
On the spectral analysis of the Schrodinger
operator with a periodic PT-symmetric potential

Oktay Veliev

Dogus University, Istanbul

CIRM, Marseille, 7 June 2017

(Institute)
CIRM, Marseille, 7 June 2017 1

/ 27



I am going to give a talk about the one dimensional Schrödinger operator
L(q) generated in L2(�∞,∞) by the di¤erential expression

�y 00(x) + q(x)y(x), (1)

where q is 1-periodic q(x + 1) = q(x), complex-valued and PT symmetric
q(�x) = q(x) potential. It is well-known [ Rofe-Beketov (1963),
McGarvey (1965)] that the spectrum σ(L(q)) of the operator L(q) is the
union of the spectra σ(Lt (q)) of the operators Lt (q) for t 2 (�π,π]
generated in L2[0, 1] by (1) and the boundary conditions

y(1) = e ity(0), y
0
(1) = e ity

0
(0). (2)
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The spectrum of Lt consists of the eigenvalues λ1(t), λ2(t), ..... such that
λn(�t) = λn(t) and λn(t)! ∞ as n! ∞. Moreover they can be
numbered so that λn is a continuous function on [0,π]. Thus

Γn = fλn(t) : t 2 [0,π]g

is a continuous curve in the complex plane and the spectrum of L(q) is the
union of the curves Γn for n = 1, 2, ... :

σ(L(q)) =
S

t2[0,π]
σ(Lt (q)) =

S
n2N

Γn.
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In the �rst papers [Bender et al (1999)] about the PT-symmetric periodic
potential, the disappearance of real energy bands for some complex-valued
PT-symmetric periodic potentials have been reported. Shin (2004) showed
that the disappearance of such real energy bands implies the existence of
nonreal band spectra. He involved some condition on the Hill discriminant
to show the existence of nonreal curves in the spectrum. Caliceti and
Gra¢ (2009) found explicit condition on the Fourier coe¢ cient of the
potential providing the nonreal spectra for small potentials.
I prove that the main part of the spectrum of L(q) is real and contains the
large part of [0,∞). However, in general, the spectrum contains also
in�nitely many nonreal acts. The necessary and su¢ cient condition on the
potential for �niteness of the number of the nonreal arcs is determined.
Moreover, I �nd necessary and su¢ cient conditions for the equality of the
spectrum of L(q) to the half line [c ,∞). Then, I consider the connections
between spectrality of L(q) and the reality of its spectrum. Finally, I
consider in detail the optical potential

4 cos2 x + 4iV sin 2x (3)
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The steps of my investigations are the followings:
1. General Properties of the spectrum of L(q) with PT-symmetric
potential q.
2. General necessary and su¢ cient conditions for �niteness of the
number of the nonreal arcs in the spectrum σ(L(q)) and for
σ(L(q)) = [c ,∞)
3. Necessary and su¢ cient condition on the potential.
4. The connections between reality of σ(L(q)) and spectrality of
L(q).
5. Detail investigations of the optical potential
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General Properties of the spectrum of L(q).

Theorem
(a) If λn(t1) and λn(t2) are real numbers, where 0 � t1 < t2 � π then
γ := fλn(t) : t 2 [t1, t2]g is an interval of the real line.
(b) If the eigenvalues λn(0) and λn(π) are real numbers then λn(t) are
real eigenvalues of Lt (q) for all t 2 (0,π), that is, Γn is either
[λn(0),λn(π)] or [λn(π),λn(0)].
(c) The spectrum of L(q) is completely real if and only if all eigenvalues
of L0(q) and Lπ(q) are real.

Now to consider, the reality of the spectrum in detail, we investigate the
points in which the spectrum ceases to be real. These points are crucial
and can be de�ned as follows.

(Institute)
CIRM, Marseille, 7 June 2017 6

/ 27



De�nition
A real number λ 2 σ(L) is said to be a left (right) complexation point of
the spectrum if there exists ε > 0 such that [λ,λ+ ε] � σ(L) (
[λ� ε,λ] � σ(L)) and σ(L) contains a nonreal number in any
neighborhood of λ. Both left and right complexation points are called
complexation points.

Pic. 1. Complexation points
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Theorem
If λn(t) is a complexation point, then it is a multiple eigenvalue of Lt (q)
and spectral singularities of L(q). Moreover, the multiplicity of λn(t) is
greater than 2 if t = 0,π. In any case if λn(t) is a complexation point
then the eigenspace corresponding to λn(t) contains an associated
function.

The spectral singularities was de�ned as follows.

De�nition
We say that λ 2 σ(L(q)) is a spectral singularity of L(q) if for all ε > 0
there exists a sequence fγng of the arcs γn � fz 2 C :j z � λ j< εg such
that γn � σ(L) and

lim
n!∞

k P(γn) k= ∞. (4)
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Theorem
Suppose that n is a large number.
(a) There may exists at most one number εn and π � δn in the
neighborhoods of 0 and π respectively, such that λn(εn) and λn(π � δn)
are double eigenvalues.
(b) The eigenvalues λn(t) for t 6= [0,π]n fεn,π � δng are simple and are
not the complexation points. Moreover εn ! 0 and δn ! 0 as n! ∞.
(c) The double eigenvalues λn(εn) and λn(π � δn) are the complexation
points if and only if εn 6= 0 and δn 6= 0 respectively.
(d) The main part fλn(t) : t 2 [εn,π � δn ]g of Γn is real. The other
parts fλn(t) : t 2 [0, εn)g and fλn(t) : t 2 (π � δn,π]g (if exist) are the
pure nonreal parts of Γn and are called the tails of Γn.

Pic. 2, Γn for large n
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General necessary and su¢ cient condition

Theorem
If n is a large number, then the component Γn has left (right) nonreal tail,
that is, it contains a left (right) complexation points point if and only if
λn(0) (λn(π)) is a nonreal number.

Theorem
If n is a large number, then the followings are equivalent
(a) Component Γn is the real interval.
(b) The eigenvalues λn(0) and λn(π) are the real numbers.
(c) λn(t) for t 2 (0,π) are simple eigenvalues of Lt (q).
(d) The eigenvalues λn(t) for t 2 (0,π) are not the complexation point.

Theorem
The spectrum of L(q) is a half line if and only if the followings hold: (i)
one eigenvalue of L0(q) is simple and the all others are double, (ii) all
eigenvalues of Lπ(q) are double.
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Necessary and su¢ cient condition on the potential for the reality of
Γn for large n.
Let Sp be the set of 1 periodic PT-symmetric functions q 2 W p

1 [0, 1] such
that

q(1) = q(0), q0(1) = q0(0), ..., q(s�1)(1) = q(s�1)(0) (5)

for some s � p and there exist positive constants c1, c2, c3 and N
satisfying

j qn j> c1n�s�1 & c2 jqn j � jq�n j � c3 jqn j , 8n > N,
where qn =

R 1
0 q(x)e

�i2πxdx . In particular, S0 is the set of 1 periodic
PT-symmetric functions q 2 L1[0, 1] satisfying

j qn j> c1n�1 & c2 jqn j � jq�n j � c3 jqn j , 8n > N.

Theorem
Suppose that q 2 Sp and n is a large number. Then Γn � R if and only if

qnq�n > 0. (6)
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Let Qn andSn be the Fourier coe¢ cients of the function Q and S de�ned
by

Q(x) =
Z x

0
q(t) dt, S(x) = Q2(x).

Suppose that equality (5) and the inequality

jPn j > cn�2s�2, (7)

holds, where Pn = qnq�n � qn (S�n � 2Q0Q�n)� q�n(Sn � 2Q0Qn).

Theorem
If n is a large number and Pn < 0 then Γn has the nonreal tails.
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The connections between reality of σ(L(q)) and spectrality of L(q).

Theorem
(a) Let n be a large number and t 2 (0,π). Then the followings are
equivalent.
1) λn(t) is a spectral singularity of L(q).
2) λn(t) is a complexation points point of σ(L(q)).
3) λn(t) is a multiple eigenvalue of Lt (q).
4) If t 2 (0, h], where h is a small number, then fλn(s) : s 2 [0, t)g ; if
t 2 [π � h,π) then fλn(s) : s 2 (t,π]g is a nonreal tail of Γn.
(b) Let q 2 Sp for some p = 0, 1, ... Then the followings are equivalent.
1) L(q) is an asymptotically spectral operator.
2) There exists a large number m such that (6) holds for all jnj > m.
3) There exist a large number m such that Γn for n > m are real pairwise
disjoint intervals.
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Detail investigations of the optical potential

4 cos2 x + 4iV sin 2x = 2+ (1+ 2V )e i2x + (1� 2V )e�i2x , V � 0. (3)

For the �rst time, the explanation of the nonreality of the spectrum of
L(q), redenoted by L(V ), for V > 0.5 was done by Makris et al (2008).
For V = 0, 85 they sketch the real and imaginary parts of the �rst two
bands by using the numerical methods. Midya et al (2010) reduce the
operator L(q) with potential (3) to the Mathier operator and using the
tabular values establish that there is second critical point V2 � 0.888437
after which no part of the �rst and second bands remains real.
Note that the corresponding Mathier operator in the case 0 � V < 1/2 is
self-adjoint and hence the spectrum consists of the real intervals. The case
V = 1/2 for the �rst time is considered by Gasimov (1980) and it was
proved that the spectrum is [0,∞).
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Thus the shapes of the spectrum of L(V ) for 0 � V � 1/2 are well-known

Pic. 3. 0 � V < 1/2. As in the self-adjoint Mathier operator

Pic.4. V = 1/2. All periodic (except �rst) and antiperiodic eigenvalues
are double and spectral singularities of L(q).
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Note that the reality of the spectrum for 0 � V � 1/2 also follows from
the following. I proved that if ab = cd , then

σ(L(ae�i2x + be i2x )) = σ(L(ce�i2x + de i2x )

Therefore

σ(L((1+ 2V )e i2x + (1� 2V )e�i2x ) = σ(L(2c cos 2x)), (8)

where c =
p
1� 4V 2

Theorem

The PT-symmetric operator L(ae�i2x + be i2x ) is a spectral operator if and
only if a = b, that is, q(x) is the real potential 2a cos 2x . The optical
operator with potential (3) is spectral if and only if V = 0.

I give a complete description, provided with a mathematical proof, of the
shape of the spectrum of the Hill operator L(V ) with potential (3), when
V changes from 1/2 to

p
5/2, that is, c = ir and r 2 (0, 2).
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For this �rst we prove the followings

Theorem

If 1/2 < V <
p
5/2, then all antiperiodic eigenvalues are nonreal and

simple.

Theorem

If 1/2 < V <
p
5/2, then all periodic eigenvalues (except �rst and

second) are real and simple.

Theorem

There exists unique number V2 from (1/2,
p
5/2) such that

(a) If 1/2 < V < V2 then the �rst and second eigenvalues are real and
simple.
(b) If V = V2, then λ1(0) = λ2(0) 2 R

(c) If V2 < V <
p
5/2 then the �rst and second periodic eigenvalues

λ1(0) and λ2(0) are simple and nonreal and λ2(0) = λ1(0).
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I prove that V2 is the second critical point (after which no part of the �rst
and second bands remains real) and is a number between 0.8884370025
and 0.8884370117. Moreover, the last theorem shows that V2 is the
unique degeneration point for the �rst periodic eigenvalue, in the sense
that the �rst periodic eigenvalue of the potential (3) is simple for all
V 2 [0,

p
5/2)n fV2g and is double if V = V2. My approach give the

possibility to �nd the arbitrary close values of the k-th critical point Vk
and prove that no part of the (2k � 3)-th and (2k � 2)-th bands remains
real for Vk < V < Vk + ε for some positive ε, where k = 2, 3, ...
Using the last theorems we prove that the spectrum of L(V ) has the
following shape
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Pic. 5. 1/2 < V < V2. All antiperiodic eigenvalues are nonreal and
periodic eigenvalues are real

Pic. 6. V = V2.
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Pic. 7. V2 < V <
p
5/2. All periodic eigenvalues (except �rst and

second) are real, the �rst and second periodic eigenvalues λ1(0) and λ2(0)
are simple and nonreal and λ2(0) = λ1(0). Thus the �rst and second
bands have di¤erent shapes in the following 3 cases:
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Pic. 8. Case 1: 1/2 < V < V2, Case 2: V = V2 , Case 3:
V2 < V <

p
5/2 .

In Case 1, the real part of the �rst component Ω1 = Γ1 [ Γ2 is the closed
interval I1 =: [λ1(0),λ2(0)] . We prove that if V approaches V2 from the
left, then the eigenvalues λ1(0) and λ2(0) get close to each other and the
length of the interval I1 approaches zero.
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As a result if V = V2, then we get the equality λ1(0) = λ2(0) which
means that the �rst and second bands Γ1 and Γ2 have only one real point
which is their common point

I1 = Re Ω1 = Re Γ1 = Re Γ2 = fλ1(0)g .

The other parts of the bands Γ1 and Γ2 are nonreal and symmetric with
respect to the real line. Then we prove that if V > V2, then the
eigenvalues λ1(0) and λ2(0) get o¤ the real line and hence I1 becomes the
empty set. As a results, the �rst and second bands Γ1 and Γ2 became the
nonreal curves symmetric with respect to the real line.

De�nition

A real number V2 2 [0,
p
5/2) is called the second critical point or the

degeneration point for the �rst periodic eigenvalue if the �rst real
eigenvalue of L0(V2) is a double eigenvalue or equivalently if the �rst real
component of σ(L(V2)) is a point.
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Now let us describe brie�y the shapes of all bands. I prove that the
spectrum of L(V ) in Case 1 has the following properties:
Pr. 1. The real part σ(H(a)) \ R of the spectrum of H(a) consist of the
intervals

I1 = [λ1(0),λ2(0)] , I2 = [λ3(0),λ4(0)] , ..., In = [λ2n�1(0),λ2n(0)] , ...
(9)

Pr. 2. For each n = 1, 2, ..., the interval In is the real part of
Ωn =: Γ2n�1 [ Γ2n.
Pr. 3. The bands Γ2n�1 and Γ2n have only one common point Λn which
is interior point of In. Moreover, Λn is a double eigenvalue of Ltn (V ) for
some tn 2 (0,π) and a spectral singularity of L(V ) and hence

Γ2n�1 \ Γ2n = Λn = λ2n�1(tn) = λ2n(tn) 2 R.

Pr. 4. The real parts of the bands Γ2n�1 and Γ2n are respectively the
intervals [λ2n�1(0),Λn ] = fλ2n�1(t) : t 2 [0, tn ]g and
[Λn,λ2n(0)] = fλ2n(t) : t 2 [0, tn ]g
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Pr. 5. The nonreal parts of Γ2n�1 and Γ2n are respectively the analytic
curves

γ2n�1(a) = fλ2n�1(t) : t 2 (tn,π]g , γ2n(a) = fλ2n(t) : t 2 (tn,π]g

and γ2n(a) =
�

λ : λ 2 γ2n�1(a)
	

Thus the bands Γ2n�1 and Γ2n are joined by Λn and hence they form
together the connected subset of the spectrum. The spectrum σ(L(a))
consist of the connected sets Ω1 =: Γ1 [ Γ2, Ω2 =: Γ3 [ Γ4, ...Moreover in
Case 1 (1/2 < V < V2) we prove that
Pr. 6 The sets Ω1, Ω2, ... are connected separated subset of the
spectrum.
Moreover, in all cases the intervals (9) are pairwise disjoint sets. Therefore
they are called the real components of σ(L(V )) if V 2 (1/2,

p
5/2).
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Note that in Case 2 (V = V2) and Case 3 (V2 < V <
p
5/2) the shapes

of the components Ω2, Ω3, ... are as in Case 1. In this way one can prove
that there exists k-th critical point, denoted by Vk , such that for
1
2 < V < Vk , V = Vk and Vk < V < Vk + ε the set
Ωk�1 =: Γ2k�3 [ Γ2k�2 have the shape as Ω1 in Case 1, Case 2 and Case
3 respectively.

Pic.9 The shape of Ωk�1 in the cases 12 < V < Vk , V = Vk and
Vk < V < Vk+1
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Pic.10. The shape of the spectrum for V2 < V < V3

Pic.11. The shape of the spectrum for V3 < V < V4
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THANK YOU
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