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Introduction

We’ll talk about spectral properties of the form

Ty = −y ′′ + P(x)y = λy , y(−a) = y(a) = 0,

0 < a ≤ +∞

with conditions for PT – symmetry: P(x) = P(−x).

It’s clear that the spectrum is symmetric with respect to real axis.



Introduction

The following problems play an important role in the study of these
operators:

• When the spectrum of a PT – symmetric operator is real.

• When the correspondent operator is similar to self–adjoint?

• Other topics: Resolvent estimates / Basis properties.



Sources of Inspiration

• Bender, Wu, 1969.

• Bessis and Zinn-Justin conjecture (about 1995): Tw = −w ′′ + iz3w
in L2(−∞,+∞) has only real spectrum. Proved by Dorey, Dunning
and Tateo in 2001.

• Shin genegalized this result to Tw = −w ′′ + i(z3 + az), a ≥ 0 in
2002.



Sources of Inspiration

• Davies, 1998-2000 — wild behavior of resolvent of
Tw = −w ′′ + c |x |mw in L2(R) if c ∈ C \ R. At the same time
eigenfunctions form complete set if Re c > 0, m ≥ 1 or 0 < m < 1
and | arg c | < πm/2.

• Krejčǐŕık, Siegl, 2012 — the completeness of the system of
eigenfunctions for Tw = −w ′′ + iz3w in L2(R).

• Mityagin, Siegl, Viola, 2013 — computation of spectral projectors
norms for anharmonic oscillators.

• Eremenko and Gabrielov in 2011 studied the spectral locus of
Tw = −w ′′ + i(z3 + az) in L2(R) and especially the real spectral
locus (a, λ) ∈ R2. They found simple analytic disjoint curves Γn —
the image of a proper analytic embedding of the real line on which
each eigenfunction has exactly 2n non-real zeros.



Introduction

Consider the operator in L2(−a, a), P — polynomial with PT –symmetry

Ty = −1

ε
y ′′ + P(x)y = λy , y(−a) = y(a) = 0, 0 < a ≤ +∞

we should distinguish 3 cases:

• small values of the parameter ε

• dynamics of the eigenvalues in the middle

• large values of the parameter [Shkalikov, T, 2016]



Introduction

Let us consider the finit interval [−a, a] = [−1, 1] When ε is small,
eigenvalues of T are close to

λn ∼
1

ε

(
π2n2

4

)2

, n ∈ N,

Because of PT –symmetry, in small ε all eigenvalues are real, and the
operator is similar to self-adjoint (according Dunford if P is bounded,
complex measurable potential, the associated generalized eigenvalue
expansion is unconditionally convergent).

And with ε increase it will stay similar to self-adjoint till we get the
exceptional point when several eigenvalues collide.

Our aim is to find the exact values of these exceptional points in one nice
model case — complex Airy operator.



Complex Airy Operator

Since now let

T (ε)y = −1

ε
y ′′ + ixy , y(−1) = y(1) = 0.

According to the general perturbation theory it’s easy to show that when
ε < 3π2/8 ≈ 3.7 the spectrum is real and consists of simple positive
eigenvalues λk = λk(ε), k ≥ 1.

Moreover, λk(ε) ∼ ε−1(πk/2)2 when ε→ 0 or k →∞.

But this estimation for the first exceptional point is rough.



Complex Airy Operator

According to computation, starting from small values of the parameter ε
all eigenvalues move from infinity to the left to zero.

When ε ≈ 5.1 the first eigenvalue crosses the nodal point 1/
√

3 ≈ 0.58
continuing its movement to the left.

When ε = ε1,turn ≈ 9.3 the first eigenvalue reaches the point
λ1,turn ≈ 0.45, stops at this point and with further increase of ε > ε1,turn
moves back to the right, at the same time all other eigenvalues continue
to move to the left.
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Complex Airy Operator

Afterwards the first and the second eigenvalues move towards each other
and collide at the nodal point 1/

√
3 when ε1 ≈ 12.3.
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Complex Airy Operator

After the collision the first and the second eigenvalues become the pair of
complex conjugate eigenvalues, escaping from the real axis at right angle,
getting closer and closer to segments [1/

√
3,±i ] moving to ±i .
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Complex Airy Operator

With further ε increase the third eigenvalue crosses the nodal point,
moves to the left to λ2,turn < 1/

√
3, when it stopes and then moves to

the right towards the fourth eigenvalue until collision at the nodal point
1/
√

3.

The same picture is observed for all pairs λ2k−1 and λ2k , k ∈ N.

In large ε eigenvalues concentrate near segments [i , 1/
√

3], [−i , 1/
√

3]
and ray [1/

√
3,+∞), forming together so called spectral tie [Shkalikov,

1997].
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Real Spectral Locus for Airy Operator
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Theorem

The real spectral locus for Airy operator consists of pairwise disjoint
regular analytic Jordan curves with ends at infinity. Each curve
corresponds to two eigenvalues: odd and even.



Main Result
Consider the Airy equation

y ′′(ξ) = ξ · y(ξ)

and standard solutions Ai (ξ), Bi (ξ). We introduce two additional ones:

µ0(ξ) = −
√

3Ai (ξ) + Bi (ξ), µ1(ξ) =
√

3Ai (ξ) + Bi (ξ)

with following properties: µ0(0) = 0, µ′1(0) = 0.

Lemma

Zeros of µ0 and µ1 lie on the rays arg z = π/3 + 2πk/3, k = −1, 0, 1
symmetrically relative to the origin. Let α0 = 0, αk , (k = 1, 2, . . .) — the
absolute values for µ0 zeros, βl , (l = 1, 2, . . .) — the absolute values for
µ1 zeros.

The zeros of both functions alternate:

α0 < β1 < α1 < β2 < α2 < β3 < . . .



Main Result

Theorem

As before, let β1 < α1 < β2 < α2 < β3 < . . . be the absolute values of
µ1 and µ0. We assign

δk =
(
βk

√
3

2

)3
, εk =

(
αk

√
3

2

)3
, k ∈ N.

It’s obvious that, 0 < δ1 < ε1 < δ2 < ε2 < . . .

• When ε ∈ (0, ε1] all eigenvalues are real, T (ε) is similar to
self-adjoint operator.

• When ε ∈ (0, δ1) ∪
∞⋃
k=1

(εk , δk+1) the interval (0, 1/
√

3) doesn’t

contain eigenvalues.

• When ε ∈
∞⋃
k=1

(δk , εk) the interval (0, 1/
√

3) contains the single

eigenvalue λ2k−1.



Main Result

Theorem (continuation)

• All critical points of the spectral locus coincide with the set

M =
{

(εk ,
1√
3

)
}
,

the multiplicity of each one is 2. With increasing of ε when the
value passes through ε = εk the pair of eigenvalues λ2k−1 and λ2k
collides in λ̃ = 1/

√
3, scattering then at right angle to the real axis.

Subsequently eigenvalues do not return back to the real axis.
If ε 6∈ {εk} then T (ε) is similar to normal operator.

• When ε = δk the eigenvalue λ2k−1 passes through λ̃ = 1/
√

3. This
value is not exceptional.

• When ε = δk the eigenfunction for λ2k−1 = 1/
√

3 can be explicitly
specified:

y(z) = µ1

(
δ
1/3
k (

1√
3
− iz)

)
.



Main Result

Theorem (continuation)

• When ε = εk the eigenfunction for λ2k−1 = λ2k = 1/
√

3 can be
explicitly specified:

y(z) = µ0

(
ε1/3(

1√
3
− iz)

)
.

• The asymptotic formulas for k →∞:

εk =

√
3

4

(
3

2

)3(
πk − π

12
+ O(

1

k
)

)2

,

δk =

√
3

4

(
3

2

)3(
πk − 5π

12
+ O(

1

k
)

)2

.



Main Result

Theorem (continuation)

The turning points can be estimated as follows:

λ2k−1,turn < cot arg zk < 1/
√

3,

where zk — the complex zeros of Bi , lying in the first quadrant.



Ideas of Proof

Changing the variable to ξ = ε1/3(λ− ix) we come to the study of zeros
for solutions of Airy equation.

y ′′ = ξ · y .

When a ∈ C the family Va(ξ) = aAi (ξ) + Bi (ξ) covers all solutions up
to constant factor, except Ai .

If a is real, the complex (non-real) zeros of Va(ξ) provide alternative
parametrization of real spectral locus: for each pair (ε, λ) the pair of
complex conjugate zeros of some real solution of the Airy equation
corresponds uniquely.

Backward: ε = |Im ξ0|3, λ = Re ξ0/|Im ξ0| for each zero ξ0 of Va(ξ),
a ∈ R.



Ideas of Proof
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The equation Va(ξ) = 0 determines countable number of implicit
functions ξn = ξn(a), n ∈ Z, analytically continued to a neighborhood of
the real axis. The ξn-images of the real axis — pairwise disjoint Jordan
analytic curves Γn.

ξn1 corresponds to the movement of λ2n−1 through the node, ξn0
corresponds to collision of λ2n−1 and λ2n.
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Thank You!!!


