadratic form $q(x, \xi)$.
Our goal is to describe how to get information about the Schrödinger evolution

$$
U(t, x)=\exp (-\mathrm{i} t P) u(x)
$$

from elementary symplectic linear algebra. Specifically, we'll get under suitable conditions the $L^{2}\left(\mathbb{R}^{n}\right)$ operator norm using the Hamilton flow

$$
\mathbf{K}=\exp \left(t H_{q}\right)
$$

of the quadratic part. Recall that $H_{q}=\left(\partial_{\xi} q,-\partial_{x} q\right)$, which we will regard as a matrix.

Application: the NSAHO

For $\theta \in(-\pi / 2, \pi / 2)$, let

$$
Q_{\theta}=\frac{1}{2}\left(\mathrm{e}^{-\mathrm{i} \theta} D^{2}+\mathrm{e}^{\mathrm{i} \theta} x^{2}\right)
$$

For $t \in \mathbb{C}$, let

$$
a=|\cos t|^{2}+\cos (2 \theta)|\sin t|^{2} .
$$

Then [V. 2016, 2017] when $\Im t \leq 0$ and $a \geq 1$,

$$
\left\|\mathrm{e}^{-\mathrm{i} t Q_{\theta}}\right\|_{\mathcal{L}\left(L^{2}(\mathbb{R})\right)}=\left(a-\sqrt{a^{2}-1}\right)^{1 / 4}
$$

Application: the shifted harmonic oscillator

Let

$$
P=\frac{1}{2}\left(D^{2}+(x-\mathrm{i})^{2}\right)
$$

be obtained by shifting the harmonic oscillator Q_{0} by $\mathbf{v}=(\mathrm{i}, 0)$. Then

$$
G=\frac{\left\|\mathrm{e}^{-\mathrm{i} t P}\right\|}{\left\|\mathrm{e}^{-\mathrm{i} t Q}\right\|}=\exp \left(\frac{\cos t_{1}-\cosh t_{2}}{\sinh t_{2}}\right)
$$

(The image is $\log \log G$, so " 3 " represents 1.9×10^{8}.)

The NSAHO

The non-self-adjoint harmonic oscillator

$$
Q_{\theta}=\frac{1}{2}\left(\mathrm{e}^{-\mathrm{i} \theta} D^{2}+\mathrm{e}^{\mathrm{i} \theta} x^{2}\right), \quad \theta \in(-\pi / 2, \pi / 2)
$$

has symbol

$$
q_{\theta}(x, \xi)=\frac{1}{2}\left(\mathrm{e}^{-\mathrm{i} \theta} \xi^{2}+\mathrm{e}^{\mathrm{i} \theta} x^{2}\right)
$$

These operators are obtained from the self-adjoint harmonic oscillator Q_{0} via a formal change of variables: if

$$
\mathcal{V}_{\mu} u(x)=\mu^{1 / 2} u(\mu x), \quad \mu=\mathrm{e}^{\mathrm{i} \theta / 2}
$$

then

$$
Q_{\theta}=\mathcal{V}_{\mu} Q_{0} \mathcal{V}_{\mu}^{-1}
$$

The Hamilton flow of the NSAHO

Any change of variables is associated with a formal Egorov theorem

$$
\mathcal{V}_{\mu} a^{w} \mathcal{V}_{\mu}^{-1}=\left(a \circ \mathbf{V}_{\mu}^{-1}\right)^{w}, \quad \mathbf{V}_{\mu}=\left(\begin{array}{cc}
\mu^{-1} & 0 \\
0 & \mu^{\top}
\end{array}\right)
$$

This allows us to decompose the Hamilton vector field

$$
H_{q_{\theta}}=\left(\begin{array}{cc}
0 & \mu^{-2} \\
-\mu^{2} & 0
\end{array}\right)=\mathbf{V}_{\mu}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{V}_{\mu}^{-1}
$$

and the Hamilton flow

$$
\exp \left(t H_{q_{\theta}}\right)=\mathbf{V}_{\mu}\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \mathbf{V}_{\mu}^{-1}
$$

Hamilton-Schrödinger connection: Egorov

We have (at least formally) the Egorov relation

$$
\exp (-\mathrm{i} Q) a^{w}=\left(a \circ \mathbf{K}^{-1}\right)^{w} \exp (-\mathrm{i} Q)
$$

If we write a coherent state ${ }^{1}$ as the kernel of an annihilation operator, we can track the center using the Egorov relation.
${ }^{1}$ Taken to mean $f(x)=\mathrm{e}^{\varphi(x)} \in L^{2}$ where $\varphi(x)$ is a degree 2 polynomial

Example: the quantum harmonic oscillator

$$
\begin{aligned}
& \text { If } f(x)=\mathrm{e}^{-(x-20)^{2} / 2} \text {, then }(D-\mathrm{i}(x-20)) f(x)=0 \text {. Setting } \\
& a(x, \xi)=\xi-\mathrm{i}(x-20) \text {, we see that }
\end{aligned}
$$

$$
\left(a \circ \exp \left(t H_{q_{0}}\right)^{-1}\right)(x, \xi)=\mathrm{e}^{\mathrm{i} t}((\xi+20 \sin t)-\mathrm{i}(x-20 \cos t))
$$

Example: the quantum harmonic oscillator

$$
\begin{aligned}
& \text { If } f(x)=\mathrm{e}^{-(x-20)^{2} / 2} \text {, then }(D-\mathrm{i}(x-20)) f(x)=0 \text {. Setting } \\
& a(x, \xi)=\xi-\mathrm{i}(x-20) \text {, we see that } \\
& \qquad\left(a \circ \exp \left(t H_{q_{0}}\right)^{-1}\right)(x, \xi)=\mathrm{e}^{\mathrm{i} t}((\xi+20 \sin t)-\mathrm{i}(x-20 \cos t))
\end{aligned}
$$

Example: blowup for the NSAHO

When we try to do the same thing for the non-self-adjoint harmonic oscillator, the norm doesn't stay constant (here $\theta=\pi / 180$).

Example: blowup for the NSAHO

When we try to do the same thing for the non-self-adjoint harmonic oscillator, the norm doesn't stay constant (here $\theta=\pi / 180$.

Rotation on the Bargmann side

The Bargmann transform lets us represent a coherent state as function of two variables.

Rotation on the Bargmann side

The Bargmann transform lets us represent a coherent state as function of two variables.

Bent phase space for the NSAHO

The complex scaling for the NSAHO induces a bend in phase space, which allows us to heuristically understand the non-unitary evolution.

Bent phase space for the NSAHO

The complex scaling for the NSAHO induces a bend in phase space, which allows us to heuristically understand the non-unitary evolution.

Egorov and boundedness

Notice that

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1}, \quad\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

In order for bounded Gaussians to stay bounded, we need to assume that

$$
\mathrm{i} \sigma\left(\overline{\mathbf{z}}, \overline{\mathbf{K}}^{-1} \mathbf{K} \mathbf{z}\right) \geq \mathrm{i} \sigma(\overline{\mathbf{z}}, \mathbf{z}), \quad \forall \mathbf{z}=(x, \xi) \in \mathbb{C}^{2 n}
$$

where $\sigma((x, \xi),(y, \eta))=\xi \cdot y-\eta \cdot x$. When this holds strictly on $\mathbf{z} \neq 0$, we say that \mathbf{K} is strictly positive.

Classical-quantum correspondence

Egorov and annihilation operators don't tell us the norm because we ignore a constant multiple.

Classical-quantum correspondence

Egorov and annihilation operators don't tell us the norm because we ignore a constant multiple.
Let $Q_{j}=q_{j}^{w}$ and $\mathbf{K}_{j}=\exp \left(H_{q_{j}}\right)$ for $j=1,2,3$. Then from Egorov it's obvious that

$$
\mathrm{e}^{-\mathrm{i} Q_{1}} \mathrm{e}^{-\mathrm{i} Q_{2}}=C \mathrm{e}^{-\mathrm{i} Q_{3}} \Longrightarrow \mathbf{K}_{1} \mathbf{K}_{2}=\mathbf{K}_{3} .
$$

Using the Mehler formula, we can find the remarkable inverse

$$
\mathbf{K}_{1} \mathbf{K}_{2}=\mathbf{K}_{3} \Longrightarrow \mathrm{e}^{-\mathrm{i} Q_{1}} \mathrm{e}^{-\mathrm{i} Q_{2}}= \pm \mathrm{e}^{-\mathrm{i} Q_{3}}
$$

(See Hörmander, 1995; he calls this the "metaplectic semigroup.")

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Defining q_{1} so that $\exp H_{q_{1}}=\overline{\mathbf{K}}^{-1} \mathbf{K}$, we get

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q}= \pm \mathrm{e}^{-\mathrm{i} Q_{1}}
$$

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Defining q_{1} so that $\exp H_{q_{1}}=\overline{\mathbf{K}}^{-1} \mathbf{K}$, we get

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q}= \pm \mathrm{e}^{-\mathrm{i} Q_{1}}
$$

Since this operator is real positive definite, we can take $\mathrm{i} Q_{1}$ of harmonic oscillator type (i q_{1} pos. def.)

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Defining q_{1} so that $\exp H_{q_{1}}=\overline{\mathbf{K}}^{-1} \mathbf{K}$, we get

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q}= \pm \mathrm{e}^{-\mathrm{i} Q_{1}}
$$

Since this operator is real positive definite, we can take $\mathrm{i} Q_{1}$ of harmonic oscillator type (i q_{1} pos. def.)
We find $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|$ from $\left\|\mathrm{e}^{-\mathrm{i} Q_{1}}\right\|$

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Defining q_{1} so that $\exp H_{q_{1}}=\overline{\mathbf{K}}^{-1} \mathbf{K}$, we get

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q}= \pm \mathrm{e}^{-\mathrm{i} Q_{1}}
$$

Since this operator is real positive definite, we can take $\mathrm{i} Q_{1}$ of harmonic oscillator type (i q_{1} pos. def.)
We find $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|$ from $\left\|\mathrm{e}^{-\mathrm{i} Q_{1}}\right\|$ from $\operatorname{Spec} Q_{1}$

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Defining q_{1} so that $\exp H_{q_{1}}=\overline{\mathbf{K}}^{-1} \mathbf{K}$, we get

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q}= \pm \mathrm{e}^{-\mathrm{i} Q_{1}}
$$

Since this operator is real positive definite, we can take $\mathrm{i} Q_{1}$ of harmonic oscillator type (i q_{1} pos. def.)
We find $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|$ from $\left\|\mathrm{e}^{-\mathrm{i} Q_{1}}\right\|$ from $\operatorname{Spec} Q_{1}$ from $\operatorname{Spec} H_{q_{1}}$

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Defining q_{1} so that $\exp H_{q_{1}}=\overline{\mathbf{K}}^{-1} \mathbf{K}$, we get

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q}= \pm \mathrm{e}^{-\mathrm{i} Q_{1}}
$$

Since this operator is real positive definite, we can take $\mathrm{i} Q_{1}$ of harmonic oscillator type (i q_{1} pos. def.)
We find $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|$ from $\left\|\mathrm{e}^{-\mathrm{i} Q_{1}}\right\|$ from Spec Q_{1} from $\operatorname{Spec} H_{q_{1}}$ from Spec $\exp H_{q_{1}}=\operatorname{Spec} \overline{\mathbf{K}}^{-1} \mathbf{K}$.

Proof that $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|=\prod\left\{\mu_{j}^{1 / 4}: \mu_{j} \in \operatorname{Spec}\left(\overline{\mathbf{K}}^{-1} \mathbf{K}\right) \cap(0,1)\right\}$

Proof.
With this miracle in hand,

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q} \stackrel{\text { Egorov }}{\sim} \overline{\mathbf{K}}^{-1} \mathbf{K} .
$$

Defining q_{1} so that $\exp H_{q_{1}}=\overline{\mathbf{K}}^{-1} \mathbf{K}$, we get

$$
\left(\mathrm{e}^{-\mathrm{i} Q}\right)^{*} \mathrm{e}^{-\mathrm{i} Q}= \pm \mathrm{e}^{-\mathrm{i} Q_{1}}
$$

Since this operator is real positive definite, we can take $\mathrm{i} Q_{1}$ of harmonic oscillator type (i q_{1} pos. def.)
We find $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|$ from $\left\|\mathrm{e}^{-\mathrm{i} Q_{1}}\right\|$ from Spec Q_{1} from $\operatorname{Spec} H_{q_{1}}$ from Spec $\exp H_{q_{1}}=\operatorname{Spec} \overline{\mathbf{K}}^{-1} \mathbf{K}$.

Polynomials of degree 2

When \mathbf{K} is strictly positive, it's enough to consider

$$
p(x, \xi)=q((x, \xi)-\mathbf{v}), \quad \mathbf{v} \in \mathbb{C}^{2 n}
$$

to describe all lower-degree perturbations. With

$$
\mathcal{S}_{\left(v_{x}, v_{\xi}\right)} u(x)=\mathrm{e}^{-\frac{\mathrm{i}}{2} v_{x} \cdot v_{\xi}+\mathrm{i}_{\xi} \cdot x} u\left(x-v_{x}\right),
$$

Egorov gives that

$$
P=\mathcal{S}_{\mathbf{v}} Q \mathcal{S}_{\mathbf{v}}^{-1}
$$

Example:

$$
\begin{aligned}
P & =\frac{1}{2}\left(D^{2}+(x-\mathrm{i})^{2}\right) \\
& =\mathcal{S}_{(\mathrm{i}, 0)} Q_{0} \mathcal{S}_{(\mathrm{i}, 0)}^{-1} .
\end{aligned}
$$

The norm

Imitating the singular-value decomposition (but with symplectic linear algebra), we can find $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{R}^{2 n}$ such that

$$
\mathrm{e}^{-\mathrm{i} P}=\mathcal{S}_{\mathbf{v}} \mathrm{e}^{-\mathrm{i} Q} \mathcal{S}_{\mathbf{v}}^{-1} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} Q} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

Applying some half-Egorov theorems to Mehler formulas, we get equality up to a geometric correction factor:

$$
\mathrm{e}^{-\mathrm{i} P}=\mathrm{e}^{\frac{\mathrm{i}}{2} \sigma\left(\mathbf{a}_{2}-\mathbf{a}_{1}, \mathbf{v}\right)} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} Q} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

Since the real shifts are unitary and we know $\left\|\mathrm{e}^{-\mathrm{i} Q}\right\|$, we get the norm.

$$
\mathrm{e}^{-\mathrm{i} t P} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} t_{1} Q_{0}} \mathrm{e}^{-0.8 Q_{0}} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

$$
\mathrm{e}^{-\mathrm{i} t P} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} t_{1} Q_{0}} \mathrm{e}^{-0.8 Q_{0}} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

$$
\mathrm{e}^{-\mathrm{i} t P} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} t_{1} Q_{0}} \mathrm{e}^{-0.8 Q_{0}} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

$$
\mathrm{e}^{-\mathrm{i} t P} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} t_{1} Q_{0}} \mathrm{e}^{-0.8 Q_{0}} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

$$
\mathrm{e}^{-\mathrm{i} t P} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} t_{1} Q_{0}} \mathrm{e}^{-0.8 Q_{0}} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

$$
\mathrm{e}^{-\mathrm{i} t P} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} t_{1} Q_{0}} \mathrm{e}^{-0.8 Q_{0}} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

$$
\mathrm{e}^{-\mathrm{i} t P} \stackrel{\text { Egorov }}{\sim} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} t_{1} Q_{0}} \mathrm{e}^{-0.8 Q_{0}} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

Correction

Knowing the geometry gives a simple correction:

$$
\mathrm{e}^{-\mathrm{i} P}=\mathrm{e}^{\frac{\mathrm{i}}{2} \sigma\left(\mathbf{v}, \mathbf{a}_{2}-\mathbf{a}_{1}\right)} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} Q} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

Correction

Knowing the geometry gives a simple correction:

$$
\mathrm{e}^{-\mathrm{i} P}=\mathrm{e}^{\frac{\mathrm{i}}{2} \sigma\left(\mathbf{v}, \mathbf{a}_{2}-\mathbf{a}_{1}\right)} \mathcal{S}_{\mathbf{a}_{2}} \mathrm{e}^{-\mathrm{i} Q} \mathcal{S}_{\mathbf{a}_{1}}^{*}
$$

