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| am going to give a talk about the one dimensional Schrédinger operator
L(q) generated in Ly(—o0, 00) by the differential expression

—y' () + a(x)y(x), (1)

where q is 1-periodic g(x + 1) = g(x), complex-valued and PT symmetric

q(—x) = q(x) potential. It is well-known [ Rofe-Beketov (1963),
McGarvey (1965)] that the spectrum o (L(q)) of the operator L(q) is the
union of the spectra o(L:(q)) of the operators L;(q) for t € (—7r, 7]
generated in L3[0, 1] by (1) and the boundary conditions

y(1) = €y (0), y'(1) = ey (0). (2)
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The spectrum of L; consists of the eigenvalues A1 (t), Aa(t), ..... such that
An(—t) = A,(t) and A,(t) — oo as n — oo. Moreover they can be
numbered so that A, is a continuous function on [0, 7t]. Thus

I, ={A(t): t€[0, 7]}

is a continuous curve in the complex plane and the spectrum of L(q) is the
union of the curves I', for n=1,2, ... :

o(L(q)) = U o(Le(q)) = U T4

t€(0,7] neN
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In the first papers [Bender et al (1999)] about the PT-symmetric periodic
potential, the disappearance of real energy bands for some complex-valued
PT-symmetric periodic potentials have been reported. Shin (2004) showed
that the disappearance of such real energy bands implies the existence of
nonreal band spectra. He involved some condition on the Hill discriminant
to show the existence of nonreal curves in the spectrum. Caliceti and
Graffi (2009) found explicit condition on the Fourier coefficient of the
potential providing the nonreal spectra for small potentials.

| prove that the main part of the spectrum of L(q) is real and contains the
large part of [0, 00). However, in general, the spectrum contains also
infinitely many nonreal acts. The necessary and sufficient condition on the
potential for finiteness of the number of the nonreal arcs is determined.
Moreover, | find necessary and sufficient conditions for the equality of the
spectrum of L(q) to the half line [c,c0). Then, | consider the connections
between spectrality of L(q) and the reality of its spectrum. Finally, |
consider in detail the optical potential

4 cos® x + 4iV sin 2x (3)
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The steps of my investigations are the followings:

1. General Properties of the spectrum of L(g) with PT-symmetric
potential g.

2. General necessary and sufficient conditions for finiteness of the
number of the nonreal arcs in the spectrum ¢(L(q)) and for
o(L(q)) = [c,0)

3. Necessary and sufficient condition on the potential.

4. The connections between reality of c(L(q)) and spectrality of
L(q).

5. Detail investigations of the optical potential
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General Properties of the spectrum of L(q).

Theorem

(a) If Ap(t1) and A,(t) are real numbers, where 0 < t; < t, < 7T then

7y :={An(t) : t € [t1, 2]} is an interval of the real line.

(b) If the eigenvalues A,(0) and A,(7t) are real numbers then A,(t) are
real eigenvalues of L:(q) for all t € (0, 1), that is, T, is either

[An(0), An(77)] or [An(77), An(0)].

(c) The spectrum of L(q) is completely real if and only if all eigenvalues
of Lo(q) and Lx(q) are real.

Now to consider, the reality of the spectrum in detail, we investigate the
points in which the spectrum ceases to be real. These points are crucial
and can be defined as follows.
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Definition

A real number A € o(L) is said to be a left (right) complexation point of
the spectrum if there exists ¢ > 0 such that [A, A +¢] C o (L) (

[A —e, A] C o(L)) and (L) contains a nonreal number in any
neighborhood of A. Both left and right complexation points are called
complexation points.

) (
/ \

Pic. 1. Complexation points
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If An(t) is a complexation point, then it is a multiple eigenvalue of L;(q)
and spectral singularities of L(q). Moreover, the multiplicity of A,(t) is
greater than 2 if t = 0, 7t. In any case if A,(t) is a complexation point
then the eigenspace corresponding to A,(t) contains an associated
function.

The spectral singularities was defined as follows.

Definition

We say that A € 0(L(q)) is a spectral singularity of L(q) if for all ¢ > 0
there exists a sequence {7, } of the arcs v, C {z € C:| z— A |< &} such
that 7y, C o(L) and

i | P(y,) | = oo (@
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Theorem

Suppose that n is a large number.

(a) There may exists at most one number €, and 7T — &, in the
neighborhoods of 0 and 7t respectively, such that A,(e,) and A, (7T — &,)
are double eigenvalues.

(b) The eigenvalues A,(t) for t # [0, 7|\ {€,, T — 0, } are simple and are
not the complexation points. Moreover ¢, — 0 and 6, — 0 as n — oo.
(c) The double eigenvalues A, (e,) and Ap(7t — 6,) are the complexation
points if and only if e, # 0 and 6, # 0 respectively.

(d) The main part {A,(t) : t € [y, T — 4]} of Iy is real. The other
parts {A,(t) : t € [0,e,)} and {A,(t) : t € (m —6,, 7]} (if exist) are the
pure nonreal parts of I', and are called the tails of T'),.

-

.

Pic. 2, I',, for large r,
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General necessary and sufficient condition

Theorem

If n is a large number, then the component T, has left (right) nonreal tail,
that is, it contains a left (right) complexation points point if and only if
An(0) (An(7r)) is a nonreal number.

| A\

Theorem

If n is a large number, then the followings are equivalent

(a) Component T, is the real interval.

(b) The eigenvalues A,(0) and A,(7t) are the real numbers.

(c) An(t) for t € (0, 1) are simple eigenvalues of L:(q).

(d) The eigenvalues A,(t) for t € (0, 7t) are not the complexation point.

Theorem

| \

The spectrum of L(q) is a half line if and only if the followings hold: (i)
one eigenvalue of Ly(q) is simple and the all others are double, (ii) all
eigenvalues of L (q) are double.
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Necessary and sufficient condition on the potential for the reality of

I', for large n.
Let S, be the set of 1 periodic PT-symmetric functions g € W{[0, 1] such

that

q(1) = q(0), ¢'(1) =q'(0),.... ¢“ V(1) =g 1(0) (5)
for some s < p and there exist positive constants ¢;, ¢, ¢z and N
satisfying

| an |>can™ ! & & |gn| < |g-n| < c3|an], Yn >N,

where g, = fol q(x)e~"?™dx. In particular, Sy is the set of 1 periodic
PT-symmetric functions g € L;[0, 1] satisfying

| an [>an™ & & [gn] <|g-n| < cslan|, Yn> N.

Suppose that q € S, and n is a large number. Then I', C R if and only if

Gnq—n > 0. (6)
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Let Q, and S, be the Fourier coefficients of the function Q and S defined
by

Q() = [“alt)dt, S(x) = ().
Suppose that equality (5) and the inequality
|Py| > cn™272, (7)

holds, where P, = gnq—n — qn (S5—n —2Q0Q—1) — g—n(Sn —2Qo Qy).

If n is a large number and P, < 0 then I',, has the nonreal tails.
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The connections between reality of ¢(L(g)) and spectrality of L(q).

Theorem

(a) Let n be a large number and t € (0, 7t). Then the followings are
equivalent.

1) A, (t) is a spectral singularity of L(q).

2) An(t) is a complexation points point of o(L(q)).

3) An(t) is a multiple eigenvalue of L:(q).

4) If t € (0, h], where h is a small number, then {A,(s):s € [0,t)}; if
t € [mr— h, ) then {A,(s) :s € (t, ]} is a nonreal tail of T,.

(b) Let g € S, for some p =0,1,... Then the followings are equivalent.
1) L(q) is an asymptotically spectral operator.

2) There exists a large number m such that (6) holds for all |n| > m.
3) There exist a large number m such that T, for n > m are real pairwise
disjoint intervals.
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Detail investigations of the optical potential
4cos® x +4iVsin2x =2+ (1 +2V)e +(1-2V)e ™, V >0. (3)

For the first time, the explanation of the nonreality of the spectrum of
L(q), redenoted by L(V), for V > 0.5 was done by Makris et al (2008).
For V =0, 85 they sketch the real and imaginary parts of the first two
bands by using the numerical methods. Midya et al (2010) reduce the
operator L(q) with potential (3) to the Mathier operator and using the
tabular values establish that there is second critical point V, ~ 0.888437
after which no part of the first and second bands remains real.

Note that the corresponding Mathier operator in the case 0 < V < 1/2 is
self-adjoint and hence the spectrum consists of the real intervals. The case
V = 1/2 for the first time is considered by Gasimov (1980) and it was
proved that the spectrum is [0, o).
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Thus the shapes of the spectrum of L(V) for 0 < V < 1/2 are well-known

Pic. 3. 0 < V < 1/2. As in the self-adjoint Mathier operator

Pic.4. V =1/2. All periodic (except first) and antiperiodic eigenvalues
are double and spectral singularities of L(q).
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Note that the reality of the spectrum for 0 < V < 1/2 also follows from
the following. | proved that if ab = cd, then

U(L(aef’gx + beizx)) = (T(L(ce*’gx + dei2X)
Therefore
c(L((1+2V)e? + (1 —2V)e '®) = o(L(2c cos 2x)), (8)

where ¢ = /1 —4V?

The PT-symmetric operator L(ae™"?X + be'?¥) is a spectral operator if and
only if a = b, that is, q(x) is the real potential 2acos2x. The optical

operator with potential (3) is spectral if and only if V = 0.

| give a complete description, provided with a mathematical proof, of the
shape of the spectrum of the Hill operator L(V') with potential (3), when
V changes from 1/2 to \/5/2, thatis, c = ir and r < (0 2).
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For this first we prove the followings

Theorem

If1/2 < V < \/5/2, then all antiperiodic eigenvalues are nonreal and
simple.

Theorem

| A\

If1/2 < V < +/5/2, then all periodic eigenvalues (except first and
second) are real and simple.

| A\

Theorem

There exists unique number V, from (1/2, \@/2) such that

(a) If1/2 < V < V, then the first and second eigenvalues are real and
simple.

(b) If V = V5, then )Ll(O) = /\2(0) €eR

(c) If Vo < V < /5/2 then the first and second periodic eigenvalues
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| prove that V5 is the second critical point (after which no part of the first
and second bands remains real) and is a number between 0.8884370025
and 0.8884370117. Moreover, the last theorem shows that V5 is the
unique degeneration point for the first periodic eigenvalue, in the sense
that the first periodic eigenvalue of the potential (3) is simple for all

V €10,4/5/2)\ {V2} and is double if V = V,. My approach give the
possibility to find the arbitrary close values of the k-th critical point V
and prove that no part of the (2k — 3)-th and (2k — 2)-th bands remains
real for Vi < V < V) + € for some positive €, where k = 2,3, ...

Using the last theorems we prove that the spectrum of L(V) has the
following shape

(Institute) /27



4 [

P

\ \

Pic. 5. 1/2 < V < V5. All antiperiodic eigenvalues are nonreal and
periodic eigenvalues are real

T

. —€

Pic. 6. V = V,.
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Pic. 7. Vo < V < /5/2. All periodic eigenvalues (except first and

second) are real, the first and second periodic eigenvalues A;(0) and A, (0)

are simple and nonreal and A2(0) = A1(0). Thus the first and second
bands have different shapes in the following 3 cases:
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Pic. 8. Case 1: 1/2 <V < V,, Case 2: V =V, , Case 3:

Vo <V <56/2.

In Case 1, the real part of the first component (); = I'y UT’; is the closed
interval 1 =: [A1(0), A2(0)]. We prove that if V approaches V, from the
left, then the eigenvalues A1(0) and A2(0) get close to each other and the
length of the interval /1 approaches zero.
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As a result if V = V5, then we get the equality A1(0) = A»(0) which
means that the first and second bands I'; and I'; have only one real point
which is their common point

/1 :R801 :ReF1 :ReF2 = {)\1(0)}

The other parts of the bands I'; and I', are nonreal and symmetric with
respect to the real line. Then we prove that if V > V5, then the
eigenvalues A1(0) and A,(0) get off the real line and hence /; becomes the
empty set. As a results, the first and second bands I'; and I', became the
nonreal curves symmetric with respect to the real line.

Definition

A real number V;, € [0, \@/2) is called the second critical point or the
degeneration point for the first periodic eigenvalue if the first real
eigenvalue of Ly(V4) is a double eigenvalue or equivalently if the first real
component of o(L(V,)) is a point.
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Now let us describe briefly the shapes of all bands. | prove that the
spectrum of L(V) in Case 1 has the following properties:

Pr. 1. The real part o(H(a)) N R of the spectrum of H(a) consist of the
intervals

h = [A1(0),A2(0)], h = [A3(0),A4(0)], ..., In = [A2n—1(0), A2, (0)], ...
(9)
Pr. 2. For each n=1,2, ..., the interval |, is the real part of
Qn ) ].—'2,,71 U rzn.
Pr. 3. The bands I'y,,_1 and I'y, have only one common point A, which
is interior point of I,. Moreover, A, is a double eigenvalue of L; (V') for
some t, € (0, 71) and a spectral singularity of L(V) and hence

I12n—1 N I12n = An = )\Zn—l(tn) = AZn(tn) € R.

Pr. 4. The real parts of the bands I'y,_1 and Ty, are respectively the
intervals [A2p—1(0), Ap] = {A2n—1(t) : t € [0, t,]} and
[An,)tgn(())] = {)\gn(t) te [0, tn]}
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Pr. 5. The nonreal parts of I'y,_1 and T’y are respectively the analytic
curves

Yon-1(a) = {A2n-1(t) : t € (0, 71}, 7120(a) = {A2n(2) 2 t € (80, 7]}

and Y3,(a) = {A: A € 1pp1(a) }

Thus the bands I';,—1 and I'p, are joined by A, and hence they form
together the connected subset of the spectrum. The spectrum o (L(a))
consist of the connected sets (); =: 1 UT'p, () =: T3 UTIYy,...Moreover in
Case 1 (1/2 < V < V3) we prove that

Pr. 6 The sets ()1, Q)y, ... are connected separated subset of the
spectrum.

Moreover, in all cases the intervals (9) are pairwise disjoint sets. Therefore
they are called the real components of o(L(V)) if V € (1/2,4/5/2).
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Note that in Case 2 (V = V) and Case 3 (Vo < V < /5/2) the shapes
of the components )y, )3, ... are as in Case 1. In this way one can prove
that there exists k-th critical point, denoted by V), such that for

<V <V, V=Viand Vi <V < Vi +e the set

Q1 =:Tyx_3UTI5_» have the shape as )1 in Case 1, Case 2 and Case

—

Pic.9 The shape of (Q;_1 in the cases % <V <V V=V and
Vk < V < Vk+1
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Pic.10. The shape of the spectrum for Vo, < V < V3

Pic.11. The shape of the spectrum for V3 < V < Vj

[
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